Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.189
Filtrar
1.
Cell Rep Med ; 5(5): 101543, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38697101

RESUMEN

Cognitive impairment in the elderly is associated with alterations in bile acid (BA) metabolism. In this study, we observe elevated levels of serum conjugated primary bile acids (CPBAs) and ammonia in elderly individuals, mild cognitive impairment, Alzheimer's disease, and aging rodents, with a more pronounced change in females. These changes are correlated with increased expression of the ileal apical sodium-bile acid transporter (ASBT), hippocampal synapse loss, and elevated brain CPBA and ammonia levels in rodents. In vitro experiments confirm that a CPBA, taurocholic acid, and ammonia induced synaptic loss. Manipulating intestinal BA transport using ASBT activators or inhibitors demonstrates the impact on brain CPBA and ammonia levels as well as cognitive decline in rodents. Additionally, administration of an intestinal BA sequestrant, cholestyramine, alleviates cognitive impairment, normalizing CPBAs and ammonia in aging mice. These findings highlight the potential of targeting intestinal BA absorption as a therapeutic strategy for age-related cognitive impairment.


Asunto(s)
Envejecimiento , Amoníaco , Ácidos y Sales Biliares , Disfunción Cognitiva , Absorción Intestinal , Animales , Ácidos y Sales Biliares/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Absorción Intestinal/efectos de los fármacos , Masculino , Femenino , Humanos , Ratones , Envejecimiento/metabolismo , Amoníaco/metabolismo , Anciano , Ratones Endogámicos C57BL , Resina de Colestiramina/farmacología , Simportadores/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Hipocampo/metabolismo , Hipocampo/patología , Ratas , Anciano de 80 o más Años
2.
Int J Mol Sci ; 25(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38791314

RESUMEN

Obesity is associated with alterations in lipid metabolism and gut microbiota dysbiosis. This study investigated the effects of puerarin, a bioactive isoflavone, on lipid metabolism disorders and gut microbiota in high-fat diet (HFD)-induced obese mice. Supplementation with puerarin reduced plasma alanine aminotransferase, liver triglyceride, liver free fatty acid (FFA), and improved gut microbiota dysbiosis in obese mice. Puerarin's beneficial metabolic effects were attenuated when farnesoid X receptor (FXR) was antagonized, suggesting FXR-mediated mechanisms. In hepatocytes, puerarin ameliorated high FFA-induced sterol regulatory element-binding protein (SREBP) 1 signaling, inflammation, and mitochondrial dysfunction in an FXR-dependent manner. In obese mice, puerarin reduced liver damage, regulated hepatic lipogenesis, decreased inflammation, improved mitochondrial function, and modulated mitophagy and ubiquitin-proteasome pathways, but was less effective in FXR knockout mice. Puerarin upregulated hepatic expression of FXR, bile salt export pump (BSEP), and downregulated cytochrome P450 7A1 (CYP7A1) and sodium taurocholate transporter (NTCP), indicating modulation of bile acid synthesis and transport. Puerarin also restored gut microbial diversity, the Firmicutes/Bacteroidetes ratio, and the abundance of Clostridium celatum and Akkermansia muciniphila. This study demonstrates that puerarin effectively ameliorates metabolic disturbances and gut microbiota dysbiosis in obese mice, predominantly through FXR-dependent pathways. These findings underscore puerarin's potential as a therapeutic agent for managing obesity and enhancing gut health, highlighting its dual role in improving metabolic functions and modulating microbial communities.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Isoflavonas , Hígado , Obesidad , Receptores Citoplasmáticos y Nucleares , Animales , Isoflavonas/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Receptores Citoplasmáticos y Nucleares/metabolismo , Ratones , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Hígado/metabolismo , Hígado/efectos de los fármacos , Masculino , Disbiosis , Ratones Obesos , Ratones Endogámicos C57BL , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Ratones Noqueados , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Simportadores/metabolismo , Simportadores/genética , Metabolismo de los Lípidos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Akkermansia
3.
Am J Hum Genet ; 111(6): 1018-1034, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38749427

RESUMEN

Evolutionary changes in the hepatitis B virus (HBV) genome could reflect its adaptation to host-induced selective pressure. Leveraging paired human exome and ultra-deep HBV genome-sequencing data from 567 affected individuals with chronic hepatitis B, we comprehensively searched for the signatures of this evolutionary process by conducting "genome-to-genome" association tests between all human genetic variants and viral mutations. We identified significant associations between an East Asian-specific missense variant in the gene encoding the HBV entry receptor NTCP (rs2296651, NTCP S267F) and mutations within the receptor-binding region of HBV preS1. Through in silico modeling and in vitro preS1-NTCP binding assays, we observed that the associated HBV mutations are in proximity to the NTCP variant when bound and together partially increase binding affinity to NTCP S267F. Furthermore, we identified significant associations between HLA-A variation and viral mutations in HLA-A-restricted T cell epitopes. We used in silico binding prediction tools to evaluate the impact of the associated HBV mutations on HLA presentation and observed that mutations that result in weaker binding affinities to their cognate HLA alleles were enriched. Overall, our results suggest the emergence of HBV escape mutations that might alter the interaction between HBV PreS1 and its cellular receptor NTCP during viral entry into hepatocytes and confirm the role of HLA class I restriction in inducing HBV epitope variations.


Asunto(s)
Virus de la Hepatitis B , Mutación , Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Humanos , Virus de la Hepatitis B/genética , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/genética , Simportadores/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Hepatitis B Crónica/virología , Hepatitis B Crónica/genética , Genoma Viral , Antígenos de Superficie de la Hepatitis B/genética , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Genómica/métodos , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo
6.
Bioorg Chem ; 147: 107385, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663255

RESUMEN

Chronic liver diseases caused by hepatitis B virus (HBV) are the accepted main cause leading to liver cirrhosis, hepatic fibrosis, and hepatic carcinoma. Sodium taurocholate cotransporting polypeptide (NTCP), a specific membrane receptor of hepatocytes for triggering HBV infection, is a promising target against HBV entry. In this study, pentacyclic triterpenoids (PTs) including glycyrrhetinic acid (GA), oleanolic acid (OA), ursolic acid (UA) and betulinic acid (BA) were modified via molecular hybridization with podophyllotoxin respectively, and resulted in thirty-two novel conjugates. The anti-HBV activities of conjugates were evaluated in HepG2.2.15 cells. The results showed that 66% of the conjugates exhibited lower toxicity to the host cells and had significant inhibitory effects on the two HBV antigens, especially HBsAg. Notably, the compounds BA-PPT1, BA-PPT3, BA-PPT4, and UA-PPT3 not only inhibited the secretion of HBsAg but also suppressed HBV DNA replication. A significant difference in the binding of active conjugates to NTCP compared to the HBV PreS1 antigen was observed by SPR assays. The mechanism of action was found to be the competitive binding of these compounds to the NTCP 157-165 epitopes, blocking HBV entry into host cells. Molecular docking results indicated that BA-PPT3 interacted with the amino acid residues of the target protein mainly through π-cation, hydrogen bond and hydrophobic interaction, suggesting its potential as a promising HBV entry inhibitor targeting the NTCP receptor.


Asunto(s)
Antivirales , Virus de la Hepatitis B , Transportadores de Anión Orgánico Sodio-Dependiente , Triterpenos Pentacíclicos , Simportadores , Internalización del Virus , Humanos , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/antagonistas & inhibidores , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Simportadores/metabolismo , Simportadores/antagonistas & inhibidores , Antivirales/farmacología , Antivirales/síntesis química , Antivirales/química , Internalización del Virus/efectos de los fármacos , Células Hep G2 , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/síntesis química , Triterpenos Pentacíclicos/química , Relación Estructura-Actividad , Estructura Molecular , Relación Dosis-Respuesta a Droga , Simulación del Acoplamiento Molecular , Triterpenos/farmacología , Triterpenos/química , Triterpenos/síntesis química , Antígenos de Superficie de la Hepatitis B/metabolismo
7.
Expert Opin Investig Drugs ; 33(5): 485-495, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38613839

RESUMEN

INTRODUCTION: Pruritus is common and often undertreated in patients with primary biliary cholangitis (PBC). Existing treatments largely have an aging and low-quality evidence base, and studies included only small numbers of patients. More recent data that has added to our understanding of pruritus treatments has often come from clinical trials where itching was a secondary outcome measure in a trial designed primarily to assess disease-modifying agents. This area represents an unmet clinical need in the management of PBC. AREAS COVERED: In this manuscript, we first summarize the proposed mechanisms for PBC-related pruritus and the current treatment paradigm. We then present an appraisal of the existing pre-clinical and clinical evidence for the use of ileal bile acid transporter inhibitors (IBATis) for this indication in PBC patients. EXPERT OPINION: Evidence for the efficacy of IBATis is promising but limited by the currently available volume of data. Furthermore, larger clinical trials with long-term data on efficacy, safety and tolerability are needed to confirm the role of using IBATis in clinical practice and their place on the itch treatment ladder. Additional focus should also be given to exploring the disease-modifying potential of IBATis in PBC.


Asunto(s)
Desarrollo de Medicamentos , Cirrosis Hepática Biliar , Transportadores de Anión Orgánico Sodio-Dependiente , Prurito , Humanos , Prurito/tratamiento farmacológico , Animales , Cirrosis Hepática Biliar/tratamiento farmacológico , Cirrosis Hepática Biliar/fisiopatología , Transportadores de Anión Orgánico Sodio-Dependiente/antagonistas & inhibidores , Simportadores/antagonistas & inhibidores
8.
Biomaterials ; 308: 122539, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552366

RESUMEN

Catechol-based biomaterials demonstrate biocompatibility, making them suitable for a wide range of therapeutic applications when integrated into various molecular frameworks. However, the development of orally available catechol-based biomaterials has been hindered by significant pH variations and complex interactions in the gastrointestinal (GI) tract. In this study, we introduce a novel catechol-modified bile acid (CMBA), which is synthesized by anchoring the FDA-approved drug, ursodeoxycholic acid to the neurotransmitter dopamine. This modification could form a new apical sodium-dependent bile acid transporter (ASBT) inhibitor (ASBTi) due to the bile acid moiety. The computational analysis using the TRAnsient Pockets in Proteins (TRAPP) module, coupled with MD simulations, revealed that CMBA exhibits a strong binding affinity at residues 51-55 of ASBT with a low inhibitory constant (Ki) value. Notably, in slightly alkaline biological conditions, CMBA molecules self-assemble into carrier-free nanoparticles with an average size of 240.2 ± 44.2 nm, while maintaining their ability to bind with ASBT. When administered orally, CMBA accumulates in the ileum and liver over 24 h, exhibiting significant therapeutic effects on bile acid (BA) metabolism in a high-fat diet (HFD)-fed mouse model. This study underscores the therapeutic potential of the newly developed catechol-based, pH-responsive ASBT-inhibiting nanoparticles presenting a promising avenue for advancing therapy.


Asunto(s)
Ácidos y Sales Biliares , Catecoles , Nanopartículas , Transportadores de Anión Orgánico Sodio-Dependiente , Animales , Catecoles/química , Catecoles/metabolismo , Concentración de Iones de Hidrógeno , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/química , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Nanopartículas/química , Ratones , Humanos , Simportadores/metabolismo , Masculino , Ratones Endogámicos C57BL
9.
Biophys J ; 123(10): 1195-1210, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38544409

RESUMEN

Human Na+ taurocholate co-transporting protein (hNTCP) is a key bile salt transporter to maintain enterohepatic circulation and is responsible for the recognition of hepatitis B and D viruses. Despite landmark cryoelectron microscopy studies revealing open-pore and inward-facing states of hNTCP stabilized by antibodies, the transport mechanism remains largely unknown. To address this knowledge gap, we used molecular dynamics and enhanced sampling metadynamics simulations to elucidate the intrinsic mechanism of hNTCP-mediated taurocholate acid (TCA) transport driven by Na+ binding. We uncovered three TCA-binding modes, including one that closely matched the limited cryoelectron microscopy density observed in the open-pore hNTCP. We also captured several key hNTCP conformations in the substrate transport cycle, particularly including an outward-facing, substrate-bound state. Furthermore, we provided thermodynamic evidence supporting that changes in the Na+-binding state drive the TCA transport by exploiting the amphiphilic nature of the substrate and modulating the protein environment, thereby enabling the TCA molecule to flip through. Understanding these mechanistic details of Na+-driven bile acid transport may aid in the development of hNTCP-targeted therapies for liver diseases.


Asunto(s)
Simulación de Dinámica Molecular , Transportadores de Anión Orgánico Sodio-Dependiente , Sodio , Simportadores , Ácido Taurocólico , Simportadores/metabolismo , Simportadores/química , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/química , Humanos , Sodio/metabolismo , Ácido Taurocólico/metabolismo , Transporte Biológico , Ácidos y Sales Biliares/metabolismo , Termodinámica
10.
Microbiol Spectr ; 12(3): e0136523, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315030

RESUMEN

Hepatitis B virus (HBV) may directly infect human podocytes (HPCs). However, the mechanism of direct infection is unclear. We found that HPCs express sodium taurocholate cotransporting polypeptide (NTCP), a specific receptor for HBV entry into hepatocytes. Thus, we investigated whether NTCP mediates HBV infection and damage in HPCs and further clarified the specific mechanism. We constructed shRNA-NTCP1,2, shRNA-NC, WT-NTCP, and MUT-NTCP and transfected them into HPCs. HPCs were infected with HBV, and HBV infection markers were detected by enzyme-linked immunosorbent assay (ELISA) and real-time quantitative PCR (RT-qPCR). The functional changes in HPCs were detected by Transwell migration and scratch assays, apoptosis was evaluated by flow cytometry (FCM), and podocytoskeletal proteins (nephrin, CD2AP, and synaptopodin) were determined by western blotting (WB). Compared with the control HPCs, HPCs infected with HBV showed increased levels of HBV infection markers and apoptosis along with decreased podocytoskeletal protein expressions, cell vitality, proliferation, and migration. Compared with the HPCs infected with HBV, the HPCs transfected with HBV + shRNA-NTCP, and HBV + MUT-NTCP showed decreased levels of HBV infection markers and apoptosis along with increased podocytoskeletal protein expressions, cell vitality, proliferation, and migration; the opposite effects were observed in the HPCs transfected with HBV + WT-NTCP. Overall, the changes to NTCP affected the susceptibility of HPCs to HBV and modulated HPC damage and repair. NTCP can mediate direct HBV infection and damage human podocytes, and the NTCP 157-165 locus is the main site of HBV entry. The findings provide a new target and theoretical basis for HBV-associated glomerulonephritis. IMPORTANCE: This study identified for the first time that sodium taurocholate cotransporting polypeptide (NTCP) can mediate HBV direct infection and damage to human podocytes, and the NTCP157-165 locus is the main HBV entry site. The findings provide theoretical support for the pathogenesis of direct infection of HBV with kidney tissue. The findings provide a new target and theoretical basis for the treatment of HBV-related glomerulonephritis (HBV-GN). Blocking NTCP is a new target for the treatment of HBV-GN. We found that tacrolimus, a calcineurin inhibitor that blocks NTCP, can effectively treat HBV-GN. This study also provides a theoretical basis for the effective and safe treatment of immunosuppressant tacrolimus for HBV-GN.


Asunto(s)
Glomerulonefritis , Hepatitis B , Podocitos , Simportadores , Humanos , Virus de la Hepatitis B/genética , Tacrolimus/metabolismo , Podocitos/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , ARN Interferente Pequeño
12.
J Med Virol ; 96(1): e29428, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38258306

RESUMEN

To investigate the relationship between the expression of hepatitis B virus (HBV) functional receptor sodium taurocholate cotransporting polypeptide (NTCP) with disease progression and gender-specific differences in chronic HBV-infected patients. Liver samples were collected from chronic HBV-infected patients who underwent percutaneous liver biopsy or liver surgery. HBV DNA levels and the mRNA and protein expression levels of NTCP in liver tissues were determined. The relationship between NTCP expression and HBV DNA levels, inflammatory activity, fibrosis, and gender-specific differences were analyzed. A total of 94 chronic HBV-infected patients were included. Compared with patients with a METAVIR score of A0-1 or F0-1, patients with score of A2 or F2/F3 had a relatively higher level of NTCP expression. NTCP levels were positively correlated with HBV DNA levels. The inflammatory activity scores and fibrosis scores of women <50 years were significantly lower than those of women ≥50 years and age-matched males. In patients with score A0-2 or F0-3, women <50 years have lower NTCP expression level compared to women ≥50 years and age-matched males. NTCP can promote the disease progression by affecting the viral load of HBV. The NTCP expression difference may be why male and postmenopausal women are more prone to disease progression than reproductive women.


Asunto(s)
Hepatitis B Crónica , Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Femenino , Humanos , Masculino , Progresión de la Enfermedad , ADN Viral/genética , Fibrosis , Virus de la Hepatitis B , Hepatitis B Crónica/genética , Inflamación , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Simportadores/genética , Persona de Mediana Edad
13.
J Hepatol ; 80(2): 268-281, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37939855

RESUMEN

BACKGROUND & AIMS: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies. METHODS: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule 1) in patients with liver disease and hyperbilirubinemia. RESULTS: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels. ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of targeting ASBT to treat CN. CONCLUSIONS: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations. IMPACT AND IMPLICATIONS: Cholemic nephropathy (CN) is a severe complication of cholestasis and an unmet clinical need. We demonstrate that CN is triggered by the renal accumulation of bile acids (BAs) that are considerably increased in the systemic blood. Specifically, the proximal tubular epithelial cells of the kidney take up BAs via the apical sodium-dependent bile acid transporter (ASBT). We developed a therapeutic compound that blocks ASBT in the kidneys, prevents BA overload in tubular epithelial cells, and almost completely abolished all disease hallmarks in a CN mouse model. Renal ASBT inhibition represents a potential therapeutic strategy for patients with CN.


Asunto(s)
Proteínas Portadoras , Colestasis , Enfermedades Renales , Hepatopatías , Glicoproteínas de Membrana , Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Humanos , Ratones , Animales , Colestasis/complicaciones , Colestasis/metabolismo , Riñón/metabolismo , Simportadores/metabolismo , Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Conductos Biliares/metabolismo , Hepatopatías/metabolismo , Sodio
14.
Am J Physiol Gastrointest Liver Physiol ; 326(1): G25-G37, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37933481

RESUMEN

Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in premature infants. Evidence indicates that bile acid homeostasis is disrupted during NEC: ileal bile acid levels are elevated in animals with experimental NEC, as is expression of the apical sodium-dependent bile acid transporter (Asbt). In addition, bile acids, which are synthesized in the liver, are extensively modified by the gut microbiome, including via the conversion of primary bile acids to more cytotoxic secondary forms. We hypothesized that the addition of bile acid-modifying bacteria would increase susceptibility to NEC in a neonatal rat model of the disease. The secondary bile acid-producing species Clostridium scindens exacerbated both incidence and severity of NEC. C. scindens upregulated the bile acid transporter Asbt and increased levels of intraenterocyte bile acids. Treatment with C. scindens also altered bile acid profiles and increased hydrophobicity of the ileal intracellular bile acid pool. The ability of C. scindens to enhance NEC requires bile acids, as pharmacological sequestration of ileal bile acids protects animals from developing disease. These findings indicate that bile acid-modifying bacteria can contribute to NEC pathology and provide additional evidence for the role of bile acids in the pathophysiology of experimental NEC.NEW & NOTEWORTHY Necrotizing enterocolitis (NEC), a life-threatening gastrointestinal emergency in premature infants, is characterized by dysregulation of bile acid homeostasis. We demonstrate that administering the secondary bile acid-producing bacterium Clostridium scindens enhances NEC in a neonatal rat model of the disease. C. scindens-enhanced NEC is dependent on bile acids and driven by upregulation of the ileal bile acid transporter Asbt. This is the first report of bile acid-modifying bacteria exacerbating experimental NEC pathology.


Asunto(s)
Clostridiales , Enterocolitis Necrotizante , Animales , Humanos , Recién Nacido , Ratas , Ácidos y Sales Biliares/metabolismo , Enterocolitis Necrotizante/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Regulación hacia Arriba , Progresión de la Enfermedad
15.
Pharm Res ; 41(2): 335-353, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38114803

RESUMEN

OBJECTIVE: Oral administration of insulin is a potential candidate for managing diabetes. However, it is obstructed by the gastrointestinal tract barriers resulting in negligible oral bioavailability. METHODS: This investigation presents a novel nanocarrier platform designed to address these challenges. In this regard, the process involved amination of sodium alginate by ethylene diamine, followed by its conjugation with deoxycholic acid. RESULTS: The resulting DCA@Alg@INS nanocarrier revealed a significantly high insulin loading content of 63.6 ± 1.03% and encapsulation efficiency of 87.6 ± 3.84%, with a particle size of 206 nm and zeta potentials of -3 mV. In vitro studies showed sustained and pH-dependent release profiles of insulin from nanoparticles. In vitro cellular studies, confocal laser scanning microscopy and flow cytometry analysis confirmed the successful attachment and internalization of DCA@Alg@INS nanoparticles in Caco-2 cells. Furthermore, the DCA@Alg@INS demonstrated a superior capacity for cellular uptake and permeability coefficient relative to the insulin solution, exhibiting sixfold and 4.94-fold enhancement, respectively. According to the uptake mechanism studies, the results indicated that DCA@Alg@INS was mostly transported through an energy-dependent active pathway since the uptake of DCA@Alg@INS by cells was significantly reduced in the presence of NaN3 by ~ 92% and at a low temperature of 4°C by ~ 94%. CONCLUSIONS: Given the significance of administering insulin through oral route, deoxycholic acid-modified alginate nanoparticles present a viable option to surmount various obstacles presented by the gastrointestinal.


Asunto(s)
Insulina , Nanopartículas , Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Humanos , Amidas , Alginatos , Células CACO-2 , Insulina Regular Humana , Administración Oral , Endocitosis , Ácido Desoxicólico , Portadores de Fármacos
16.
Virus Genes ; 59(6): 823-830, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37728707

RESUMEN

Due to the limited host range of HBV, research progress has been hindered by the absence of a suitable animal model. The natural history of woodchuck hepatitis virus (WHV) infection in woodchuck closely mirrors that of HBV infection in human, making this species a promising candidate for establishing both in vivo and in vitro HBV infection models. Therefore, this animal may be a valuable species to evaluate HBV vaccines and anti-HBV drugs. A significant milestone in HBV and hepatitis D virus (HDV) infection is the discovery of sodium taurocholate cotransporting polypeptide (NTCP) as the functional receptor. In an effort to enhance susceptibility to HBV infection, we introduced hNTCP into the woodchuck hepatocytes by multiple approaches including transduction of vLentivirus-hNTCP in woodchuck hepatocytes, transfection of p-lentivirus-hNTCP-eGFP plasmids into these cells, as well as transduction of vAdenovirus-hNTCP-eGFP. Encouragingly, our findings demonstrated the successful introduction of hNTCP into woodchuck hepatocytes. However, it was observed that these hNTCP-expressing hepatocytes were only susceptible to HDV infection but not HBV. This suggests the presence of additional crucial factors mediating early-stage HBV infection that are subject to stringent species-specific restrictions.


Asunto(s)
Hepatitis B , Hepatitis D , Animales , Humanos , Virus de la Hepatitis B/genética , Marmota , Hepatocitos , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Virus de la Hepatitis Delta/genética , Internalización del Virus
17.
Antiviral Res ; 217: 105695, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37536428

RESUMEN

The Orthohepadnavirus genus includes hepatitis B virus (HBV) that can cause chronic hepatitis and hepatocarcinoma in humans. Recently, a novel hepadnavirus in cats, domestic cat hepadnavirus (DCH), was identified that is genetically close to HBV. DCH infection is associated with chronic hepatitis in cats, suggesting a similarity with HBV pathogenesis and the potential to use DCH as a novel animal model for HBV research. HBV is shown to use the sodium/bile acid cotransporter (NTCP) as a major cell entry receptor, but the equivalent receptor for DCH remains unknown. Here we sought to identify the entry receptor for DCH. HBV- and DCH-derived preS1 peptides efficiently bound to both human and cat NTCPs, and residue 158 of NTCP proteins determined the species-specific binding of the DCH preS1 peptide. Myrcludex B, an HBV entry inhibitor, blocked the binding of the DCH preS1 peptide. Thus, DCH and HBV may share cell entry molecules, suggesting a possibility of inter-species transmission. Furthermore, our study suggests that DCH can be useful as a novel model for HBV research.


Asunto(s)
Hepadnaviridae , Hepatitis B , Neoplasias Hepáticas , Simportadores , Animales , Gatos , Ácidos y Sales Biliares/metabolismo , Proteínas Portadoras/metabolismo , Hepadnaviridae/metabolismo , Virus de la Hepatitis B/metabolismo , Hepatitis Crónica/metabolismo , Hepatocitos , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Sodio/metabolismo , Simportadores/metabolismo , Internalización del Virus
18.
Biochem Biophys Res Commun ; 675: 139-145, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37473528

RESUMEN

Given that the current approved anti-hepatitis B virus (HBV) drugs suppress virus replication and improve hepatitis but cannot eliminate HBV from infected patients, new anti-HBV agents with different mode of action are urgently needed. In this study, we identified a semi-synthetic oxysterol, Oxy185, that can prevent HBV infection in a HepG2-based cell line and primary human hepatocytes. Mechanistically, Oxy185 inhibited the internalization of HBV into cells without affecting virus attachment or replication. We also found that Oxy185 interacted with an HBV entry receptor, sodium taurocholate cotransporting polypeptide (NTCP), and inhibited the oligomerization of NTCP to reduce the efficiency of HBV internalization. Consistent with this mechanism, Oxy185 also inhibited the hepatitis D virus infection, which relies on NTCP-dependent internalization, but not hepatitis A virus infection, and displayed pan-genotypic anti-HBV activity. Following oral administration in mice, Oxy185 showed sustained accumulation in the livers of the mice, along with a favorable liver-to-plasma ratio. Thus, Oxy185 is expected to serve as a useful tool compound in proof-of-principle studies for HBV entry inhibitors with this novel mode of action.


Asunto(s)
Hepatitis B , Simportadores , Humanos , Ratones , Animales , Virus de la Hepatitis B/fisiología , Internalización del Virus , Hepatitis B/metabolismo , Hepatocitos/metabolismo , Células Hep G2 , Virus de la Hepatitis Delta/metabolismo , Simportadores/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo
19.
Drug Metab Pharmacokinet ; 52: 100512, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37517353

RESUMEN

PURPOSE: Plant-derived extracellular vesicles (EVs) have been reported to exert biological activity on intestinal tissues by delivering their contents into intestinal cells. We previously reported that ASBT/SLC10A2 mRNA was downregulated by apple-derived extracellular vesicles (APEVs). ASBT downregulation is effective in the treatment of cholestasis and chronic constipation, similar to the beneficial effects of apples. Therefore, this study aimed to establish the mechanism of ASBT downregulation by APEVs, focusing on microRNAs present in APEVs. RESULTS: APEVs downregulated the expression of ASBT, but no significant effect on SLC10A2-3'UTR was observed. Proteomics revealed that APEVs decreased the expression of RARα/NR1B1. The binding of RARα to SLC10A2 promoter was also decreased by APEVs. The stability of NR1B1 mRNA was attenuated by APEVs and its 3'UTR was found to be a target for APEVs. Apple microRNAs that were predicted to interact with NR1B1-3'UTR were present in APEVs, and their mimics suppressed NR1B1 mRNA expression. CONCLUSIONS: Suppression of ASBT by APEVs was indirectly mediated by the downregulation of RARα, and its stability was lowered by microRNAs present in APEVs. This study suggested that macromolecules in food directly affect intestinal function by means of EVs that stabilize them and facilitate their cellular uptake.


Asunto(s)
Vesículas Extracelulares , Malus , MicroARNs , Simportadores , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Abajo , Malus/genética , Malus/metabolismo , Regiones no Traducidas 3' , Ácidos y Sales Biliares , MicroARNs/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Simportadores/genética , Simportadores/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo
20.
J Biol Chem ; 299(8): 104976, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37390985

RESUMEN

Urate transporters play a pivotal role in urate handling in the human body, but the urate transporters identified to date do not account for all known molecular processes of urate handling, suggesting the presence of latent machineries. We recently showed that a urate transporter SLC2A12 is also a physiologically important exporter of ascorbate (the main form of vitamin C in the body) that would cooperate with an ascorbate importer, sodium-dependent vitamin C transporter 2 (SVCT2). Based on the dual functions of SLC2A12 and cooperativity between SLC2A12 and SVCT2, we hypothesized that SVCT2 might be able to transport urate. To test this proposal, we conducted cell-based analyses using SVCT2-expressing mammalian cells. The results demonstrated that SVCT2 is a novel urate transporter. Vitamin C inhibited SVCT2-mediated urate transport with a half-maximal inhibitory concentration of 36.59 µM, suggesting that the urate transport activity may be sensitive to physiological ascorbate levels in blood. Similar results were obtained for mouse Svct2. Further, using SVCT2 as a sodium-dependent urate importer, we established a cell-based urate efflux assay that will be useful for identification of other novel urate exporters as well as functional characterization of nonsynonymous variants of already-identified urate exporters including ATP-binding cassette transporter G2. While more studies will be needed to elucidate the physiological impact of SVCT2-mediated urate transport, our findings deepen understanding of urate transport machineries.


Asunto(s)
Transportadores de Anión Orgánico Sodio-Dependiente , Transportadores de Sodio Acoplados a la Vitamina C , Ácido Úrico , Animales , Humanos , Ratones , Ácido Ascórbico/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Transportadores de Sodio Acoplados a la Vitamina C/genética , Ácido Úrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA