Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.029
Filtrar
1.
J Plant Physiol ; 297: 154262, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703548

RESUMEN

Aluminum (Al) is the major limiting factor affecting plant productivity in acidic soils. Al3+ ions exhibit increased solubility at a pH below 5, leading to plant root tip toxicity. Alternatively, plants can perceive very low concentrations of Al3+, and Al triggers downstream signaling even at pH 5.7 without causing Al toxicity. The ALUMINUM-ACTIVATED-MALATE-TRANSPORTER (ALMT) family members act as anion channels, with some regulating the secretion of malate from root apices to chelate Al, which is a crucial mechanism for plant Al resistance. To date, the role of the ALMT gene family within the legume Medicago species has not been fully characterized. In this study, we investigated the ALMT gene family in M. sativa and M. truncatula and identified 68 MsALMTs and 18 MtALMTs, respectively. Phylogenetic analysis classified these genes into five clades, and synteny analysis uncovered genuine paralogs and orthologs. The real-time quantitative reverse transcription PCR (qRT-PCR) analysis revealed that MtALMT8, MtALMT9, and MtALMT15 in clade 2-2b are expressed in both roots and root nodules, and MtALMT8 and MtALMT9 are significantly upregulated by Al in root tips. We also observed that MtALMT8 and MtALMT9 can partially restore the Al sensitivity of Atalmt1 in Arabidopsis. Moreover, transcriptome analysis examined the expression patterns of these genes in M. sativa in response to Al at both pH 5.7 and pH 4.6, as well as to protons, and found that Al and protons can independently induce some Al-resistance genes. Overall, our findings indicate that MtALMT8 and MtALMT9 may play a role in Al resistance, and highlight the resemblance between the ALMT genes in Medicago species and those in Arabidopsis.


Asunto(s)
Aluminio , Perfilación de la Expresión Génica , Filogenia , Proteínas de Plantas , Aluminio/toxicidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Familia de Multigenes , Medicago truncatula/genética , Medicago truncatula/efectos de los fármacos , Medicago truncatula/metabolismo , Medicago sativa/genética , Medicago sativa/efectos de los fármacos , Medicago sativa/fisiología , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Genoma de Planta , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Medicago/genética , Medicago/fisiología
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731886

RESUMEN

The cerebrovascular endothelial cells with distinct characteristics line cerebrovascular blood vessels and are the fundamental structure of the blood-brain barrier, which is important for the development and homeostatic maintenance of the central nervous system. Cre-LoxP system-based spatial gene manipulation in mice is critical for investigating the physiological functions of key factors or signaling pathways in cerebrovascular endothelial cells. However, there is a lack of Cre recombinase mouse lines that specifically target cerebrovascular endothelial cells. Here, using a publicly available single-cell RNAseq database, we screened the solute carrier organic anion transporter family member 1a4 (Slco1a4) as a candidate marker of cerebrovascular endothelial cells. Then, we generated an inducible Cre mouse line in which a CreERT2-T2A-tdTomato cassette was placed after the initiation codon ATG of the Slco1a4 locus. We found that tdTomato, which can indicate the endogenous Slco1a4 expression, was expressed in almost all cerebrovascular endothelial cells but not in any other non-endothelial cell types in the brain, including neurons, astrocytes, oligodendrocytes, pericytes, smooth muscle cells, and microglial cells, as well as in other organs. Consistently, when crossing the ROSA26LSL-EYFP Cre reporter mouse, EYFP also specifically labeled almost all cerebrovascular endothelial cells upon tamoxifen induction. Overall, we generated a new inducible Cre line that specifically targets cerebrovascular endothelial cells.


Asunto(s)
Encéfalo , Células Endoteliales , Integrasas , Animales , Ratones , Células Endoteliales/metabolismo , Integrasas/metabolismo , Integrasas/genética , Encéfalo/metabolismo , Técnicas de Sustitución del Gen , Ratones Transgénicos , Barrera Hematoencefálica/metabolismo , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Tamoxifeno/farmacología , Proteína Fluorescente Roja
3.
Orphanet J Rare Dis ; 19(1): 201, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755710

RESUMEN

BACKGROUND AND AIMS: Chronic enteropathy associated with SLCO2A1 gene is a rare intestinal disease caused by loss-of-function SLCO2A1 mutations, with clinical and genetic characteristics remaining largely unknown, especially in Chinese patients. This study aims to reveal clinical and genetic features of Chinese CEAS patients, highlighting the previously unreported or unemphasized characteristics. METHODS: We enrolled 12 Chinese patients with chronic enteropathy associated with SLCO2A1 gene admitted to Peking Union Medical College Hospital from January 2018 to December 2022. Clinical and genetic data of these patients were collected and analyzed. RESULTS: 58.3% of patients were male, who also had primary hypertrophic osteoarthropathy, whereas female patients did not have primary hypertrophic osteoarthropathy. Apart from common symptoms associated with anemia and hypoalbuminemia, abdominal pain, ileus, diarrhea, and hematochezia were present. 4 of the 5 female patients had early-onset amenorrhea, though the causal relationship remained to be clarified. Endoscopy and computed tomography enterography revealed that lesions can occur in any part of the digestive tract, most commonly in the ileum. Pathology showed multiple superficial ulcers with adjacent vascular dilatation, and loss of SLCO2A1 expression, particularly in gastrointestinal vascular endothelial cells. Genetic analysis confirmed SLCO2A1 mutations in all patients and identified 11 new SLCO2A1 variants for CEAS. CONCLUSIONS: This study reports new clinical, pathological, and genetic findings in 12 Chinese patients with chronic enteropathy associated with SLCO2A1 gene. This study provides insights into the pathogenesis of this disease. However, studies with larger sample sizes and more in-depth mechanism research are still required.


Asunto(s)
Enfermedades Intestinales , Transportadores de Anión Orgánico , Humanos , Femenino , Masculino , Transportadores de Anión Orgánico/genética , Adulto , Enfermedades Intestinales/genética , Enfermedades Intestinales/patología , Mutación/genética , Adulto Joven , Adolescente , Persona de Mediana Edad , China , Pueblo Asiatico/genética , Enfermedad Crónica , Pueblos del Este de Asia
4.
Sci Rep ; 14(1): 9003, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637614

RESUMEN

The invasive Asian longhorned tick Haemaphysalis longicornis that vectors and transmits several animal pathogens is significantly expanding in the United States. Recent studies report that these ticks also harbor human pathogens including Borrelia burgdorferi sensu lato, Babesia microti, and Anaplasma phagocytophilum. Therefore, studies that address the interactions of these ticks with human pathogens are important. In this study, we report the characterization of H. longicornis organic anion-transporting polypeptides (OATPs) in interactions of these ticks with A. phagocytophilum. Using OATP-signature sequence, we identified six OATPs in the H. longicornis genome. Bioinformatic analysis revealed that H. longicornis OATPs are closer to other tick orthologs rather than to mammalian counterparts. Quantitative real-time PCR analysis revealed that OATPs are highly expressed in immature stages when compared to mature stages of these ticks. In addition, we noted that the presence of A. phagocytophilum upregulates a specific OATP in these ticks. We also noted that exogenous treatment of H. longicornis with xanthurenic acid, a tryptophan metabolite, influenced OATP expression in these ticks. Immunoblotting analysis revealed that antibody generated against Ixodes scapularis OATP cross-reacted with H. longicornis OATP. Furthermore, treatment of H. longicornis with OATP antibody impaired colonization of A. phagocytophilum in these ticks. These results not only provide evidence that the OATP-tryptophan pathway is important for A. phagocytophilum survival in H. longicornis ticks but also indicate OATP as a promising candidate for the development of a universal anti-tick vaccine to target this bacterium and perhaps other rickettsial pathogens of medical importance.


Asunto(s)
Anaplasma phagocytophilum , Borrelia burgdorferi , Borrelia , Ixodes , Transportadores de Anión Orgánico , Animales , Humanos , Haemaphysalis longicornis , Anaplasma phagocytophilum/genética , Triptófano , Ixodes/microbiología , Anticuerpos/metabolismo , Transportadores de Anión Orgánico/genética , Borrelia burgdorferi/metabolismo , Mamíferos/metabolismo
5.
Eur J Med Chem ; 271: 116407, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38663283

RESUMEN

Xanthine oxidoreductase (XOR) and uric acid transporter 1 (URAT1) are two most widely studied targets involved in production and reabsorption of uric acid, respectively. Marketed drugs almost target XOR or URAT1, but sometimes, single agents might not achieve aim of lowering uric acid to ideal value in clinic. Thus, therapeutic strategies of combining XOR inhibitors with uricosuric drugs were proposed and implemented. Based on our initial work of virtual screening, A and B were potential hits for dual-targeted inhibitors on XOR/URAT1. By docking A/B with XOR/URAT1 respectively, compounds I1-7 were designed to get different degree of inhibition effect on XOR and URAT1, and I7 showed the best inhibitory effect on XOR (IC50 = 0.037 ± 0.001 µM) and URAT1 (IC50 = 546.70 ± 32.60 µM). Further docking research on I7 with XOR/URAT1 led to the design of compounds II with the significantly improved inhibitory activity on XOR and URAT1, such as II11 and II15. Especially, for II15, the IC50 of XOR is 0.006 ± 0.000 µM, superior to that of febuxostat (IC50 = 0.008 ± 0.000 µM), IC50 of URAT1 is 12.90 ± 2.30 µM, superior to that of benzbromarone (IC50 = 27.04 ± 2.55 µM). In acute hyperuricemia mouse model, II15 showed significant uric acid lowering effect. The results suggest that II15 had good inhibitory effect on XOR/URAT1, with the possibility for further investigation in in-vivo models of hyperuricemia.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos , Transportadores de Anión Orgánico , Proteínas de Transporte de Catión Orgánico , Piridinas , Animales , Piridinas/farmacología , Piridinas/química , Piridinas/síntesis química , Ratones , Humanos , Relación Estructura-Actividad , Transportadores de Anión Orgánico/antagonistas & inhibidores , Transportadores de Anión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Proteínas de Transporte de Catión Orgánico/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Estructura Molecular , Simulación del Acoplamiento Molecular , Xantina Deshidrogenasa/antagonistas & inhibidores , Xantina Deshidrogenasa/metabolismo , Relación Dosis-Respuesta a Droga , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Masculino , Ácido Úrico/metabolismo
6.
Chemosphere ; 358: 142122, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663675

RESUMEN

Succinate dehydrogenase inhibitors (SDHIs) are widely-used fungicides, to which humans are exposed and for which putative health risks are of concern. In order to identify human molecular targets for these environmental chemicals, the interactions of 15 SDHIs with activities of main human drug transporters implicated in pharmacokinetics were investigated in vitro. 5/15 SDHIs, i.e., benzovindiflupyr, bixafen, fluxapyroxad, pydiflumetofen and sedaxane, were found to strongly reduce activity of the renal organic anion transporter (OAT) 3, in a concentration-dependent manner (with IC50 values in the 1.0-3.9 µM range), without however being substrates for OAT3. Moreover, these 5/15 SDHIs decreased the membrane transport of estrone-3 sulfate, an endogenous substrate for OAT3, and sedaxane was predicted to inhibit in vivo OAT3 activity in response to exposure to the acceptable daily intake (ADI) dose. In addition, pydiflumetofen strongly inhibited the renal organic cation transporter (OCT) 2 (IC50 = 2.0 µM) and benzovindiflupyr the efflux pump breast cancer resistance protein (BCRP) (IC50 = 3.9 µM). Other human transporters, including organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 as well as multidrug and toxin extrusion protein (MATE) 1 and MATE2-K were moderately or weakly inhibited by SDHIs, whereas P-glycoprotein, multidrug resistance-associated protein (MRP), OCT1 and OAT1 activities were not or only marginally impacted. Then, some human drug transporters, especially OAT3, constitute molecular targets for SDHIs. This could have toxic consequences, notably with respect to levels of endogenous compounds and metabolites substrates for the considered transporters or to potential SDHI-drug interactions. This could therefore contribute to putative health risk of these fungicides.


Asunto(s)
Succinato Deshidrogenasa , Humanos , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/antagonistas & inhibidores , Transporte Biológico/efectos de los fármacos , Fungicidas Industriales/toxicidad , Fungicidas Industriales/farmacología , Inhibidores Enzimáticos/farmacología , Estrona/análogos & derivados , Estrona/metabolismo , Células HEK293 , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/antagonistas & inhibidores
7.
Acta Physiol (Oxf) ; 240(6): e14143, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38577966

RESUMEN

AIMS: Metabolic reprogramming in cancer cells has been linked to mitochondrial dysfunction. The mitochondrial 2-oxoglutarate/malate carrier (OGC) has been suggested as a potential target for preventing cancer progression. Although OGC is involved in the malate/aspartate shuttle, its exact role in cancer metabolism remains unclear. We aimed to investigate whether OGC may contribute to the alteration of mitochondrial inner membrane potential by transporting protons. METHODS: The expression of OGC in mouse tissues and cancer cells was investigated by PCR and Western blot analysis. The proton transport function of recombinant murine OGC was evaluated by measuring the membrane conductance (Gm) of planar lipid bilayers. OGC-mediated substrate transport was measured in proteoliposomes using 14C-malate. RESULTS: OGC increases proton Gm only in the presence of natural (long-chain fatty acids, FA) or chemical (2,4-dinitrophenol) protonophores. The increase in OGC activity directly correlates with the increase in the number of unsaturated bonds of the FA. OGC substrates and inhibitors compete with FA for the same protein binding site. Arginine 90 was identified as a critical amino acid for the binding of FA, ATP, 2-oxoglutarate, and malate, which is a first step towards understanding the OGC-mediated proton transport mechanism. CONCLUSION: OGC extends the family of mitochondrial transporters with dual function: (i) metabolite transport and (ii) proton transport facilitated in the presence of protonophores. Elucidating the contribution of OGC to uncoupling may be essential for the design of targeted drugs for the treatment of cancer and other metabolic diseases.


Asunto(s)
2,4-Dinitrofenol , Ácidos Grasos , Animales , 2,4-Dinitrofenol/farmacología , Ratones , Ácidos Grasos/metabolismo , Humanos , Malatos/metabolismo , Mitocondrias/metabolismo , Transporte Iónico/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Protones , Ácidos Cetoglutáricos/metabolismo , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/genética , Proteínas de Transporte de Membrana
8.
Drug Metab Dispos ; 52(6): 548-554, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38604729

RESUMEN

Extrapolating in vivo hepatic clearance from in vitro uptake data is a known challenge, especially for organic anion-transporting polypeptide transporter (OATP) substrates, and the well-stirred model (WSM) commonly yields systematic underpredictions for those anionic drugs, hypothetically due to "albumin-mediated hepatic drug uptake". In the present study, we demonstrate that the WSM incorporating the dynamic free fraction (f D), a measure of drug protein binding affinity, performs reasonably well in predicting hepatic clearance of OATP substrates. For a selection of anionic drugs, including atorvastatin, fluvastatin, pravastatin, rosuvastatin, pitavastatin, cerivastatin, and repaglinide, this dynamic well-stirred model (dWSM) correctly predicts hepatic plasma clearance within 2-fold error for six out of seven OATP substrates examined. The geometric mean of clearance ratios between the predicted and the observed values falls in the range of 1.21-1.38. As expected, the WSM with unbound fraction (f u) systematically underpredicts hepatic clearance with greater than 2-fold error for five out of seven drugs, and the geometric mean of clearance ratios between the predicted and the observed values is in the range of 0.20-0.29. The results suggest that, despite its simplicity, the dWSM operates well for transporter-mediated uptake clearance, and that clearance under-prediction of OATP substrates may not necessarily be associated with the chemical class of the anionic drugs, nor is it a result of albumin-mediated hepatic drug uptake as currently hypothesized. Instead, the superior prediction power of the dWSM confirms the utility of the dynamic free fraction in clearance prediction and the importance of drug plasma binding kinetics in hepatic uptake clearance. SIGNIFICANCE STATEMENT: The traditional well-stirred model (WSM) consistently underpredicts organin anion-transporting polypeptide transporter (OATP)-mediated hepatic uptake clearance, hypothetically due to the albumin-mediated hepatic drug uptake. In this manuscript, we apply the dynamic WSM to extrapolate hepatic clearance of the OATP substrates, and our results show significant improvements in clearance prediction without assuming albumin-mediated hepatic drug uptake.


Asunto(s)
Hígado , Modelos Biológicos , Transportadores de Anión Orgánico , Transportadores de Anión Orgánico/metabolismo , Hígado/metabolismo , Humanos , Albúminas/metabolismo , Transporte Biológico/fisiología , Tasa de Depuración Metabólica , Unión Proteica , Preparaciones Farmacéuticas/metabolismo , Animales
9.
Bioorg Chem ; 147: 107381, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38669781

RESUMEN

The development of XOD/URAT1 dual target inhibitors has emerged as a promising therapeutic strategy for the management of hyperuricemia. Here, through virtual screening, we have identified digallic acid as a novel dual target inhibitor of XOD/URAT1 and subsequently evaluated its pharmacological properties, pharmacokinetics, and toxicities. Digallic acid inhibited URAT1 with an IC50 of 5.34 ± 0.65 µM, which is less potent than benzbromarone (2.01 ± 0.36 µM) but more potent than lesinurad (10.36 ± 1.23 µM). Docking and mutation analysis indicated that residues S35, F241 and R477 of URAT1 confer a high affinity for digallic acid. Digallic acid inhibited XOD with an IC50 of 1.04 ± 0.23 µM. Its metabolic product, gallic acid, inhibited XOD with an IC50 of 0.91 ± 0.14 µM. Enzyme kinetic studies indicated that both digallic acid and gallic acid act as mixed-type XOD inhibitors. It shares the same binding mode as digallic acid, and residues E802, R880, F914, T1010, N768 and F1009 contribute to their high affinity. The anion group (carboxyl) of digallic acid contribute significantly to its inhibition activity on both XOD and URAT1 as indicated by docking analysis. Remarkably, at a dosage of 10 mg/kg in vivo, digallic acid exhibited a stronger urate-lowering and uricosuric effect compared to the positive drug benzbromarone and lesinurad. Pharmacokinetic study indicated that digallic acid can be hydrolyzed into gallic acid in vivo and has a t1/2 of 0.77 ± 0.10 h. Further toxicity evaluation indicated that digallic acid exhibited no obvious renal toxicity, as reflected by CCK-8, biochemical analysis (CR and BUN) and HE examination. The findings of our study can provide valuable insights for the development of XOD/URAT1 dual target inhibitors, and digallic acid deserves further investigation as a potential anti-hyperuricemic drug.


Asunto(s)
Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos , Hiperuricemia , Transportadores de Anión Orgánico , Proteínas de Transporte de Catión Orgánico , Hiperuricemia/tratamiento farmacológico , Humanos , Animales , Transportadores de Anión Orgánico/antagonistas & inhibidores , Transportadores de Anión Orgánico/metabolismo , Relación Estructura-Actividad , Estructura Molecular , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Proteínas de Transporte de Catión Orgánico/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacocinética , Urato Oxidasa/química , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Ratones , Masculino , Ácido Gálico/química , Ácido Gálico/farmacología , Ácido Gálico/análogos & derivados , Ratas Sprague-Dawley
10.
Clin Transl Sci ; 17(3): e13773, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38515340

RESUMEN

Our aim was to evaluate biomarkers for organic anion transporting polypeptide 1B1 (OATP1B1) function using a hypothesis-free metabolomics approach. We analyzed fasting plasma samples from 356 healthy volunteers using non-targeted metabolite profiling by liquid chromatography high-resolution mass spectrometry. Based on SLCO1B1 genotypes, we stratified the volunteers to poor, decreased, normal, increased, and highly increased OATP1B1 function groups. Linear regression analysis, and random forest (RF) and gradient boosted decision tree (GBDT) regressors were used to investigate associations of plasma metabolite features with OATP1B1 function. Of the 9152 molecular features found, 39 associated with OATP1B1 function either in the linear regression analysis (p < 10-5) or the RF or GBDT regressors (Gini impurity decrease > 0.01). Linear regression analysis showed the strongest associations with two features identified as glycodeoxycholate 3-O-glucuronide (GDCA-3G; p = 1.2 × 10-20 for negative and p = 1.7 × 10-19 for positive electrospray ionization) and one identified as glycochenodeoxycholate 3-O-glucuronide (GCDCA-3G; p = 2.7 × 10-16). In both the RF and GBDT models, the GCDCA-3G feature showed the strongest association with OATP1B1 function, with Gini impurity decreases of 0.40 and 0.17. In RF, this was followed by one GDCA-3G feature, an unidentified feature with a molecular weight of 809.3521, and the second GDCA-3G feature. In GBDT, the second and third strongest associations were observed with the GDCA-3G features. Of the other associated features, we identified with confidence two representing lysophosphatidylethanolamine 22:5. In addition, one feature was putatively identified as pregnanolone sulfate and one as pregnenolone sulfate. These results confirm GCDCA-3G and GDCA-3G as robust OATP1B1 biomarkers in human plasma.


Asunto(s)
Glucurónidos , Transportadores de Anión Orgánico , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado/genética , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Genotipo , Biomarcadores
11.
Pharmacol Rep ; 76(2): 400-415, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38530582

RESUMEN

BACKGROUND: In predictions about hepatic clearance (CLH), a number of studies explored the role of albumin and transporters in drug uptake by liver cells, challenging the traditional free-drug theory. It was proposed that liver uptake can occur for transporter substrate compounds not only from the drug's unbound form but also directly from the drug-albumin complex, a phenomenon known as uptake facilitated by albumin. In contrast to albumin, dextran does not exhibit binding properties for compounds. However, as a result of its inherent capacity for stabilization, it is widely used to mimic conditions within cells. METHODS: The uptake of eight known substrates of the organic anion-transporting polypeptide 1B3 (OATP1B3) was assessed using a human embryonic kidney cell line (HEK293), which stably overexpresses this transporter. An inert polymer, dextran, was used to simulate cellular conditions, and the results were compared with experiments involving human plasma and human serum albumin (HSA). RESULTS: This study is the first to demonstrate that dextran increases compound uptake in cells with overexpression of the OATP1B3 transporter. Contrary to the common theory that highly protein-bound ligands interact with hepatocytes to increase drug uptake, the results indicate that dextran's interaction with test compounds does not significantly increase concentrations near the cell membrane surface. CONCLUSIONS: We evaluated the effect of dextran on the uptake of known substrates using OATP1B3 overexpressed in the HEK293 cell line, and we suggest that its impact on drug concentrations in liver cells may differ from the traditional role of plasma proteins and albumin.


Asunto(s)
Dextranos , Transportadores de Anión Orgánico , Humanos , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/genética , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/metabolismo , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/farmacología , Transportador 1 de Anión Orgánico Específico del Hígado/genética , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Transportador 1 de Anión Orgánico Específico del Hígado/farmacología , Células HEK293 , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Hepatocitos/metabolismo , Hígado , Proteínas de Transporte de Membrana/metabolismo , Albúminas , Transportadores de Anión Orgánico Sodio-Independiente/genética , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo
12.
Eur J Med Chem ; 269: 116327, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38547733

RESUMEN

We report the design and synthesis of a series of proline-derived quinoline formamide compounds as human urate transporter 1 (URAT1) inhibitors via a ligand-based pharmacophore approach. Structure-activity relationship studies reveal that the replacement of the carboxyl group on the polar fragment with trifluoromethanesulfonamide and substituent modification at the 6-position of the quinoline ring greatly improve URAT1 inhibitory activity compared with lesinurad. Compounds 21c, 21e, 24b, 24c, and 23a exhibit potent activities against URAT1 with IC50 values ranging from 0.052 to 0.56 µM. Furthermore, compound 23a displays improved selectivity towards organic anion transporter 1 (OAT1), good microsomal stability, low potential for genotoxicity and no inhibition of the hERG K+ channel. Compounds 21c and 23a, which have superior pharmacokinetic properties, also demonstrate significant uric acid-lowering activities in a mouse model of hyperuricemia. Notably, 21c also exhibits moderate anti-inflammatory activity related to the gout inflammatory pathway. Compounds 21c and 23a with superior druggability are potential candidates for the treatment of hyperuricemia and gout.


Asunto(s)
Gota , Hiperuricemia , Transportadores de Anión Orgánico , Quinolinas , Ratones , Animales , Humanos , Ácido Úrico/metabolismo , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Quinolinas/farmacología
13.
Cells ; 13(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474414

RESUMEN

The reabsorption of uric acid (UA) is mainly mediated by urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) in the kidneys. Dotinurad inhibits URAT1 but does not inhibit other UA transporters, such as GLUT9, ATP-binding cassette transporter G2 (ABCG2), and organic anion transporter 1/3 (OAT1/3). We found that dotinurad ameliorated the metabolic parameters and renal function in hyperuricemic patients. We consider the significance of the highly selective inhibition of URAT1 by dotinurad for metabolic syndrome, chronic kidney disease (CKD), and cardiovascular disease (CVD). The selective inhibition of URAT1 by dotinurad increases urinary UA in the proximal tubules, and this un-reabsorbed UA may compete with urinary glucose for GLUT9, reducing glucose reabsorption. The inhibition by dotinurad of UA entry via URAT1 into the liver and adipose tissues increased energy expenditure and decreased lipid synthesis and inflammation in rats. Such effects may improve metabolic parameters. CKD patients accumulate uremic toxins, including indoxyl sulfate (IS), in the body. ABCG2 regulates the renal and intestinal excretion of IS, which strongly affects CKD. OAT1/3 inhibitors suppress IS uptake into the kidneys, thereby increasing plasma IS, which produces oxidative stress and induces vascular endothelial dysfunction in CKD patients. The highly selective inhibition of URAT1 by dotinurad may be beneficial for metabolic syndrome, CKD, and CVD.


Asunto(s)
Benzotiazoles , Enfermedades Cardiovasculares , Síndrome Metabólico , Transportadores de Anión Orgánico , Insuficiencia Renal Crónica , Humanos , Ratas , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Síndrome Metabólico/tratamiento farmacológico , Uricosúricos/uso terapéutico , Ácido Úrico/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Glucosa
14.
J Pharmacol Exp Ther ; 389(1): 87-95, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38448247

RESUMEN

The organic anion transporting polypeptide (OATP)2B1 [(gene: solute carrier organic anion transporter family member 2B1 (SLCO2B1)] is an uptake transporter that facilitates cellular accumulation of its substrates. Comparison of SLCO2B1+/+ knockin and rSlco2b1-/- knockout rats showed a higher expression of rCYP3A1 in the humanized animals. We hypothesize that humanization of OATP2B1 not only affects cellular uptake but also metabolic activity. To further investigate this hypothesis, we used SLCO2B1+/+ and rSlco2b1-/ - rats and the OATP2B1 and rCYP3A1 substrate erlotinib, which is metabolized to OSI-420, for in vivo and ex vivo experiments. One hour after administration of a single dose of erlotinib, the knockin rats exhibited significantly lower erlotinib serum levels, but no change was observed in metabolite concentration or the OSI-420/erlotinib ratio. Similar results were obtained for liver tissue levels comparing SLCO2B1+/+ and rSlco2b1-/- rats. Liver microsomes isolated from the erlotinib-treated animals were characterized ex vivo for rCYP3A activity using testosterone, showing higher activity in the knockin rats. The contrary was observed when microsomes isolated from treatment-naïve animals were assessed for the metabolism of erlotinib to OSI-420. The latter is in contrast to the higher rCYP3A1 protein amount observed by western blot analysis in rat liver lysates and liver microsomes isolated from untreated rats. In summary, rats humanized for OATP2B1 showed higher expression of rCYP3A1 in liver and reduced serum levels of erlotinib but no change in the OSI-420/erlotinib ratio despite a lower OSI-420 formation in isolated liver microsomes. Studies with CYP3A-specific substrates are warranted to evaluate whether humanization affects not only rCYP3A1 expression but also metabolic activity in vivo. SIGNIFICANCE STATEMENT: Humanization of rats for the organic anion transporting polypeptide (OATP)2B1 increases rCYP3A1 expression and activity in liver. Using the OATP2B1/CYP3A-substrate erlotinib to assess the resulting phenotype, we observed lower erlotinib serum and liver concentrations but no impact on the liver/serum ratio. Moreover, there was no difference in the OSI-420/erlotinib ratio comparing humanized and knockout rats, suggesting that OSI-420 is not applicable to monitor differences in rCYP3A1 expression as supported by data from ex vivo experiments with rat liver microsomes.


Asunto(s)
Citocromo P-450 CYP3A , Transportadores de Anión Orgánico , Ratas , Animales , Clorhidrato de Erlotinib/farmacología , Citocromo P-450 CYP3A/metabolismo , Quinazolinas/farmacología , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo
15.
Mol Imaging Biol ; 26(2): 233-239, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448775

RESUMEN

PURPOSE: A critical step in cell-based therapies is determining the exact position of transplanted cells immediately post-transplant. Here, we devised a method to detect cell transplants immediately post-transplant, using a clinical gadolinium-based contrast agent. These cells were detected as hyperintense signals using a clinically familiar T1-weighted MRI protocol. PROCEDURES: HEK293 cells were stably transduced to express human OATP1B3, a hepatic organic anion transporting polypeptide that transports Gd-EOB-DTPA into cells that express the transporters, the intracellular accumulation of which cells causes signal enhancement on T1-weighted MRI. Cells were pre-labeled prior to injection in media containing Gd-EOB-DTPA for MRI evaluation and indocyanine green for cryofluorescence tomography validation. Labeled cells were injected into chicken hearts, in vitro, after which MRI and cryofluorescence tomography were performed in sequence. RESULTS: OATP1B3-expressing cells had substantially reduced T1 following labeling with Gd-EOB-DTPA in culture. Following their implantation into chicken heart, these cells were robustly identified in T1-weighted MRI, with image-derived injection volumes of cells commensurate with intended injection volumes. Cryofluorescence tomography showed that the areas of signal enhancement in MRI overlapped with areas of indocyanine green signal, indicating that MRI signal enhancement was due to the transplanted cells. CONCLUSIONS: OATP1B3-expressing cells can be pre-labeled with Gd-EOB-DTPA prior to injection into tissue, affording the use of clinically familiar T1-weighted MRI to robustly detect cell transplants immediately after transplant. This procedure is easily generalizable and has potential advantages over the use of iron oxide based cell labeling agents and imaging procedures.


Asunto(s)
Verde de Indocianina , Transportadores de Anión Orgánico , Humanos , Rastreo Celular , Células HEK293 , Gadolinio DTPA , Medios de Contraste , Hígado , Imagen por Resonancia Magnética/métodos , Trasplante de Células
16.
J Pharm Sci ; 113(5): 1376-1384, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432624

RESUMEN

Organic anion transporting polypeptide (OATP)1A2 and OATP2B1 have potential N-glycosylation sites, but their influence remains unclear. This study aimed to identify the N-glycosylation sites of OATP1A2/2B1 and investigate their impact on the expression and function of OATP1A2/2B1. Human embryonic kidney cells expressing OATP1A2 or OATP2B1 (HEK293-OATP1A2/2B1) were exposed to tunicamycin, an N-glycosylation inhibitor, and a plasma membrane fraction (PMF) Western blot assay and an estrone 3-sulfate (E3S) uptake study were conducted. HEK293-OATP1A2/OATP2B1 cell lines with mutation(s) at potential N-glycosylation sites were established, and the Western blotting and uptake study were repeated. Tunicamycin reduced the PMF levels and E3S uptake of OATP1A2/OATP2B1. The Asn124Gln, Asn135Gln, and Asn492Gln mutations in OATP1A2 and Asn176Gln and Asn538Gln mutations in OATP2B1 reduced the molecular weights of the OATP molecules and their PMF levels. The PMF levels of OATP1A2 Asn124/135Gln, OATP1A2 Asn124/135/492Gln, and OATP2B1 Asn176/538Gln were further reduced. The maximum transport velocities of OATP1A2 Asn124Gln, OATP1A2 Asn135Gln, and OATP2B1 Asn176/538Gln were markedly reduced to 10 %, 4 %, and 10 % of the wild-type level, respectively. In conclusion, the N-glycans at Asn124 and Asn135 of OATP1A2 and those at Asn176 and Asn538 of OATP2B1 are essential for the plasma membrane expression of these molecules and also affect their transport function.


Asunto(s)
Transportadores de Anión Orgánico , Humanos , Transporte Biológico , Estrona/metabolismo , Glicosilación , Células HEK293 , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Tunicamicina/metabolismo
17.
Drug Metab Dispos ; 52(5): 355-367, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38485280

RESUMEN

Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 (collectively, OATP1B) transporters encoded by the solute carrier organic anion transporter (SLCO) genes mediate uptake of multiple pharmaceutical compounds. Nonalcoholic steatohepatitis (NASH), a severe form of nonalcoholic fatty liver disease (NAFLD), decreases OATP1B abundance. This research characterized the pathologic and pharmacokinetics effects of three diet- and one chemical-induced NAFLD model in male and female humanized OATP1B mice, which comprises knock-out of rodent Oatp orthologs and insertion of human SLCO1B1 and SLCO1B3. Histopathology scoring demonstrated elevated steatosis and inflammation scores for all NAFLD-treatment groups. Female mice had minor changes in SLCO1B1 expression in two of the four NAFLD treatment groups, and pitavastatin (PIT) area under the concentration-time curve (AUC) increased in female mice in only one of the diet-induced models. OATP1B3 expression decreased in male and female mice in the chemical-induced NAFLD model, with a coinciding increase in PIT AUC, indicating the chemical-induced model may better replicate changes in OATP1B3 expression and OATP substrate disposition observed in NASH patients. This research also tested a reported multifactorial pharmacokinetic interaction between NAFLD and silymarin, an extract from milk thistle seeds with notable OATP-inhibitory effects. Males showed no change in PIT AUC, whereas female PIT AUC increased 1.55-fold from the diet alone and the 1.88-fold from the combination of diet with silymarin, suggesting that female mice are more sensitive to pharmacokinetic changes than male mice. Overall, the humanized OATP1B model should be used with caution for modeling NAFLD and multifactorial pharmacokinetic interactions. SIGNIFICANCE STATEMENT: Advanced stages of NAFLD cause decreased hepatic OATP1B abundance and increase systemic exposure to OATP substrates in human patients. The humanized OATP1B mouse strain may provide a clinically relevant model to recapitulate these observations and predict pharmacokinetic interactions in NAFLD. This research characterized three diet-induced and one drug-induced NAFLD model in a humanized OATP1B mouse model. Additionally, a multifactorial pharmacokinetic interaction was observed between silymarin and NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Transportadores de Anión Orgánico , Silimarina , Humanos , Masculino , Femenino , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratones Transgénicos , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/metabolismo , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Hígado/metabolismo , Transportadores de Anión Orgánico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Silimarina/metabolismo , Interacciones Farmacológicas
18.
Microbiology (Reading) ; 170(3)2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38488830

RESUMEN

Sialic acid (Sia) transporters are critical to the capacity of host-associated bacteria to utilise Sia for growth and/or cell surface modification. While N-acetyl-neuraminic acid (Neu5Ac)-specific transporters have been studied extensively, little is known on transporters dedicated to anhydro-Sia forms such as 2,7-anhydro-Neu5Ac (2,7-AN) or 2,3-dehydro-2-deoxy-Neu5Ac (Neu5Ac2en). Here, we used a Sia-transport-null strain of Escherichia coli to investigate the function of members of anhydro-Sia transporter families previously identified by computational studies. First, we showed that the transporter NanG, from the Glycoside-Pentoside-Hexuronide:cation symporter family, is a specific 2,7-AN transporter, and identified by mutagenesis a crucial functional residue within the putative substrate-binding site. We then demonstrated that NanX transporters, of the Major Facilitator Superfamily, also only transport 2,7-AN and not Neu5Ac2en nor Neu5Ac. Finally, we provided evidence that SiaX transporters, of the Sodium-Solute Symporter superfamily, are promiscuous Neu5Ac/Neu5Ac2en transporters able to acquire either substrate equally well. The characterisation of anhydro-Sia transporters expands our current understanding of prokaryotic Sia metabolism within host-associated microbial communities.


Asunto(s)
Ácido N-Acetilneuramínico , Ácido N-Acetilneuramínico/análogos & derivados , Transportadores de Anión Orgánico , Simportadores , Ácido N-Acetilneuramínico/química , Simportadores/genética , Simportadores/metabolismo , Bacterias/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
19.
Mol Pharm ; 21(5): 2284-2297, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38529622

RESUMEN

Organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3, encoded by the SLCO gene family of the solute carrier superfamily, are involved in the disposition of many exogenous and endogenous compounds. Preclinical rodent models help assess risks of pharmacokinetic interactions, but interspecies differences in transporter orthologs and expression limit direct clinical translation. An OATP1B transgenic mouse model comprising a rodent Slco1a/1b gene cluster knockout and human SLCO1B1 and SLCO1B3 gene insertions provides a potential physiologically relevant preclinical tool to predict pharmacokinetic interactions. Pharmacokinetics of exogenous probe substrates, pitavastatin and pravastatin, and endogenous OATP1B biomarkers, coproporphyrin-I and coproporphyrin-III, were determined in the presence and absence of known OATP/Oatp inhibitors, rifampin or silymarin (an extract of milk thistle [Silybum marianum]), in wild-type FVB mice and humanized OATP1B mice. Rifampin increased exposure of pitavastatin (4.6- and 2.8-fold), pravastatin (3.6- and 2.2-fold), and coproporphyrin-III (1.6- and 2.1-fold) in FVB and OATP1B mice, respectively, but increased coproporphyrin-I AUC0-24h only (1.8-fold) in the OATP1B mice. Silymarin did not significantly affect substrate AUC, likely because the silymarin flavonolignan concentrations were at or below their reported IC50 values for the relevant OATPs/Oatps. Silymarin increased the Cmax of pitavastatin 2.7-fold and pravastatin 1.9-fold in the OATP1B mice. The data of the OATP1B mice were similar to those of the pitavastatin and pravastatin clinical data; however, the FVB mice data more closely recapitulated pitavastatin clinical data than the data of the OATP1B mice, suggesting that the OATP1B mice are a reasonable, though costly, preclinical strain for predicting pharmacokinetic interactions when doses are optimized to achieve clinically relevant plasma concentrations.


Asunto(s)
Interacciones Farmacológicas , Transportador 1 de Anión Orgánico Específico del Hígado , Ratones Transgénicos , Pravastatina , Rifampin , Silimarina , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos , Animales , Rifampin/farmacocinética , Ratones , Transportador 1 de Anión Orgánico Específico del Hígado/genética , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Humanos , Silimarina/farmacocinética , Pravastatina/farmacocinética , Pravastatina/administración & dosificación , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/genética , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/metabolismo , Quinolinas/farmacocinética , Coproporfirinas/metabolismo , Masculino , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo
20.
J Med Chem ; 67(6): 5032-5052, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38482820

RESUMEN

Gout and hyperuricemia are metabolic diseases characterized with high serum uric acid (SUA) levels that significantly impact human health. Lesinurad, a uricosuric agent, is limited to concurrent use with xanthine oxidase inhibitors (XOIs) in clinical practice due to its restricted efficacy and potential nephrotoxicity. Herein, extensive structural modifications of lesinurad were conducted through scaffold hopping and substituent modification strategies, affording 54 novel derivatives containing pyrimidine-fused cyclic structures. Notably, the thienopyrimidine compound 29 demonstrated a remarkable 2-fold increase in SUA-lowering in vivo activity compared to lesinurad, while exhibiting potent inhibitory activity against the urate transporter 1 (URAT1, IC50 = 2.01 µM) and glucose transporter 9 (GLUT9, IC50 = 18.21 µM). Furthermore, it possessed a lower effective dosage of 0.5 mg/kg, favorable safety profile without any apparent acute toxicity at doses of 1000 mg/kg, and improved pharmacokinetic properties. Overall, we have discovered an efficacious URAT1/GLUT9 dual inhibitor for inhibiting urate reabsorption with favorable pharmacokinetic profiles.


Asunto(s)
Gota , Hiperuricemia , Transportadores de Anión Orgánico , Tioglicolatos , Triazoles , Humanos , Ácido Úrico/uso terapéutico , Gota/tratamiento farmacológico , Hiperuricemia/tratamiento farmacológico , Uricosúricos/uso terapéutico , Pirimidinas/toxicidad , Pirimidinas/uso terapéutico , Proteínas Facilitadoras del Transporte de la Glucosa , Proteínas de Transporte de Catión Orgánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA