RESUMEN
Modulation of the transport-mediated active uptake by human serum albumin (HSA) for highly protein-bound substrates has been reported and improved the in vitro-to-in vivo extrapolation (IVIVE) of hepatic clearance. However, evidence for the relevance of such a phenomenon in the case of renal transporters is sparse. In this study, transport of renal organic anion transporter 1 or 3 (OAT1/3) substrates into conditionally immortalized proximal tubular epithelial cells transduced with OAT1/3 was measured in the presence and absence of 1 and 4% HSA while keeping the unbound substrate concentration constant (based on measured fraction unbound, fu,inc). In the presence of 4% HSA, the unbound intrinsic active uptake clearance (CLint,u,active) of six highly protein-bound substrates increased substantially relative to the HSA-free control (3.5- to 122-fold for the OAT1 CLint,u,active, and up to 28-fold for the OAT3 CLint,u,active). The albumin-mediated uptake effect (fold increase in CLint,u,active) was more pronounced with highly bound substrates compared to no effect seen for weakly protein-bound substrates adefovir (OAT1-specific) and oseltamivir carboxylate (OAT3-specific). The relationship between OAT1/3 CLint,u,active and fu,inc agreed with the facilitated-dissociation model; a relationship was established between the albumin-mediated fold change in CLint,u,active and fu,inc for both the OAT1 and OAT3, with implications for IVIVE modeling. The relative activity factor and the relative expression factor based on global proteomic quantification of in vitro OAT1/3 expression were applied for IVIVE of renal clearance. The inclusion of HSA improved the bottom-up prediction of the level of OAT1/3-mediated secretion and renal clearance (CLsec and CLr), in contrast to the underprediction observed with the control (HSA-free) scenario. For the first time, this study confirmed the presence of the albumin-mediated uptake effect with renal OAT1/3 transporters; the extent of the effect was more pronounced for highly protein-bound substrates. We recommend the inclusion of HSA in routine in vitro OAT1/3 assays due to considerable improvements in the IVIVE of CLsec and CLr.
Asunto(s)
Proteína 1 de Transporte de Anión Orgánico , Transportadores de Anión Orgánico Sodio-Independiente , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Humanos , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Transporte Biológico/fisiología , Riñón/metabolismo , Animales , Túbulos Renales Proximales/metabolismo , Albúmina Sérica/metabolismo , Albúmina Sérica Humana/metabolismo , Línea CelularRESUMEN
SCOPE: High-fat diet (HFD) consumption causes obesity and gut dysbiosis which induces kidney injury. It has been reported that prebiotics improve gut dysbiosis and insulin sensitivity and decelerate the progression of kidney disease. This study investigates the impact of fructooligosaccharides (FOS) on renoprotection and the prevention of gut dysbiosis and intestinal barrier injury in obese rats. METHODS AND RESULTS: Wistar rats are treated with HFD for 16 weeks. Then, the HFD fed rats (HF) are given FOS 1 g day-1 (HFFOS1), 2 g day-1 (HFFOS2), or metformin 30 mg kg-1 day-1 (HFMET), by intragastric feeding for 8 weeks. Blood, urine, feces, kidney, and intestine are collected to determine the metabolic changes, gut dysbiosis, and the expression of proteins involved in kidney and intestinal injury. FOS can attenuate insulin resistance and hypercholesterolemia concomitant with the inhibition of renal inflammation, oxidative stress, fibrosis, and apoptosis, which are related to the deceleration of the overexpression of renal Toll-like receptor 4 (TLR4) and NADPH oxidase (NOX4). Moreover, FOS shows a greater efficacy than metformin in the reduction of the intestinal injury and loss of tight junction proteins induced by HFD. CONCLUSION: FOS may be used as a supplement for therapeutic purposes in an obese condition to improve intestinal integrity and prevent renal complications.
Asunto(s)
Dieta Alta en Grasa , Disbiosis , Microbioma Gastrointestinal , Riñón , Obesidad , Oligosacáridos , Estrés Oxidativo , Ratas Wistar , Animales , Oligosacáridos/farmacología , Estrés Oxidativo/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/complicaciones , Disbiosis/tratamiento farmacológico , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Riñón/efectos de los fármacos , Riñón/metabolismo , Fibrosis , Inflamación/tratamiento farmacológico , Receptor Toll-Like 4/metabolismo , Ratas , Modelos Animales de Enfermedad , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Resistencia a la Insulina , PrebióticosRESUMEN
Hepatocellular carcinoma (HCC) is one of the most malignant tumors in the world. Inadequate efficacy of 5-fluorouracil (5-FU) on HCC could be related to low expression of human organic anion transporter 2 (OAT2). However, the knowledge of downregulation of OAT2 in HCC remains limited. We explored the underlying mechanism focusing on protein expression regulation and attempted to design a strategy to sensitize HCC cells to 5-FU. In this study, we revealed that the 1 bp to 300 bp region of OAT2 mRNA 3' untranslated region (UTR) reduced its protein expression and uptake activity in Li-7 and PLC/PRF/5 cells. Mechanistically, it was demonstrated that staphylococcal nuclease and Tudor domain containing 1 (SND1) bound at the 1 bp to 300 bp region of OAT2 mRNA 3' UTR, leading to a decrease in OAT2 protein expression. Enrichment analysis results indicated reduction of OAT2 might be mediated by translational inhibition. Furthermore, the knockdown of SND1 upregulated OAT2 protein expression and uptake activity. Based on this, decreasing SND1 expression enhanced 5-FU-caused G1/S phase arrest in Li-7 and PLC/PRF/5 cells, resulting in suppression of cell proliferation. Additionally, the knockdown of SND1 augmented the inhibitory effect of 5-FU on PLC/PRF/5 xenograft tumor growth in vivo by increasing OAT2 protein expression and accumulation of 5-FU in the tumor. Collectively, a combination of inhibition of SND1 with 5-FU might be a potential strategy to sensitize HCC cells to 5-FU from the perspective of restoring OAT2 protein level. SIGNIFICANCE STATEMENT: We investigated the regulatory mechanism of OAT2 protein expression in HCC cells and designed a strategy to sensitize them to 5-FU (OAT2 substrate) via restoring OAT2 protein level. It found that SND1, an RNA binding protein, regulated OAT2 protein expression by interacting with OAT2 mRNA 3' UTR 1-300 bp region. Through decreasing SND1, the antitumor effect of 5-FU on HCC was enhanced in vitro and in vivo, indicating that SND1 could be a potential target for sensitizing HCC cells to 5-FU.
Asunto(s)
Carcinoma Hepatocelular , Endonucleasas , Fluorouracilo , Neoplasias Hepáticas , Humanos , Fluorouracilo/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Animales , Endonucleasas/genética , Endonucleasas/metabolismo , Línea Celular Tumoral , Ratones , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Antimetabolitos Antineoplásicos/farmacología , Ratones Endogámicos BALB C , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/genética , Proliferación Celular/efectos de los fármacos , Regiones no Traducidas 3'/genética , MasculinoRESUMEN
The organic anion transporters OAT1 (SLC22A6) and OAT3 (SLC22A8) are drug transporters that are expressed in the kidney, with well-established roles in the in vivo transport of drugs and endogenous metabolites. A comparatively unexplored potential function of these drug transporters is their contribution to the in vivo regulation of natural products (NPs) and their effects on endogenous metabolism. This is important for the evaluation of potential NP interactions with other compounds at the transporter site. Here, we have analyzed the NPs present in several well-established databases from Asian (Chinese, Indian Ayurvedic) and other traditions. Loss of OAT1 and OAT3 in murine knockouts caused serum alterations of many NPs, including flavonoids, vitamins, and indoles. OAT1- and OAT3-dependent NPs were largely separable based on a multivariate analysis of chemical properties. Direct binding to the transporter was confirmed using in vitro transport assays and protein binding assays. Our in vivo and in vitro results, considered in the context of previous data, demonstrate that OAT1 and OAT3 play a pivotal role in the handling of non-synthetic small molecule natural products, NP-derived antioxidants, phytochemicals, and nutrients (e.g., pantothenic acid, thiamine). As described by remote sensing and signaling theory, drug transporters help regulate redox states by meditating the movement of endogenous antioxidants and nutrients between organs and organisms. Our results demonstrate how dietary antioxidants and other NPs might feed into these inter-organ and inter-organismal pathways.
Asunto(s)
Antioxidantes , Productos Biológicos , Proteína 1 de Transporte de Anión Orgánico , Transportadores de Anión Orgánico Sodio-Independiente , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Proteína 1 de Transporte de Anión Orgánico/genética , Animales , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/genética , Ratones , Nutrientes/metabolismo , Ratones Noqueados , Humanos , Transporte Biológico , Riñón/metabolismo , Flavonoides/farmacocinética , Flavonoides/metabolismoRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: In recent years, in addition to hypertension, hyperglycemia, and hyperlipidemia, the prevalence of hyperuricemia (HUA) has increased considerably. Being the fourth major health risk factor, HUA can affect the kidneys and cardiovascular system. Chrysanthemi Indici Flos is a flavonoid-containing traditional Chinese patent medicine that exhibits a uric acid (UA)-lowering effect. However, the mechanisms underlying Chrysanthemi Indici Flos-enriched flavonoid part (CYM.E) mediated alleviation of HUA remain unelucidated. AIM OF THE STUDY: This study aimed to elucidate the efficacy of CYM.E in preventing and treating HUA and its specific effects on UA-related transport proteins, to explore possible mechanism. METHODS: The buddleoside content in CYM.E was determined through high-performance liquid chromatography. HUA was induced in mice models using adenine and potassium oxonate. Subsequently, mice were administered 10 mg/kg allopurinol, and 30, 60, and 90 mg/kg CYM.E to evaluate the effects of CYM.E on the of HUA mice model. Herein, plasma uric acid (UA), creatinine (CR), blood urea nitrogen (BUN), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-c), and low-density lipoprotein cholesterol (LDL-c) contents, along with serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities were measured. Additionally, xanthine oxidase (XOD) and adenosine deaminase (ADA) activities in the liver were determined. The histomorphologies of the liver and kidney tissues were examined through hematoxylin and eosin staining. The messenger RNA (mRNA) expression of facilitated glucose transporter 9 (GLUT9), organic anion transporter (OAT)1, OAT3, and adenosine triphosphate binding cassette subfamily G2 (ABCG2) in the kidney was assessed by real-time quantitative polymerase chain reaction. Furthermore, the expression of urate transporter 1 (URAT1), GLUT9, OAT1, and OAT3 in the kidney, OAT4, and ABCG2 proteins was determined by immunohistochemistry and western blotting. RESULTS: The buddleoside content in CYM.E was approximately 32.77%. CYM.E improved body weight and autonomous activity in HUA mice. Additionally, it reduced plasma UA, BUN, and CR levels and serum ALT and AST activities, thus improving hepatic and renal functions, which further reduced the plasma UA content. CYM.E reduced histopathological damage to the kidneys. Furthermore, it lowered plasma TC, TG, and LDL-c levels, thereby improving lipid metabolism disorder. CYM.E administration inhibited hepatic XOD and ADA activities and reduced the mRNA expression of renal GLUT9. CYM.E inhibited the protein expression of renal URAT1, GLUT9, and OAT4, and increased the mRNA and protein expression of renal OAT1, OAT3, and ABCG2. Altogether, these results show that CYM.E could inhibit the production and promote reabsorption of UA and its excretion.
Asunto(s)
Modelos Animales de Enfermedad , Flavonoides , Hiperuricemia , Transportadores de Anión Orgánico , Ácido Úrico , Animales , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/inducido químicamente , Ácido Úrico/sangre , Masculino , Flavonoides/farmacología , Flavonoides/análisis , Ratones , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/genética , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Flores/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Alopurinol/farmacología , Ratones Endogámicos ICRRESUMEN
Thrombocytopenia, a common adverse effect of linezolid, often occurs in patients lacking typical risk factors. In this study, we investigated the key risk factors for linezolid-induced thrombocytopenia using two real-world clinical databases and explored its underlying mechanism through in vitro and in vivo experiments. In a retrospective analysis of 150 linezolid-treated patients, multivariate analysis identified coadministration of lansoprazole, a proton pump inhibitor, as a significant independent risk factor for thrombocytopenia (odds ratio: 2.33, p = 0.034). Additionally, analysis of the Food and Drug Administration Adverse Event Reporting System database revealed a reporting odds ratio of thrombocytopenia for lansoprazole of 1.64 (95% CI: 1.25-2.16). In vitro studies showed that the uptake of PNU-142586, a major linezolid metabolite, was significantly higher in human organic anion transporter 3-expressing HEK293 (HEK-hOAT3) cells compared to HEK-pBK cells. The apparent IC50 value of lansoprazole against hOAT3-mediated transport of PNU-142586 was 0.59 ± 0.38⯵M. In a pharmacokinetic study using rats, coadministration of linezolid with lansoprazole intravenously resulted in approximately a 1.7-fold increase in the area under the plasma concentration-time curve of PNU-142586, but not linezolid and PNU-142300. Moreover, PNU-142586, but not linezolid, exhibited concentration-dependent cytotoxicity in a human megakaryocytic cell line. These findings suggest that linezolid-induced thrombocytopenia should be due to delayed elimination of PNU-142586. Furthermore, delayed elimination of PNU-142586 due to renal failure and hOAT3-mediated transport inhibition by lansoprazole should exacerbate linezolid-induced thrombocytopenia.
Asunto(s)
Linezolid , Trombocitopenia , Linezolid/efectos adversos , Linezolid/farmacocinética , Humanos , Trombocitopenia/inducido químicamente , Trombocitopenia/metabolismo , Células HEK293 , Animales , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Ratas , Inhibidores de la Bomba de Protones/efectos adversos , Inhibidores de la Bomba de Protones/farmacología , Lansoprazol/farmacología , Transporte Biológico , Ratas Sprague-Dawley , Factores de Riesgo , Adulto , Transportadores de Anión Orgánico Sodio-Independiente/metabolismoRESUMEN
Xenobiotic metabolic reactions in the hepatocyte endoplasmic reticulum (ER) including UDP-glucuronosyltransferase and carboxylesterase play central roles in the detoxification of medical agents with small- and medium-sized molecules. Although the catalytic sites of these enzymes exist inside of ER, the molecular mechanism for membrane permeation in the ER remains enigmatic. Here, we investigated that organic anion transporter 2 (OAT2) regulates the detoxification reactions of xenobiotic agents including anti-cancer capecitabine and antiviral zidovudine, via the permeation process across the ER membrane in the liver. Pharmacokinetic studies in patients with colorectal cancer revealed that the half-lives of capecitabine in rs2270860 (1324C > T) variants was 1.4 times higher than that in the C/C variants. Moreover, the hydrolysis of capecitabine to 5'-deoxy-5-fluorocytidine in primary cultured human hepatocytes was reduced by OAT2 inhibitor ketoprofen, whereas capecitabine hydrolysis directly assessed in human liver microsomes were not affected. The immunostaining of OAT2 was merged with ER marker calnexin in human liver periportal zone. These results suggested that OAT2 is involved in distribution of capecitabine into ER. Furthermore, we clarified that OAT2 plays an essential role in drug-drug interactions between zidovudine and valproic acid, leading to the alteration in zidovudine exposure to the body. Our findings contribute to mechanistically understanding medical agent detoxification, shedding light on the ER membrane permeation process as xenobiotic metabolic machinery to improve chemical changes in hydrophilic compounds.
Asunto(s)
Retículo Endoplásmico , Humanos , Retículo Endoplásmico/metabolismo , Interacciones Farmacológicas/fisiología , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Masculino , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/genética , Zidovudina/metabolismo , Zidovudina/farmacocinética , Femenino , Microsomas Hepáticos/metabolismoRESUMEN
Early brain development depends on adequate transport of thyroid hormones (THs) from the maternal circulation to the fetus. To reach the fetal brain, THs have to cross several physiological barriers, including the placenta, blood-brain-barrier and blood-cerebrospinal fluid-barrier. Transport across these barriers is facilitated by thyroid hormone transmembrane transporters (THTMTs). Some endocrine disrupting chemicals (EDCs) can interfere with the transport of THs by THTMTs. To screen chemicals for their capacity to disrupt THTMT facilitated TH transport, in vitro screening assays are required. In this study, we developed assays for two THTMTs, organic anion transporter polypeptide 1C1 (OATP1C1) and organic anion transporter 4 (OAT4), both known to play a role in the transport of THs across barriers. We used overexpressing cell models for both OATP1C1 and OAT4, which showed an increased uptake of radiolabeled T4 compared to control cell lines. Using these models, we screened various reference and environmental chemicals for their ability to inhibit T4 uptake by OATP1C1 and OAT4. Tetrabromobisphenol A (TBBPA) was identified as an OATP1C1 inhibitor, more potent than any of the reference chemicals tested. Additionally perfluorooctanesulfonic acid (PFOS), perfluoroctanic acid (PFOA), pentachlorophenol and quercetin were identified as OATP1C1 inhibitors in a similar range of potency to the reference chemicals tested. Bromosulfophthalein, TBBPA, PFOA and PFOS were identified as potent OAT4 inhibitors. These results demonstrate that EDCs commonly found in our environment can disrupt TH transport by THTMTs, and contribute to the identification of molecular mechanisms underlying TH system disruption chemicals.
Asunto(s)
Disruptores Endocrinos , Transportadores de Anión Orgánico Sodio-Independiente , Transportadores de Anión Orgánico , Humanos , Disruptores Endocrinos/toxicidad , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/antagonistas & inhibidores , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Fluorocarburos/toxicidad , Hormonas Tiroideas/metabolismo , Caprilatos/toxicidad , Tiroxina/metabolismo , Transporte Biológico/efectos de los fármacos , Células HEK293 , Ácidos Alcanesulfónicos/toxicidad , AnimalesRESUMEN
Acute kidney injury (AKI) is often accompanied by uremic encephalopathy resulting from accumulation of uremic toxins in brain possibly due to impaired blood-brain barrier (BBB) function. Anionic uremic toxins are substrates or inhibitors of organic anionic transporters (OATs). In this study we investigated the CNS behaviors and expression/function of BBB OAT3 in AKI rats and mice, which received intraperitoneal injection of cisplatin 8 and 20 mg/kg, respectively. We showed that cisplatin treatment significantly inhibited the expressions of OAT3, synaptophysin and microtubule-associated protein 2 (MAP2), impaired locomotor and exploration activities, and increased accumulation of uremic toxins in the brain of AKI rats and mice. In vitro studies showed that uremic toxins neither alter OAT3 expression in human cerebral microvascular endothelial cells, nor synaptophysin and MAP2 expressions in human neuroblastoma (SH-SY5Y) cells. In contrast, tumour necrosis factor alpha (TNFα) and the conditioned medium (CM) from RAW264.7 cells treated with indoxyl sulfate (IS) significantly impaired OAT3 expression. TNFα and CM from IS-treated BV-2 cells also inhibited synaptophysin and MAP2 expressions in SH-SY5Y cells. The alterations caused by TNFα and CMs in vitro, and by AKI and TNFα in vivo were abolished by infliximab, a monoclonal antibody designed to intercept and neutralize TNFα, suggesting that AKI impaired the expressions of OAT3, synaptophysin and MAP2 in the brain via IS-induced TNFα release from macrophages or microglia (termed as IS-TNFα axis). Treatment of mice with TNFα (0.5 mg·kg-1·d-1, i.p. for 3 days) significantly increased p-p65 expression and reduced the expressions of Nrf2 and HO-1. Inhibiting NF-κB pathway, silencing p65, or activating Nrf2 and HO-1 obviously attenuated TNFα-induced downregulation of OAT3, synaptophysin and MAP2 expressions. Significantly increased p-p65 and decreased Nrf2 and HO-1 protein levels were also detected in brain of AKI mice and rats. We conclude that AKI inhibits the expressions of OAT3, synaptophysin and MAP2 due to IS-induced TNFα release from macrophages or microglia. TNFα impairs the expressions of OAT3, synaptophysin and MAP2 partly via activating NF-κB pathway and inhibiting Nrf2-HO-1 pathway.
Asunto(s)
Lesión Renal Aguda , Cisplatino , Indicán , Factor de Necrosis Tumoral alfa , Animales , Lesión Renal Aguda/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Humanos , Ratones , Masculino , Células RAW 264.7 , Ratas , Ratones Endogámicos C57BL , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Ratas Sprague-Dawley , Sinaptofisina/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Uremia/metabolismo , Uremia/complicaciones , Línea Celular TumoralRESUMEN
Succinate dehydrogenase inhibitors (SDHIs) are widely-used fungicides, to which humans are exposed and for which putative health risks are of concern. In order to identify human molecular targets for these environmental chemicals, the interactions of 15 SDHIs with activities of main human drug transporters implicated in pharmacokinetics were investigated in vitro. 5/15 SDHIs, i.e., benzovindiflupyr, bixafen, fluxapyroxad, pydiflumetofen and sedaxane, were found to strongly reduce activity of the renal organic anion transporter (OAT) 3, in a concentration-dependent manner (with IC50 values in the 1.0-3.9 µM range), without however being substrates for OAT3. Moreover, these 5/15 SDHIs decreased the membrane transport of estrone-3 sulfate, an endogenous substrate for OAT3, and sedaxane was predicted to inhibit in vivo OAT3 activity in response to exposure to the acceptable daily intake (ADI) dose. In addition, pydiflumetofen strongly inhibited the renal organic cation transporter (OCT) 2 (IC50 = 2.0 µM) and benzovindiflupyr the efflux pump breast cancer resistance protein (BCRP) (IC50 = 3.9 µM). Other human transporters, including organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 as well as multidrug and toxin extrusion protein (MATE) 1 and MATE2-K were moderately or weakly inhibited by SDHIs, whereas P-glycoprotein, multidrug resistance-associated protein (MRP), OCT1 and OAT1 activities were not or only marginally impacted. Then, some human drug transporters, especially OAT3, constitute molecular targets for SDHIs. This could have toxic consequences, notably with respect to levels of endogenous compounds and metabolites substrates for the considered transporters or to potential SDHI-drug interactions. This could therefore contribute to putative health risk of these fungicides.
Asunto(s)
Succinato Deshidrogenasa , Humanos , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/antagonistas & inhibidores , Transporte Biológico/efectos de los fármacos , Fungicidas Industriales/toxicidad , Fungicidas Industriales/farmacología , Inhibidores Enzimáticos/farmacología , Estrona/análogos & derivados , Estrona/metabolismo , Células HEK293 , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/antagonistas & inhibidoresRESUMEN
BACKGROUND: In predictions about hepatic clearance (CLH), a number of studies explored the role of albumin and transporters in drug uptake by liver cells, challenging the traditional free-drug theory. It was proposed that liver uptake can occur for transporter substrate compounds not only from the drug's unbound form but also directly from the drug-albumin complex, a phenomenon known as uptake facilitated by albumin. In contrast to albumin, dextran does not exhibit binding properties for compounds. However, as a result of its inherent capacity for stabilization, it is widely used to mimic conditions within cells. METHODS: The uptake of eight known substrates of the organic anion-transporting polypeptide 1B3 (OATP1B3) was assessed using a human embryonic kidney cell line (HEK293), which stably overexpresses this transporter. An inert polymer, dextran, was used to simulate cellular conditions, and the results were compared with experiments involving human plasma and human serum albumin (HSA). RESULTS: This study is the first to demonstrate that dextran increases compound uptake in cells with overexpression of the OATP1B3 transporter. Contrary to the common theory that highly protein-bound ligands interact with hepatocytes to increase drug uptake, the results indicate that dextran's interaction with test compounds does not significantly increase concentrations near the cell membrane surface. CONCLUSIONS: We evaluated the effect of dextran on the uptake of known substrates using OATP1B3 overexpressed in the HEK293 cell line, and we suggest that its impact on drug concentrations in liver cells may differ from the traditional role of plasma proteins and albumin.
Asunto(s)
Dextranos , Transportadores de Anión Orgánico , Humanos , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/genética , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/metabolismo , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/farmacología , Transportador 1 de Anión Orgánico Específico del Hígado/genética , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Transportador 1 de Anión Orgánico Específico del Hígado/farmacología , Células HEK293 , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Hepatocitos/metabolismo , Hígado , Proteínas de Transporte de Membrana/metabolismo , Albúminas , Transportadores de Anión Orgánico Sodio-Independiente/genética , Transportadores de Anión Orgánico Sodio-Independiente/metabolismoRESUMEN
Intravenously administered chemotherapeutic cabazitaxel is used for palliative treatment of prostate cancer. An oral formulation would be more patient-friendly and reduce the need for hospitalization. We therefore study determinants of the oral pharmacokinetics of cabazitaxel in a ritonavir-boosted setting, which reduces the CYP3A-mediated first-pass metabolism of cabazitaxel. We here assessed the role of organic anion-transporting polypeptides (OATPs) in the disposition of orally boosted cabazitaxel and its active metabolites, using the Oatp1a/b-knockout and the OATP1B1/1B3-transgenic mice. These transporters may substantially affect plasma clearance and hepatic and intestinal drug disposition. The pharmacokinetics of cabazitaxel and DM2 were not significantly affected by Oatp1a/b and OATP1B1/1B3 activity. In contrast, the plasma AUC0-120 min of DM1 in Oatp1a/b-/- was 1.9-fold (p < 0.05) higher than that in wild-type mice, and that of docetaxel was 2.4-fold (p < 0.05) higher. We further observed impaired hepatic uptake and intestinal disposition for DM1 and docetaxel in the Oatp-ablated strains. None of these parameters showed rescue by the OATP1B1 or -1B3 transporters in the humanized mouse strains, suggesting a minimal role of OATP1B1/1B3. Ritonavir itself was also a potent substrate for mOatp1a/b, showing a 2.9-fold (p < 0.0001) increased plasma AUC0-120 min and 3.5-fold (p < 0.0001) decreased liver-to-plasma ratio in Oatp1a/b-/- compared to those in wild-type mice. Furthermore, we observed the tight binding of cabazitaxel and its active metabolites, including docetaxel, to plasma carboxylesterase (Ces1c) in mice, which may complicate the interpretation of pharmacokinetic and pharmacodynamic mouse studies. Collectively, these results will help to further optimize (pre)clinical research into the safety and efficacy of orally applied cabazitaxel.
Asunto(s)
Transportadores de Anión Orgánico Sodio-Independiente , Transportadores de Anión Orgánico , Taxoides , Animales , Humanos , Masculino , Ratones , Carboxilesterasa/metabolismo , Docetaxel , Hígado/metabolismo , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Ratones Transgénicos , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Ritonavir , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/metabolismoRESUMEN
Organic anion-transporting polypeptides (OATPs) 1B1 and 1B3 are two highly homologous transport proteins. However, OATP1B1- and 1B3-mediated estradiol-17ß-glucuronide (E17ßG) uptake can be differentially affected by clotrimazole. In this study, by functional characterization on chimeric transporters and single mutants, we find that G45 in transmembrane domain 1 (TM1) and V386 in TM8 are critical for the activation of OATP1B3-mediated E17ßG uptake by clotrimazole. However, the effect of clotrimazole on the function of OATP1B3 is substrate-dependent as clotrimazole does not stimulate OATP1B3-mediated uptake of 4',5'-dibromofluorescein (DBF) and rosuvastatin. In addition, clotrimazole is not transported by OATP1B3, but it can efficiently permeate the plasma membrane due to its lipophilic properties. Homology modeling and molecular docking indicate that E17ßG binds in a substrate binding pocket of OATP1B3 through hydrogen bonding and hydrophobic interactions, among which its sterol scaffold forms hydrophobic contacts with V386. In addition, a flexible glycine residue at position 45 is essential for the activation of OATP1B3. Finally, clotrimazole is predicted to bind at an allosteric site, which mainly consists of hydrophobic residues located at the cytoplasmic halves of TMs 4, 5, 10, and 11.
Asunto(s)
Estradiol/análogos & derivados , Transportadores de Anión Orgánico Sodio-Independiente , Transportadores de Anión Orgánico , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Clotrimazol/farmacología , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/metabolismo , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Simulación del Acoplamiento Molecular , Transportadores de Anión Orgánico/metabolismo , Transporte BiológicoRESUMEN
The protein phosphatase inhibitor microcystin-LR (MC-LR), a hepatocyte-selective cyanotoxin, induces phenotypic changes in HEK293 OATP1B3-expressing (HEK293-OATP1B3) cells, which include cytoskeletal reorganization (HEK293-OATP1B3-AD) and anoikis resistance (HEK293-OATP1B3-FL) transformed cells, respectively. These cells acquire resistance to MC-LR and partial epithelial-mesenchymal transition (EMT) characteristics. In cancer cells, EMT is generally involved in multi-drug resistance. Here, we focused on the multi-drug resistance of HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells. The MTT assay and immunoblotting were conducted to examine the responses of HEK293-OATP1B3, HEK293-OATP1B3-AD, and HEK293-OATP1B3-FL cells to multiple toxins and drugs that function as substrates for OATP1B3, including MC-LR, nodularin (Nod), okadaic acid (OA), and cisplatin (CDDP). HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells were more resistant to MC-LR, Nod, and OA than HEK293-OATP1B3 cells. Conversely, the three cell types were equivalently sensitive to CDDP. By using protein phosphatase assay, the reduction of the inhibitory effect of MC-LR and Nod on phosphatase activity might be one reason for the resistance to MC-LR and Nod in HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells. Furthermore, the parental HEK293-OATP1B3 cells showed enhanced p53 phosphorylation and stabilization after MC-LR exposure, while p53 phosphorylation was attenuated in HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells. Moreover, in HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells, AKT phosphorylation was higher than that of the parental HEK293-OATP1B3 cell line. These results suggest that the multi-toxin resistance observed in HEK293-OATP1B3-AD and HEK293-OATP1B3-FL cells is associated with AKT activation and p53 inactivation.
Asunto(s)
Toxinas Marinas , Transportadores de Anión Orgánico Sodio-Independiente , Proteínas Proto-Oncogénicas c-akt , Humanos , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/farmacología , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células HEK293 , Microcistinas/metabolismo , Ácido Ocadaico/toxicidad , Transición Epitelial-Mesenquimal , Fosfoproteínas FosfatasasRESUMEN
The organic anion transporter 3 (OAT3), an important renal uptake transporter, is associated with drug-induced acute kidney injury (AKI). Screening and identifying potent OAT3 inhibitors with little toxicity in natural products, especially flavonoids, in reducing OAT3-mediated AKI is of great value. The five strongest OAT3 inhibitors from the 97 flavonoids markedly decreased aristolochic acid I-induced cytotoxicity and alleviated methotrexate-induced nephrotoxicity. The pharmacophore model clarified hydrogen bond acceptors and hydrophobic groups are the critical pharmacophores. These findings would provide valuable information in predicting the potential risks of flavonoid-containing food/herb-drug interactions and optimizing flavonoid structure to alleviate OAT3-related AKI.
Asunto(s)
Lesión Renal Aguda , Flavonoides , Transportadores de Anión Orgánico Sodio-Independiente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Transporte Biológico , Flavonoides/farmacología , Flavonoides/química , Transportadores de Anión Orgánico/efectos de los fármacos , Transportadores de Anión Orgánico/metabolismo , Relación Estructura-Actividad , Transportadores de Anión Orgánico Sodio-Independiente/efectos de los fármacos , Transportadores de Anión Orgánico Sodio-Independiente/metabolismoRESUMEN
Transporter-mediated drug-drug interactions (DDIs) are assessed using probe drugs and in vitro and in vivo models during drug development. The utility of endogenous metabolites as transporter biomarkers is emerging for prediction of DDIs during early phases of clinical trials. Endogenous metabolites such as pyridoxic acid and kynurenic acid have shown potential to predict DDIs mediated by organic anion transporters (OAT1 and OAT3). However, these metabolites have not been assessed in rats as potential transporter biomarkers. We carried out a rat pharmacokinetic DDI study using probenecid and furosemide as OAT inhibitor and substrate, respectively. Probenecid administration led to a 3.8-fold increase in the blood concentrations and a 3-fold decrease in renal clearance of furosemide. High inter-individual and intra-day variability in pyridoxic acid and kynurenic acid, and no or moderate effect of probenecid administration on these metabolites suggest their limited utility for prediction of Oat-mediated DDI in rats. Therefore, rat blood and urine samples were further analysed using untargeted metabolomics. Twenty-one m/z features (out of >8000 detected features) were identified as putative biomarkers of rat Oat1 and Oat3 using a robust biomarker qualification approach. These m/z features belong to metabolic pathways such as fatty acid analogues, peptides, prostaglandin analogues, bile acid derivatives, flavonoids, phytoconstituents, and steroids, and can be used as a panel to decrease variability caused by processes other than Oats. When validated, these putative biomarkers will be useful in predicting DDIs caused by Oats in rats.
Asunto(s)
Transportadores de Anión Orgánico , Ratas , Animales , Transportadores de Anión Orgánico/metabolismo , Probenecid/farmacología , Probenecid/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Eliminación Renal , Furosemida/farmacología , Furosemida/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Ácido Quinurénico/metabolismo , Ácido Quinurénico/farmacología , Ácido Piridóxico/metabolismo , Ácido Piridóxico/farmacología , Interacciones Farmacológicas , Biomarcadores/metabolismo , Riñón/metabolismoAsunto(s)
Sistema Biliar , Transportadores de Anión Orgánico , Humanos , Hígado/metabolismo , Transportadores de Anión Orgánico/metabolismo , Sistema Biliar/metabolismo , Hepatocitos/metabolismo , Transporte Biológico , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos , Interacciones FarmacológicasRESUMEN
Organic anion transporting polypeptides OATP1A2, OATP1B1, OATP1B3 and OATP2B1 are Na+ - and ATP-independent exchangers of large, organic compounds, encompassing structurally diverse xenobiotics, including various drugs. These OATPs influence intestinal absorption (OATP2B1), hepatic clearance (OATP1B1/3) and blood to brain penetration (OATP1A2, OATP2B1) of their drug substrates. Consequently, OATP-mediated drug or food interactions may lead to altered pharmacokinetics and toxicity. During drug development, investigation of hepatic OATP1B1 and OATP1B3 is recommended by international regulatory agencies. Most frequently, OATP-drug interactions are investigated in an indirect assay, i.e., by examining uptake inhibition of a radioactive or fluorescent probe. However, indirect assays do not distinguish between transported substrates and non-transported OATP inhibitors. To fill this hiatus, a novel assay, termed competitive counterflow (CCF) has been developed and has since been applied for several OATPs to differentiate between substrates and non-transported inhibitors. However, previous OATP CCF assays, with the exception of that for OATP1B1, used radioactive probes. In the current study, we demonstrate that sulforhodamine 101 or pyranine can be used as fluorescent probes in a CCF assay to identify transported substrates of OATP1A2, or OATPs 1B1, 1B3 and 2B1, respectively. With the help of the newly developed fluorescence-based CCF method, we identify the FDA-approved anti-protozoal drug, pentamidine as a unique substrate of OATP1A2. Furthermore, we confirm the selective, OATP1A2-mediated uptake of pentamidine in a cytotoxicity assay. Based on our results, OATP1A2 may be an important determinant of pentamidine transport through the blood-brain barrier.
Asunto(s)
Transportadores de Anión Orgánico , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Pentamidina , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Fluorescencia , Transporte Biológico , PéptidosRESUMEN
Cisplatin is a widely used chemotherapeutic agent to treat solid tumours in clinics. However, cisplatin-induced acute kidney injury (AKI) limits its clinical application. This study investigated the effect of hyperoside (a flavonol glycoside compound) on regulating AKI.The model of cisplatin-induced AKI was established, and hyperoside was preadministered to investigate its effect on improving kidney injury.Hyperoside ameliorated renal pathological damage, reduced the accumulation of SCr, BUN, Kim-1 and indoxyl sulphate in vivo, increased the excretion of indoxyl sulphate into the urine, and upregulated the expression of renal organic anion transporter 1 (Oat1). Moreover, evaluation of rat kidney slices demonstrated that hyperoside promoted the uptake of PAH (p-aminohippurate, the Oat1 substrate), which was confirmed by transient over-expression of OAT1 in HEK-293T cells. Additionally, hyperoside upregulated the mRNA expression of Oat1 upstream regulators hepatocyte nuclear factor-1α (HNF-1α) and pregnane X receptor (PXR).These findings indicated hyperoside could protect against cisplatin-induced AKI by promoting indoxyl sulphate excretion through regulating the expression and function of Oat1, suggesting hyperoside may offer a potential tactic for cisplatin-induced AKI treatment.
Asunto(s)
Lesión Renal Aguda , Cisplatino , Ratas , Animales , Cisplatino/efectos adversos , Cisplatino/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/genética , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Proteína 1 de Transporte de Anión Orgánico/genética , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Indicán/toxicidad , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Riñón/metabolismoRESUMEN
Although pharmacological treatment is the best option for most patients with advanced hepatocellular carcinoma (HCC), its success is very limited, partly due to reduced uptake and enhanced efflux of antitumor drugs. Here we have explored the usefulness of vectorizing drugs towards the organic anion transporting polypeptide 1B3 (OATP1B3) to enhance their efficacy against HCC cells. In silico studies (RNA-Seq data, 11 cohorts) and immunohistochemistry analyses revealed a marked interindividual variability, together with general downregulation but still expression of OATP1B3 in the plasma membrane of HCC cells. The measurement of mRNA variants in 20 HCC samples showed the almost absence of the cancer-type variant (Ct-OATP1B3) together with marked predominance of the liver-type variant (Lt-OATP1B3). In Lt-OATP1B3-expressing cells, the screening of 37 chemotherapeutical drugs and 17 tyrosine kinase receptors inhibitors (TKIs) revealed that 10 classical anticancer drugs and 12 TKIs were able to inhibit Lt-OATP1B3-mediated transport. Lt-OATP1B3-expressing cells were more sensitive than Mock parental cells (transduced with empty lentiviral vectors) to some Lt-OATP1B3 substrates (paclitaxel and the bile acid-cisplatin derivative Bamet-UD2), but not to cisplatin, which is not transported by Lt-OATP1B3. This enhanced response was abolished by competition with taurocholic acid, a known Lt-OATP1B3 substrate. Tumors subcutaneously generated in immunodeficient mice by Lt-OATP1B3-expressing HCC cells were more sensitive to Bamet-UD2 than those derived from Mock cells. In conclusion, Lt-OATP1B3 expression should be screened before deciding the use of anticancer drugs substrates of this carrier in the personalized treatment of HCC. Moreover, Lt-OATP1B3-mediated uptake must be considered when designing novel anti-HCC targeted drugs.