Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Behav Brain Res ; 396: 112906, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32950606

RESUMEN

Glutamatergic dysregulation is known to contribute to obsessive-compulsive disorder (OCD). Astrocytic glutamate transporter 1 (GLT1) is responsible for the majority of glutamate clearance. However, the role of GLT1 in OCD-like behavior remains unclear. Here, we found that astrocytic GLT1 deficient mice showed increased wheel running activity but reduced home cage activity. Notably, they exhibited elevated grooming/rearing time and increased repetitive behavior counts in contextual and cued fear conditioning. In addition, they showed increased rearing counts in the metabolic chamber, and also augmented rearing time and jumping counts in the open field test. Taken together, our findings suggest that astrocytic GLT1 deficiency promotes OCD-like repetitive behaviors.


Asunto(s)
Astrocitos/metabolismo , Conducta Animal/fisiología , Transportador 2 de Aminoácidos Excitadores/deficiencia , Locomoción/fisiología , Trastorno Obsesivo Compulsivo/genética , Trastorno Obsesivo Compulsivo/fisiopatología , Animales , Condicionamiento Clásico/fisiología , Modelos Animales de Enfermedad , Miedo/fisiología , Aseo Animal/fisiología , Ratones , Ratones Noqueados
2.
Neurochem Res ; 45(6): 1420-1437, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32144526

RESUMEN

Expression of the glutamate transporter GLT-1 in neurons has been shown to be important for synaptic mitochondrial function in the cerebral cortex. Here we determined whether neuronal GLT-1 plays a similar role in the hippocampus and striatum, using conditional GLT-1 knockout mice in which GLT-1 was inactivated in neurons by expression of synapsin-Cre (synGLT-1 KO). Ex vivo 13C-labelling using [1,2-13C]acetate, representing astrocytic metabolism, yielded increased [4,5-13C]glutamate levels, suggesting increased astrocyte-neuron glutamine transfer, in the striatum but not in the hippocampus of the synGLT-1 KO. Moreover, aspartate concentrations were reduced - 38% compared to controls in the hippocampus and the striatum of the synGLT-1 KO. Mitochondria isolated from the hippocampus of synGLT-1 KO mice exhibited a lower oxygen consumption rate in the presence of oligomycin A, indicative of a decreased proton leak across the mitochondrial membrane, whereas the ATP production rate was unchanged. Electron microscopy revealed reduced mitochondrial inter-cristae distance within excitatory synaptic terminals in the hippocampus and striatum of the synGLT-1 KO. Finally, dilution of 13C-labelling originating from [U-13C]glucose, caused by metabolism of unlabelled glutamate, was reduced in hippocampal synGLT-1 KO synaptosomes, suggesting that neuronal GLT-1 provides glutamate for synaptic tricarboxylic acid cycle metabolism. Collectively, these data demonstrate an important role of neuronal expression of GLT-1 in synaptic mitochondrial metabolism in the forebrain.


Asunto(s)
Ácido Aspártico/metabolismo , Cuerpo Estriado/metabolismo , Transportador 2 de Aminoácidos Excitadores/deficiencia , Hipocampo/metabolismo , Mitocondrias/metabolismo , Sinapsis/metabolismo , Animales , Cuerpo Estriado/ultraestructura , Transportador 2 de Aminoácidos Excitadores/genética , Hipocampo/ultraestructura , Homeostasis/fisiología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/ultraestructura , Neuronas/metabolismo , Neuronas/ultraestructura , Sinapsis/ultraestructura
3.
ACS Chem Neurosci ; 11(3): 406-417, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31909584

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disease that is characterized by pathological dopaminergic (DA) neuronal death and α-synuclein aggregation. Glutamate excitotoxicity is a well-established pathogenesis of PD that involves dysfunctional expression of glutamate transporters. Glutamate transporter-1 (GLT-1) is mainly responsible for clearance of glutamate at synapses, including DA synapses. However, the role of GLT-1 in the aberrant synaptic transmission in PD remains elusive. In the present study, we generated small-interfering RNAs (siRNAs) to knockdown GLT-1 expression in primary astrocytes, and we report that siRNA knockdown of astrocytic GLT-1 decreased postsynaptic density-95 (PSD-95) expression in neuron-astrocyte cocultures in vitro. Using adeno-associated viruses (AAVs) targeting GLT-1 short-hairpin RNA (shRNA) sequences with a glial fibrillary acidic protein (GFAP) promoter, we abolished astrocytic GLT-1 expression in the substantia nigra pars compacta (SNpc) of mice. We found that GLT-1 deficiency in the SNpc induced parkinsonian phenotypes in terms of progressive motor deficits and nigral DA neuronal death in mice. We also found that there were reactive astrocytes and microglia in the SNpc upon GLT-1 knockdown. Furthermore, we used RNA sequencing to determine altered gene expression patterns upon GLT-1 knockdown in the SNpc, which revealed that disrupted calcium signaling pathways may be responsible for GLT-1 deficiency-mediated DA neuronal death in the SNpc. Taken together, our findings provide evidence for a novel role of GLT-1 in parkinsonian phenotypes in mice, which may contribute to further elucidation of the mechanisms of PD pathogenesis.


Asunto(s)
Modelos Animales de Enfermedad , Transportador 2 de Aminoácidos Excitadores/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Animales , Astrocitos/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Transportador 2 de Aminoácidos Excitadores/deficiencia , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones Endogámicos C57BL
4.
Proc Natl Acad Sci U S A ; 116(43): 21800-21811, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31591195

RESUMEN

The excitatory amino acid transporter 2 (EAAT2) is the major glutamate transporter in the brain expressed predominantly in astrocytes and at low levels in neurons and axonal terminals. EAAT2 expression is reduced in aging and sporadic Alzheimer's disease (AD) patients' brains. The role EAAT2 plays in cognitive aging and its associated mechanisms remains largely unknown. Here, we show that conditional deletion of astrocytic and neuronal EAAT2 results in age-related cognitive deficits. Astrocytic, but not neuronal EAAT2, deletion leads to early deficits in short-term memory and in spatial reference learning and long-term memory. Neuronal EAAT2 loss results in late-onset spatial reference long-term memory deficit. Neuronal EAAT2 deletion leads to dysregulation of the kynurenine pathway, and astrocytic EAAT2 deficiency results in dysfunction of innate and adaptive immune pathways, which correlate with cognitive decline. Astrocytic EAAT2 deficiency also shows transcriptomic overlaps with human aging and AD. Overall, the present study shows that in addition to the widely recognized astrocytic EAAT2, neuronal EAAT2 plays a role in hippocampus-dependent memory. Furthermore, the gene expression profiles associated with astrocytic and neuronal EAAT2 deletion are substantially different, with the former associated with inflammation and synaptic function similar to changes observed in human AD and gene expression changes associated with inflammation similar to the aging human brain.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Disfunción Cognitiva/patología , Transportador 2 de Aminoácidos Excitadores/deficiencia , Trastornos de la Memoria/patología , Neuronas/metabolismo , Adulto , Anciano de 80 o más Años , Envejecimiento/fisiología , Animales , Cognición/fisiología , Disfunción Cognitiva/genética , Transportador 2 de Aminoácidos Excitadores/genética , Hipocampo/fisiología , Humanos , Quinurenina/metabolismo , Masculino , Trastornos de la Memoria/genética , Memoria a Largo Plazo/fisiología , Memoria a Corto Plazo/fisiología , Ratones , Ratones Noqueados , Persona de Mediana Edad , Adulto Joven
5.
Glia ; 67(6): 1122-1137, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30635928

RESUMEN

Elevation of energy metabolism and disturbance of astrocyte number/function in the ventral anterior cingulate cortex (vACC) contributes to the pathophysiology of major depressive disorder (MDD). Functional hyperactivity of vACC may result from reduced astrocytic glutamate uptake and increased neuronal excitation. Here we tested this hypothesis by knocking-down astrocytic glutamate transporter GLAST/GLT-1 expression in mouse infralimbic (IL, rodent equivalent of vACC) or prelimbic (PrL) cortices using RNAi strategies. Unilateral siRNA (small interfering RNA) microinfusion targeting GLAST or GLT-1 in mouse IL induced a moderate (20-30%) and long-lasting (7 days) decrease in their expression. Intra-IL GLAST-/GLT-1 siRNA microinfusion reduced the number of glial fibrillary acidic protein (GFAP)-positive and glutamine synthetase (GS)-positive astrocytes and evoked a depressive-like phenotype reversed by citalopram and ketamine. Intra-IL GLAST or GLT-1 knockdown markedly reduced serotonin (5-HT) release in the dorsal raphe nucleus (DR) and induced an overall reduction of brain-derived neurotrophic factor (BDNF) expression in ipsilateral and contralateral hemispheres. Egr-1 (early growth response protein-1) labeling suggests that both siRNAs enhance the GABAergic tone onto DR 5-HT neurons, leading to an overall decrease of 5-HT function, likely related to the widespread reduction on BDNF expression. Conversely, similar reductions of GLAST and GLT-1 expression in PrL did not induce a depressive-like phenotype. These results suggest that a focal glial change in IL translates into global change of brain activity by virtue of the descending projections from IL to DR and the subsequent attenuation of serotonergic function in forebrain, an effect perhaps related to the varied symptomatology of MDD.


Asunto(s)
Astrocitos/metabolismo , Corteza Cerebral/metabolismo , Trastorno Depresivo Mayor/metabolismo , Transportador 1 de Aminoácidos Excitadores/deficiencia , Transportador 2 de Aminoácidos Excitadores/deficiencia , Fenotipo , Animales , Trastorno Depresivo Mayor/genética , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/genética , Técnicas de Silenciamiento del Gen/métodos , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Glia ; 66(9): 1988-1998, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29722912

RESUMEN

Glutamate is a major excitatory neurotransmitter and plays an important role in neuropathic pain, which is frequently caused by nerve damage. According to recent studies, nerve injury induces changes in glutamatergic transmission in the spinal cord and several supraspinal regions, including the periaqueductal gray (PAG). Among glutamate signaling components, accumulating evidence suggests that the glial glutamate transporter GLT1 plays a critical role in neuropathic pain. Indeed, GLT1 expression is reduced in the spinal cord but increased in the PAG after nerve injury, suggesting that the role of GLT1 in neuropathic pain may vary according to the brain region. In this study, we generated PAG-specific and spinal cord-specific GLT1 knockout mice. Nerve injury-induced neuropathic pain was enhanced in spinal cord-specific GLT1 knockout mice but alleviated in PAG-specific GLT1 knockout mice. Thus, nerve injury may enhance glutamatergic neurotransmission from primary sensory neurons to the post-synaptic dorsal horn following downregulation of GLT1 in the spinal cord and result in inadequate descending pain inhibition caused by GLT1 upregulation in the PAG, resulting in neuropathic pain. In addition, ceftriaxone upregulated GLT1 expression in the spinal cord, but not the PAG, of control mice and attenuated tactile hypersensitivity in nerve-injured control mice but not in nerve-injured spinal cord-specific GLT1 knockout mice. Based on these results, the anti-neuropathic pain effect of ceftriaxone is mediated by the upregulation of GLT1 expression in the spinal cord. Thus, selective upregulation of spinal GLT1 and/or downregulation of GLT1 in the PAG represents a potentially novel strategy for the treatment of neuropathic pain.


Asunto(s)
Transportador 2 de Aminoácidos Excitadores/deficiencia , Neuralgia/metabolismo , Sustancia Gris Periacueductal/metabolismo , Nervio Ciático/lesiones , Médula Espinal/metabolismo , Analgésicos no Narcóticos/farmacología , Animales , Ceftriaxona/farmacología , Modelos Animales de Enfermedad , Transportador 2 de Aminoácidos Excitadores/genética , Calor , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Hiperalgesia/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Vías Nerviosas/patología , Neuralgia/tratamiento farmacológico , Neuralgia/etiología , Neuralgia/patología , Sustancia Gris Periacueductal/efectos de los fármacos , Sustancia Gris Periacueductal/patología , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Tacto
7.
Psychopharmacology (Berl) ; 235(5): 1371-1387, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29468294

RESUMEN

RATIONALE: GLT-1 is the major glutamate transporter in the brain and is expressed predominantly in astrocytes but is also present in excitatory axon terminals. To understand the functional significance of GLT-1 expressed in neurons, we generated a conditional GLT-1 knockout mouse and inactivated GLT-1 in neurons using Cre-recombinase expressed under the synapsin 1 promoter, (synGLT-1 KO). OBJECTIVES: Abnormalities of glutamate homeostasis have been shown to affect hippocampal-related behaviors including learning and memory as well as responses to drugs of abuse. Here, we asked whether deletion of GLT-1 specifically from neurons would affect behaviors that assessed locomotor activity, cognitive function, sensorimotor gating, social interaction, as well as amphetamine-stimulated locomotor activity. METHODS/RESULTS: We found that the neuronal GLT-1 KO mice performed similarly to littermate controls in the behavioral tests we studied. Although performance in open field testing was normal, the acute locomotor response to amphetamine was significantly blunted in the synGLT-1 KO (40% of control). We found no change in amphetamine-stimulated extracellular dopamine in the medial shell of the nucleus accumbens, no change in electrically stimulated or amphetamine-induced dopamine release, and no change in dopamine tissue content. CONCLUSIONS: These results support the view that GLT-1 expression in neurons is required for amphetamine-induced behavioral activation, and suggest that this phenotype is not produced through a change in dopamine uptake or release. Although GLT-1 is highly expressed in neurons in the CA3 region of the hippocampus, the tests used in this study were not able to detect a behavioral phenotype referable to hippocampal dysfunction.


Asunto(s)
Anfetamina/farmacología , Dopamina/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Eliminación de Gen , Locomoción/fisiología , Neuronas/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Transportador 2 de Aminoácidos Excitadores/deficiencia , Transportador 2 de Aminoácidos Excitadores/genética , Miedo/efectos de los fármacos , Miedo/fisiología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Relaciones Interpersonales , Locomoción/efectos de los fármacos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Fenotipo
8.
Glia ; 66(4): 777-788, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29214672

RESUMEN

Glial glutamate transporter GLT1 plays a key role in the maintenance of extracellular glutamate homeostasis. Recent human genetic studies have suggested that de novo mutations in GLT1 (EAAT2) cause early-onset epilepsy with multiple seizure types. Consistent with these findings, global GLT1 null mice show lethal spontaneous seizures. The consequences of GLT1 dysfunction vary between different brain regions, suggesting that the role of GLT1 dysfunction in epilepsy may also vary with brain regions. In this study, we generated region-specific GLT1 knockout mice by crossing floxed-GLT1 mice with mice that express the Cre recombinase in a particular domain of the ventricular zone. Selective deletion of GLT1 in the diencephalon, brainstem and spinal cord is sufficient to reproduce the phenotypes (excess mortality, decreased body weight, and lethal spontaneous seizure) of the global GLT1 null mice. By contrast, dorsal forebrain-specific GLT1 knockout mice showed nonlethal complex seizures including myoclonic jerks, hyperkinetic running, spasm and clonic convulsion via the activation of NMDA receptors during a limited period from P12 to P14 and selective neuronal death in cortical layer II/III and the hippocampus. Thus, GLT1 dysfunction in the dorsal forebrain is involved in the pathogenesis of infantile epilepsy and GLT1 in the diencephalon, brainstem and spinal cord may play a critical role in preventing seizure-induced sudden death.


Asunto(s)
Encéfalo/metabolismo , Transportador 2 de Aminoácidos Excitadores/deficiencia , Enfermedades Neurodegenerativas/metabolismo , Convulsiones/metabolismo , Animales , Anticonvulsivantes/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Muerte Celular/fisiología , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Transportador 2 de Aminoácidos Excitadores/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología , Proteínas Nucleares/metabolismo , Pentilenotetrazol , Pirazinas/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
J Neurovirol ; 22(3): 358-65, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26567011

RESUMEN

The mechanisms leading to the neurocognitive deficits in humans with immunodeficiency virus type 1 (HIV-1) are not well resolved. A number of cell culture models have demonstrated that the HIV-envelope glycoprotein 120 (gp120) decreases the reuptake of glutamate, which is necessary for learning, memory, and synaptic plasticity. However, the impact of brain HIV-1 gp120 on glutamate uptake systems in vivo remains unknown. Notably, alterations in brain glutamate uptake systems are implicated in a number of neurodegenerative and neurocognitive disorders. We characterized the kinetic properties of system XAG (sodium-dependent) and systems xc- (sodium-independent) [3H]-L-glutamate uptake in the striatum and hippocampus of HIV-1 gp120 transgenic mice, an established model of HIV neuropathology. We determined the kinetic constant Vmax (maximal velocity) and Km (affinity) of both systems XAG and xc- using subcellular preparations derived from neurons and glial cells. We show significant (30-35 %) reductions in the Vmax of systems XAG and xc- in both neuronal and glial preparations derived from the striatum, but not from the hippocampus of gp120 mice relative to wild-type (WT) controls. Moreover, immunoblot analysis showed that the protein expression of glutamate transporter subtype-1 (GLT-1), the predominant brain glutamate transporter, was significantly reduced in the striatum but not in the hippocampus of gp120 mice. These extensive and region-specific deficits of glutamate uptake likely contribute to the development and/or severity of HIV-associated neurocognitive disorders. Understanding the role of striatal glutamate uptake systems in HIV-1 gp120 may advance the development of new therapeutic strategies to prevent neuronal damage and improve cognitive function in HIV patients.


Asunto(s)
Disfunción Cognitiva/metabolismo , Cuerpo Estriado/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/metabolismo , VIH-1/patogenicidad , Neuroglía/metabolismo , Animales , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/genética , Disfunción Cognitiva/virología , Cuerpo Estriado/virología , Modelos Animales de Enfermedad , Transportador 2 de Aminoácidos Excitadores/deficiencia , Ácido Glutámico/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/fisiología , Hipocampo/metabolismo , Hipocampo/virología , Humanos , Masculino , Ratones , Ratones Transgénicos , Neuroglía/virología , Neuronas/metabolismo , Neuronas/virología , Especificidad de Órganos , Sinapsis/metabolismo , Sinapsis/virología , Transgenes
10.
Neuropsychopharmacology ; 40(7): 1569-79, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25662838

RESUMEN

An increase in the ratio of cellular excitation to inhibition (E/I ratio) has been proposed to underlie the pathogenesis of neuropsychiatric disorders, such as autism spectrum disorders (ASD), obsessive-compulsive disorder (OCD), and Tourette's syndrome (TS). A proper E/I ratio is achieved via factors expressed in neuron and glia. In astrocytes, the glutamate transporter GLT1 is critical for regulating an E/I ratio. However, the role of GLT1 dysfunction in the pathogenesis of neuropsychiatric disorders remains unknown because mice with a complete deficiency of GLT1 exhibited seizures and premature death. Here, we show that astrocyte-specific GLT1 inducible knockout (GLAST(CreERT2/+)/GLT1(flox/flox), iKO) mice exhibit pathological repetitive behaviors including excessive and injurious levels of self-grooming and tic-like head shakes. Electrophysiological studies reveal that excitatory transmission at corticostriatal synapse is normal in a basal state but is increased after repetitive stimulation. Furthermore, treatment with an N-methyl-D-aspartate (NMDA) receptor antagonist memantine ameliorated the pathological repetitive behaviors in iKO mice. These results suggest that astroglial GLT1 has a critical role in controlling the synaptic efficacy at corticostriatal synapses and its dysfunction causes pathological repetitive behaviors.


Asunto(s)
Corteza Cerebral/patología , Trastornos de Traumas Acumulados/genética , Trastornos de Traumas Acumulados/patología , Transportador 1 de Aminoácidos Excitadores/deficiencia , Transportador 2 de Aminoácidos Excitadores/deficiencia , Sinapsis/genética , Animales , Animales Recién Nacidos , Ansiedad/genética , Trastornos de Traumas Acumulados/complicaciones , Trastornos de Traumas Acumulados/tratamiento farmacológico , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/uso terapéutico , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/genética , Potenciales Postsinápticos Excitadores/genética , Femenino , Regulación de la Expresión Génica/genética , Hiperalgesia/genética , Masculino , Ratones , Ratones Transgénicos , Degeneración Nerviosa/etiología , Degeneración Nerviosa/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas/genética , Convulsiones/genética
11.
PLoS One ; 7(5): e36853, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22606296

RESUMEN

BACKGROUND: Brains of patients with schizophrenia show both neurodevelopmental and functional deficits that suggest aberrant glutamate neurotransmission. Evidence from both genetic and pharmacological studies suggests that glutamatergic dysfunction, particularly with involvement of NMDARs, plays a critical role in the pathophysiology of schizophrenia. However, how prenatal disturbance of NMDARs leads to schizophrenia-associated developmental defects is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Glutamate transporter GLAST/GLT1 double-knockout (DKO) mice carrying the NMDA receptor 1 subunit (NR1)-null mutation were generated. Bouin-fixed and paraffin-embedded embryonic day 16.5 coronal brain sections were stained with hematoxylin, anti-microtubule-associated protein 2 (MAP2), and anti-L1 antibodies to visualize cortical, hippocampal, and olfactory bulb laminar structure, subplate neurons, and axonal projections. NR1 deletion in DKO mice almost completely rescued multiple brain defects including cortical, hippocampal, and olfactory bulb disorganization and defective corticothalamic and thalamocortical axonal projections. CONCLUSIONS/SIGNIFICANCE: Excess glutamatergic signaling in the prenatal stage compromises early brain development via overstimulation of NMDARs.


Asunto(s)
Encéfalo/embriología , Encéfalo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Secuencia de Bases , Encéfalo/anomalías , Corteza Cerebral/anomalías , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Cartilla de ADN/genética , Transportador 1 de Aminoácidos Excitadores/deficiencia , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/deficiencia , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Femenino , Hipocampo/anomalías , Hipocampo/embriología , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Bulbo Olfatorio/anomalías , Bulbo Olfatorio/embriología , Bulbo Olfatorio/metabolismo , Embarazo , Receptores de N-Metil-D-Aspartato/deficiencia , Receptores de N-Metil-D-Aspartato/genética
12.
J Neurosci ; 32(17): 6000-13, 2012 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-22539860

RESUMEN

The extracellular levels of excitatory amino acids are kept low by the action of the glutamate transporters. Glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) are the most abundant subtypes and are essential for the functioning of the mammalian CNS, but the contribution of the EAAC1 subtype in the clearance of synaptic glutamate has remained controversial, because the density of this transporter in different tissues has not been determined. We used purified EAAC1 protein as a standard during immunoblotting to measure the concentration of EAAC1 in different CNS regions. The highest EAAC1 levels were found in the young adult rat hippocampus. Here, the concentration of EAAC1 was ∼0.013 mg/g tissue (∼130 molecules µm⁻³), 100 times lower than that of GLT-1. Unlike GLT-1 expression, which increases in parallel with circuit formation, only minor changes in the concentration of EAAC1 were observed from E18 to adulthood. In hippocampal slices, photolysis of MNI-D-aspartate (4-methoxy-7-nitroindolinyl-D-aspartate) failed to elicit EAAC1-mediated transporter currents in CA1 pyramidal neurons, and D-aspartate uptake was not detected electron microscopically in spines. Using EAAC1 knock-out mice as negative controls to establish antibody specificity, we show that these relatively small amounts of EAAC1 protein are widely distributed in somata and dendrites of all hippocampal neurons. These findings raise new questions about how so few transporters can influence the activation of NMDA receptors at excitatory synapses.


Asunto(s)
Sistema Nervioso Central/citología , Transportador 3 de Aminoácidos Excitadores/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas/metabolismo , 2',3'-Nucleótido Cíclico Fosfodiesterasas/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Ácido Aspártico/farmacología , Sistema Nervioso Central/anatomía & histología , Ácido D-Aspártico/metabolismo , Dendritas/metabolismo , Dendritas/ultraestructura , Inhibidores Enzimáticos/farmacología , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Transportador 2 de Aminoácidos Excitadores/deficiencia , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 3 de Aminoácidos Excitadores/deficiencia , Transportador 3 de Aminoácidos Excitadores/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutamato Descarboxilasa/metabolismo , Técnicas In Vitro , Riñón/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Inmunoelectrónica , Proteína Básica de Mielina/metabolismo , Neuronas/efectos de los fármacos , Parvalbúminas/metabolismo , Técnicas de Placa-Clamp , Proteolípidos , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Fracciones Subcelulares/metabolismo , Sinaptofisina/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato
14.
J Histochem Cytochem ; 60(2): 139-51, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22114258

RESUMEN

The glutamate uptake transporter GLT-1 is best understood for its critical role in preventing brain seizures. Increasing evidence argues that GLT-1 also modulates, and is modulated by, metabolic processes that influence glucose homeostasis. To investigate further the potential role of GLT-1 in these regards, the authors examined GLT-1 expression in pancreas and found that mature multimeric GLT-1 protein is stably expressed in the pancreas of wild-type, but not GLT-1 knockout, mice. There are three primary functional carboxyl-terminus GLT-1 splice variants, called GLT-1a, b, and c. Brain and liver express all three variants; however, the pancreas expresses GLT-1a and GLT-1b but not GLT-1c. Quantitative real time-PCR further revealed that while GLT-1a is the predominant GLT-1 splice variant in brain and liver, GLT-1b is the most abundant splice variant expressed in pancreas. Confocal microscopy and immunohistochemistry showed that GLT-1a and GLT-1b are expressed in both islet ß- and α-cells. GLT-1b was also expressed in exocrine ductal domains. Finally, glutamine synthetase was coexpressed with GLT-1 in islets, which suggests that, as with liver and brain, one possible role of GLT-1 in the pancreas is to support glutamine synthesis.


Asunto(s)
Transportador 2 de Aminoácidos Excitadores/genética , Páncreas/metabolismo , Animales , Transportador 2 de Aminoácidos Excitadores/deficiencia , Transportador 2 de Aminoácidos Excitadores/metabolismo , Perfilación de la Expresión Génica , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Páncreas/citología , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
Glia ; 59(12): 1996-2005, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21882244

RESUMEN

The astrocyte glutamate transporter, GLT1, is responsible for the vast majority of glutamate uptake in the adult central nervous system (CNS), thereby regulating extracellular glutamate homeostasis and preventing excitotoxicity. Glutamate dysregulation plays a central role in outcome following traumatic spinal cord injury (SCI). To determine the role of GLT1 in secondary cell loss following SCI, mice heterozygous for the GLT1 astrocyte glutamate transporter (GLT1+/-) and wild-type mice received thoracic crush SCI. Compared with wild-type controls, GLT1+/- mice had an attenuated recovery in hindlimb motor function, increased lesion size, and decreased tissue sparing. GLT1+/- mice showed a decrease in intraspinal GLT1 protein and functional glutamate uptake compared with wild-type mice, accompanied by increased apoptosis and neuronal loss following crush injury. These results suggest that astrocyte GLT1 plays a role in limiting secondary cell death following SCI, and also show that compromise of key astrocyte functions has significant effects on outcome following traumatic CNS injury. These findings also suggest that increasing intraspinal GLT1 expression may represent a therapeutically relevant target for SCI treatment.


Asunto(s)
Astrocitos/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Gliosis/metabolismo , Ácido Glutámico/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Animales , Astrocitos/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Transportador 2 de Aminoácidos Excitadores/deficiencia , Gliosis/genética , Ratones , Ratones Noqueados , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología
16.
Neurochem Int ; 58(5): 558-63, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21256174

RESUMEN

Downregulation of astrocytic glutamate transporters is a feature of thiamine deficiency (TD), the underlying cause of Wernicke's encephalopathy, and plays a major role in its pathophysiology. Recent investigations suggest that ceftriaxone, a ß-lactam antibiotic, stimulates GLT-1 expression and confers neuroprotection against ischemic and motor neuron degeneration. Thus, ceftriaxone treatment may be a protective strategy against excitotoxic conditions. In the present study, we examined the effects of ceftriaxone on the glutamate transporter splice-variant GLT-1b in rats with TD and in cultured astrocytes under TD conditions. Our results indicate that ceftriaxone protects against loss of GLT-1b levels in the inferior colliculus during TD, but with no significant effect in the thalamus and frontal cortex by immunoblotting and immunohistochemistry. Ceftriaxone also normalized the loss of GLT-1b in astrocyte cultures under conditions of TD. These results suggest that ceftriaxone has the ability to increase GLT-1b levels in astrocytes during TD, and may be an important pharmacological strategy for the treatment of excitotoxicity in this disorder.


Asunto(s)
Ceftriaxona/uso terapéutico , Transportador 2 de Aminoácidos Excitadores/deficiencia , Colículos Inferiores/metabolismo , Deficiencia de Tiamina/metabolismo , Deficiencia de Tiamina/prevención & control , Animales , Ceftriaxona/farmacología , Células Cultivadas , Transportador 2 de Aminoácidos Excitadores/genética , Colículos Inferiores/efectos de los fármacos , Masculino , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Ratas , Ratas Sprague-Dawley , Deficiencia de Tiamina/genética
18.
Nat Neurosci ; 11(11): 1294-301, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18931666

RESUMEN

Cellular abnormalities in amyotrophic lateral sclerosis (ALS) are not limited to motor neurons. Astrocyte dysfunction also occurs in human ALS and transgenic rodents expressing mutant human SOD1 protein (SOD1(G93A)). Here we investigated focal enrichment of normal astrocytes using transplantation of lineage-restricted astrocyte precursors, called glial-restricted precursors (GRPs). We transplanted GRPs around cervical spinal cord respiratory motor neuron pools, the principal cells whose dysfunction precipitates death in ALS. GRPs survived in diseased tissue, differentiated efficiently into astrocytes and reduced microgliosis in the cervical spinal cords of SOD1(G93A) rats. GRPs also extended survival and disease duration, attenuated motor neuron loss and slowed declines in forelimb motor and respiratory physiological functions. Neuroprotection was mediated in part by the primary astrocyte glutamate transporter GLT1. These findings indicate the feasibility and efficacy of transplantation-based astrocyte replacement and show that targeted multisegmental cell delivery to the cervical spinal cord is a promising therapeutic strategy for slowing focal motor neuron loss associated with ALS.


Asunto(s)
Astrocitos/fisiología , Trasplante de Células , Enfermedad de la Neurona Motora/patología , Enfermedad de la Neurona Motora/terapia , Médula Espinal/cirugía , Células Madre/fisiología , Potenciales de Acción/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Supervivencia Celular/fisiología , Modelos Animales de Enfermedad , Transportador 2 de Aminoácidos Excitadores/deficiencia , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/biosíntesis , Miembro Posterior/fisiopatología , Humanos , Proteínas de Microfilamentos , Enfermedad de la Neurona Motora/fisiopatología , Músculo Esquelético/fisiopatología , Conducción Nerviosa/genética , Nervio Frénico/fisiopatología , Ratas , Médula Espinal/patología , Médula Espinal/fisiopatología , Superóxido Dismutasa/genética
19.
J Neurosci ; 28(19): 4995-5006, 2008 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-18463253

RESUMEN

Glutamate transporters are involved in neural differentiation, neuronal survival, and synaptic transmission. In the present study, we examined glutamate transporter 1 (GLT1) expression in the neonatal somatosensory cortex of C57BL/6 mice, and pursued its role in somatosensory development by comparing barrel development between GLT1 knock-out and control mice. During the first few neonatal days, a critical period for barrels, GLT1 expression is strikingly upregulated in cortical astrocytes, whereas it was downregulated in neuronal elements to below the detection threshold. GLT1 knock-out neonates developed normally in terms of body growth, cortical histoarchitecture, barrel formation, and critical period termination. However, when row C whiskers were lesioned during the critical period, reduction of lesioned row C barrels and reciprocal expansion of intact row B/D barrels were both milder in GLT1 knock-out mice than in control littermates. Accordingly, the map plasticity index, calculated as (B + D)/2C, was significantly lowered in GLT1 knock-out mice. We also found that extracellular glutamate levels in the neonatal somatosensory cortex were significantly elevated in GLT1 knock-out mice. Diminished lesion-induced plasticity was further found in mutant mice lacking glutamate-aspartate transporter (GLAST), an astrocyte-specific glutamate transporter throughout development. Therefore, glutamate transporters regulate critical period plasticity by enhancing expansion of active barrels and shrinkage of inactive barrels. Because cortical contents of glutamate receptors and GLAST were unaltered in GLT1 knock-out mice, this action appears to be mediated, at least partly, by keeping the ambient glutamate level low. Considering an essential role of glutamate receptors in the formation of whisker-related thalamocortical synapse patterning, glutamate transporters thus facilitate their activity-dependent remodeling.


Asunto(s)
Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Plasticidad Neuronal , Traumatismos de los Nervios Periféricos , Corteza Somatosensorial/fisiopatología , Vibrisas/inervación , Animales , Animales Recién Nacidos , Astrocitos/metabolismo , Transportador 1 de Aminoácidos Excitadores/deficiencia , Transportador 2 de Aminoácidos Excitadores/deficiencia , Líquido Extracelular/metabolismo , Ácido Glutámico/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Terminales Presinápticos , Corteza Somatosensorial/crecimiento & desarrollo , Corteza Somatosensorial/metabolismo , Sinapsis , Tálamo/fisiopatología , Regulación hacia Arriba
20.
J Neurosci ; 26(2): 644-54, 2006 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-16407562

RESUMEN

Filamentous tau inclusions in neurons and glia are neuropathological hallmarks of tauopathies. The discovery of microtubule-associated protein tau gene mutations that are pathogenic for a heterogenous group of neurodegenerative disorders, called frontotemporal dementia and parkinsonism linked to chromosome-17 (FTDP-17), directly implicate tau abnormalities in the onset/progression of disease. Although the role of tau pathology in neurons in disease pathogenesis is well accepted, the contribution of glial pathology is essentially unknown. We recently generated a transgenic (Tg) mouse model of tau pathology in astrocytes by expressing the human tau protein under the control of the glial fibrillary acidic protein (GFAP) promoter. Both wild-type and FTDP-17 mutant GFAP/tau Tg animals manifest an age-dependent accumulation of tau inclusions in astrocytes that resembles the pathology observed in human tauopathies. We further demonstrate that both strains of Tg mice manifest compromised motor function that correlates with altered expression of the glial glutamate-aspartate transporter and occurs before the development of tau pathology. Subsequently, the Tg mice manifest additional deficits in neuromuscular strength that correlates with reduced expression of glutamate transporter-1 (GLT-1) and occurs concurrent with tau inclusion pathology. Reduced GLT-1 expression was associated with a progressive decrease in sodium-dependent glutamate transport capacity. Reductions in GLT-1 expression were also observed in corticobasal degeneration, a tauopathy with prominent pathology in astrocytes. Less robust changes were observed in Alzheimer's disease in which neuronal tau pathology predominates. Thus, these Tg mice recapitulate features of astrocytic pathology observed in tauopathies and implicate a role for altered astrocyte function in the pathogenesis of these disorders.


Asunto(s)
Astrocitos/metabolismo , Transportador 2 de Aminoácidos Excitadores/fisiología , Proteínas del Tejido Nervioso/metabolismo , Tauopatías/metabolismo , Sustitución de Aminoácidos , Animales , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Transportador 1 de Aminoácidos Excitadores/deficiencia , Transportador 1 de Aminoácidos Excitadores/fisiología , Transportador 2 de Aminoácidos Excitadores/deficiencia , Regulación de la Expresión Génica , Proteína Ácida Fibrilar de la Glía/genética , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Debilidad Muscular/genética , Debilidad Muscular/fisiopatología , Mutación Missense , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Mutación Puntual , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/metabolismo , Proteínas tau
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...