Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Physiol Rep ; 12(11): e16089, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828713

RESUMEN

Solute carrier family 26 (Slc26) is a family of anion exchangers with 11 members in mammals (named Slc26a1-a11). Here, we identified a novel member of the slc26 family, slc26a12, located in tandem with slc26a2 in the genomes of several vertebrate lineages. BLAST and synteny analyses of various jawed vertebrate genome databases revealed that slc26a12 is present in coelacanths, amphibians, reptiles, and birds but not in cartilaginous fishes, lungfish, mammals, or ray-finned fishes. In some avian and reptilian lineages such as owls, penguins, egrets, and ducks, and most turtles examined, slc26a12 was lost or pseudogenized. Phylogenetic analysis showed that Slc26a12 formed an independent branch with the other Slc26 members and Slc26a12, Slc26a1 and Slc26a2 formed a single branch, suggesting that these three members formed a subfamily in Slc26. In jawless fish, hagfish have two genes homologous to slc26a2 and slc26a12, whereas lamprey has a single gene homologous to slc26a2. African clawed frogs express slc26a12 in larval gills, skin, and fins. These results show that slc26a12 was present at least before the separation of lobe-finned fish and tetrapods; the name slc26a12 is appropriate because the gene duplication occurred in the distant past.


Asunto(s)
Filogenia , Animales , Reptiles/genética , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Anfibios/genética , Anfibios/metabolismo , Aves/genética , Evolución Molecular
2.
PLoS One ; 19(6): e0305050, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38861540

RESUMEN

OBJECTIVE: Circular RNA SLC26A4 (circSLC26A4) functions as an oncogene in the initiation and progression of cervical cancer (CC). However, the clinical role of plasma exosomal circSLC26A4 in CC is poorly known. This study aims to develop an accurate diagnostic method based on circulating exosomal circSLC26A4. METHODS: In this study, exosomal circSLC26A4 derived from CC cell lines (CaSki, SiHa, and HeLa) and human cervical epithelial cells (HcerEpic) was measured and compared using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Additionally, 56 volunteers, including 18 CC patients, 18 cervical high-grade squamous intraepithelial lesion (HSIL) patients, and 20 healthy volunteers, were enrolled. qRT-PCR was also performed to measure the plasma exosomal circSLC26A4 levels in all participants. RESULTS: The exosomal circSLC26A4 expression level derived from CC cells was significantly elevated compared to it derived from HcerEpic cells. Plasma exosomal circSLC26A4 levels in CC patients were significantly higher than in healthy women and HSIL patients (P < 0.05). In addition, high plasma exosomal circSLC26A4 expression was positively associated with lymph node metastasis and FIGO stage (all P < 0.05). However, no significant correlation was found between plasma exosomal circSLC26A4 expression and age, intravascular cancerous embolus, and perineural invasion (P > 0.05). CONCLUSIONS: The high exosomal circSLC26A4 expression is closely related to the occurrence of CC. Plasma exosomal circSLC26A4 can be used as a diagnostic marker for CC.


Asunto(s)
Biomarcadores de Tumor , Exosomas , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/sangre , Neoplasias del Cuello Uterino/genética , Biopsia Líquida/métodos , Exosomas/metabolismo , Exosomas/genética , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Persona de Mediana Edad , Adulto , ARN Circular/sangre , ARN Circular/genética , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Línea Celular Tumoral , Estudios de Casos y Controles
3.
Biophys J ; 123(12): 1751-1762, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38773769

RESUMEN

The anion exchanger solute carrier family 26 (SLC26)A9, consisting of the transmembrane (TM) domain and the cytoplasmic STAS domain, plays an essential role in regulating chloride transport across cell membranes. Recent studies have indicated that C-terminal helices block the entrance of the putative ion transport pathway. However, the precise functions of the STAS domain and C-terminal helix, as well as the underlying molecular mechanisms governing the transport process, remain poorly understood. In this study, we performed molecular dynamics simulations of three distinct models of human SLC26A9, full-length, STAS domain removal (ΔSTAS), and C-terminus removal (ΔC), to investigate their conformational dynamics and ion-binding properties. Stable binding of ions to the binding sites was exclusively observed in the ΔC model in these simulations. Comparing the full-length and ΔC simulations, the ΔC model displayed enhanced motion of the STAS domain. Furthermore, comparing the ΔSTAS and ΔC simulations, the ΔSTAS simulation failed to exhibit stable ion bindings to the sites despite the absence of the C-terminus blocking the ion transmission pathway in both systems. These results suggest that the removal of the C-terminus not only unblocks the access of ions to the permeation pathway but also triggers STAS domain motion, gating the TM domain to promote ions' entry into their binding site. Further analysis revealed that the asymmetric motion of the STAS domain leads to the expansion of the ion permeation pathway within the TM domain, resulting in the stiffening of the flexible TM12 helix near the ion-binding site. This structural change in the TM12 helix stabilizes chloride ion binding, which is essential for SLC26A9's alternate-access mechanism. Overall, our study provides new insights into the molecular mechanisms of SLC26A9 transport and may pave the way for the development of novel treatments for diseases associated with dysregulated ion transport.


Asunto(s)
Antiportadores , Cloruros , Simulación de Dinámica Molecular , Dominios Proteicos , Transportadores de Sulfato , Transportadores de Sulfato/metabolismo , Transportadores de Sulfato/química , Transportadores de Sulfato/genética , Humanos , Cloruros/metabolismo , Antiportadores/química , Antiportadores/metabolismo , Antiportadores/genética , Transporte Iónico , Sitios de Unión , Unión Proteica
4.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673775

RESUMEN

Solute carrier family 26 member 4 (SLC26A4) is a member of the SLC26A transporter family and is expressed in various tissues, including the airway epithelium, kidney, thyroid, and tumors. It transports various ions, including bicarbonate, chloride, iodine, and oxalate. As a multiple-ion transporter, SLC26A4 is involved in the maintenance of hearing function, renal function, blood pressure, and hormone and pH regulation. In this review, we have summarized the various functions of SLC26A4 in multiple tissues and organs. Moreover, the relationships between SLC26A4 and other channels, such as cystic fibrosis transmembrane conductance regulator, epithelial sodium channel, and sodium chloride cotransporter, are highlighted. Although the modulation of SLC26A4 is critical for recovery from malfunctions of various organs, development of specific inducers or agonists of SLC26A4 remains challenging. This review contributes to providing a better understanding of the role of SLC26A4 and development of therapeutic approaches for the SLC26A4-associated hearing loss and SLC26A4-related dysfunction of various organs.


Asunto(s)
Transportadores de Sulfato , Humanos , Transportadores de Sulfato/metabolismo , Transportadores de Sulfato/genética , Animales , Riñón/metabolismo , Antiportadores de Cloruro-Bicarbonato/metabolismo , Antiportadores de Cloruro-Bicarbonato/genética , Especificidad de Órganos , Cloruros/metabolismo , Transporte Iónico
5.
J Biol Chem ; 300(5): 107261, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582450

RESUMEN

Mammalian SLC26 proteins are membrane-based anion transporters that belong to the large SLC26/SulP family, and many of their variants are associated with hereditary diseases. Recent structural studies revealed a strikingly similar homodimeric molecular architecture for several SLC26 members, implying a shared molecular principle. Now a new question emerges as to how these structurally similar proteins execute diverse physiological functions. In this study, we sought to identify the common versus distinct molecular mechanism among the SLC26 proteins using both naturally occurring and artificial missense changes introduced to SLC26A4, SLC26A5, and SLC26A9. We found: (i) the basic residue at the anion binding site is essential for both anion antiport of SLC26A4 and motor functions of SLC26A5, and its conversion to a nonpolar residue is crucial but not sufficient for the fast uncoupled anion transport in SLC26A9; (ii) the conserved polar residues in the N- and C-terminal cytosolic domains are likely involved in dynamic hydrogen-bonding networks and are essential for anion antiport of SLC26A4 but not for motor (SLC26A5) and uncoupled anion transport (SLC26A9) functions; (iii) the hydrophobic interaction between each protomer's last transmembrane helices, TM14, is not of functional significance in SLC26A9 but crucial for the functions of SLC26A4 and SLC26A5, likely contributing to optimally orient the axis of the relative movements of the core domain with respect to the gate domains within the cell membrane. These findings advance our understanding of the molecular mechanisms underlying the diverse physiological roles of the SLC26 family of proteins.


Asunto(s)
Antiportadores , Transportadores de Sulfato , Animales , Humanos , Antiportadores/metabolismo , Antiportadores/genética , Antiportadores/química , Sitios de Unión , Células HEK293 , Enlace de Hidrógeno , Modelos Moleculares , Mutación Missense , Dominios Proteicos , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Transportadores de Sulfato/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/química , Multimerización de Proteína , Estructura Secundaria de Proteína
6.
Nat Commun ; 15(1): 3616, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684689

RESUMEN

SLC26A2 is a vital solute carrier responsible for transporting essential nutritional ions, including sulfate, within the human body. Pathogenic mutations within SLC26A2 give rise to a spectrum of human diseases, ranging from lethal to mild symptoms. The molecular details regarding the versatile substrate-transporter interactions and the impact of pathogenic mutations on SLC26A2 transporter function remain unclear. Here, using cryo-electron microscopy, we determine three high-resolution structures of SLC26A2 in complexes with different substrates. These structures unveil valuable insights, including the distinct features of the homodimer assembly, the dynamic nature of substrate binding, and the potential ramifications of pathogenic mutations. This structural-functional information regarding SLC26A2 will advance our understanding of cellular sulfate transport mechanisms and provide foundations for future therapeutic development against various human diseases.


Asunto(s)
Microscopía por Crioelectrón , Transportadores de Sulfato , Humanos , Transportadores de Sulfato/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/química , Mutación , Unión Proteica , Modelos Moleculares , Sulfatos/metabolismo , Multimerización de Proteína , Células HEK293 , Sitios de Unión
7.
Otol Neurotol ; 45(5): 495-501, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561601

RESUMEN

HYPOTHESIS: Cyclodextrin (CDX)-induced serum prestin burst is not dependent on outer hair cell (OHC) loss. BACKGROUND: Serum prestin has been proposed as a biomarker for ototoxicity. We recently used an automated Western approach to quantify serum prestin changes in a newly introduced model of CDX ototoxicity. To gain insights into prestin as a biomarker, here we further characterize serum prestin in the CDX model. METHODS: Guinea pigs were treated with 750, 3,000, or 4,000 mg/kg CDX, and serum samples were obtained through up to 15 weeks after exposure. Serum prestin levels were quantified using automated Western, and hair cell counts were obtained. RESULTS: All three doses induced an N -glycosylated ~134-kDa prestin burst; however, only the 3,000 and 4,000 mg/kg resulted in robust OHC loss. Prestin levels returned to baseline where they remained up to 15 weeks in the absence of OHCs. CONCLUSION: The ~134-kDa prestin burst induced after CDX administration is N -glycosylated, representing a posttranslational modification of prestin. Serum prestin seems to be a promising biomarker when using therapeutics with ototoxic properties because it is not dependent on OHC loss as a necessary event, thus affording the opportunity for early detection and intervention.


Asunto(s)
Células Ciliadas Auditivas Externas , Animales , Cobayas , Células Ciliadas Auditivas Externas/efectos de los fármacos , Células Ciliadas Auditivas Externas/patología , Biomarcadores/sangre , Biomarcadores/metabolismo , Ototoxicidad/etiología , Transportadores de Sulfato/metabolismo
8.
Microbiol Res ; 283: 127691, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492364

RESUMEN

Saccharomycopsis species are natural organic sulphur auxotrophs. Their genomes do not encode genes for the uptake and assimilation of sulphate and thus these species cannot grow on media lacking e.g. methionine. Due to the similarity between sulphate and selenate, uptake and assimilation of selenate occurs through the same pathway starting from sulphate transporters encoded by the homologs of the SUL1 and SUL2 genes in S. cerevisiae. Lack of these transporters renders Saccharomycopsis species resistant to selenate levels that are toxic to other microorganisms. We used this feature to enrich environmental samples for Saccharomycopsis species. This led to the isolation of S. schoenii, S. lassenensis and a hitherto undescribed Saccharomycopsis species with limited by-catch of other yeasts, mainly belonging to Metschnikowia and Hanseniaspora. We performed growth and predation assays to characterize the potential of these new isolates as predacious yeasts. Most Saccharomycopsis species are temperature sensitive and cannot grow at 37°C; with the exception of S. lassenensis strains. Predation assays with S. schoenii and S. cerevisiae as prey indicated that predation was enhanced at 20°C compared to 30°C. We crossed an American isolate of S. schoenii with our German isolate using marker directed breeding. Viable progeny indicated that both strains are interfertile and belong to the same biological species. S. lassenensis is heterothallic, while S. schoenii and the new Saccharomycopsis isolate, for which we suggest the name S. geisenheimensis sp. nov., are homothallic.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycopsis , Saccharomycopsis/genética , Saccharomyces cerevisiae/genética , Ácido Selénico/metabolismo , Transporte Biológico , Sulfatos , Transportadores de Sulfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Anión/metabolismo
9.
Phytomedicine ; 126: 155283, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422652

RESUMEN

BACKGROUND: Portulacae Herba and Granati Pericarpium pair (PGP) is a traditional Chinese herbal medicine treatment for colitis, clinically demonstrating a relatively favorable effect on relieving diarrhea and abnormal stools. However, the underlying mechanism remain uncertain. PURPOSE: The present study intends to evaluate the efficacy of PGP in treating colitis in mice and investigate its underlying mechanism. METHODS: The protective effect of PGP against colitis was determined by monitoring body weight, colon length, colon weight, and survival rate in mice. Colonic inflammation was assessed by serum cytokine levels, colonic H&E staining, and local neutrophil infiltration. The reversal of intestinal epithelial barrier damage by PGP was subsequently analyzed with Western blot and histological staining. Furthermore, RNA-seq analysis and molecular docking were performed to identify potential pathways recruited by PGP. Following the hints of the transcriptomic results, the role of PGP through the IL-6/STAT3/SOCS3 pathway in DSS-induced colitis mice was verified by Western blot. RESULTS: DSS-induced colitis in mice was significantly curbed by PGP treatment. PGP treatment significantly mitigated DSS-induced colitis in mice, as evidenced by improvements in body weight, DAI severity, survival rate, and inflammatory cytokines levels in serum and colon. Moreover, PGP treatment up-regulated the level of Slc26a3, thereby increasing the expressions of the tight junction/adherens junction proteins ZO-1, occludin and E-cadherin in the colon. RNA-seq analysis revealed that PGP inhibits the IL-6/STAT3/SOCS3 pathway at the transcriptional level. Molecular docking indicated that the major components of PGP could bind tightly to the proteins of IL-6 and SOCS3. Meanwhile, the result of Western blot revealed that the IL-6/STAT3/SOCS3 pathway was inhibited at the protein level after PGP administration. CONCLUSION: PGP could alleviate colonic inflammation and reverse damage to the intestinal epithelial barrier in DSS-induced colitis mice. The underlying mechanism involves the inhibition of the IL-6/STAT3/SOCS3 pathway.


Asunto(s)
Colitis Ulcerosa , Colitis , Extractos Vegetales , Granada (Fruta) , Animales , Ratones , Interleucina-6/metabolismo , Simulación del Acoplamiento Molecular , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Inflamación/metabolismo , Colon/patología , Citocinas/metabolismo , Peso Corporal , Sulfato de Dextran/efectos adversos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Colitis Ulcerosa/tratamiento farmacológico , Transportadores de Sulfato/metabolismo , Transportadores de Sulfato/farmacología , Transportadores de Sulfato/uso terapéutico , Antiportadores/efectos adversos , Antiportadores/metabolismo
10.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G555-G566, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38349781

RESUMEN

Cystic fibrosis (CF) is a genetic disease caused by the mutations of cystic fibrosis transmembrane conductance regulator (CFTR), the cystic fibrosis transmembrane conductance regulator gene. Cftr is a critical ion channel expressed in the apical membrane of mouse salivary gland striated duct cells. Although Cftr is primarily a Cl- channel, its knockout leads to higher salivary Cl- and Na+ concentrations and lower pH. Mouse experiments show that the activation of Cftr upregulates epithelial Na+ channel (ENaC) protein expression level and Slc26a6 (a 1Cl-:2[Formula: see text] exchanger of the solute carrier family) activity. Experimentally, it is difficult to predict how much the coregulation effects of CFTR contribute to the abnormal Na+, Cl-, and [Formula: see text] concentrations and pH in CF saliva. To address this question, we construct a wild-type mouse salivary gland model and simulate CFTR knockout by altering the expression levels of CFTR, ENaC, and Slc26a6. By reproducing the in vivo and ex vivo final saliva measurements from wild-type and CFTR knockout animals, we obtain computational evidence that ENaC and Slc26a6 activities are downregulated in CFTR knockout in salivary glands.NEW & NOTEWORTHY This paper describes a salivary gland mathematical model simulating the ion exchange between saliva and the salivary gland duct epithelium. The novelty lies in the implementation of CFTR regulating ENaC and Slc26a6 in a CFTR knockout gland. By reproducing the experimental saliva measurements in wild-type and CFTR knockout glands, the model shows that CFTR regulates ENaC and Slc26a6 anion exchanger in salivary glands. The method could be used to understand the various cystic fibrosis phenotypes.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Ratones , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Membrana Celular/metabolismo , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Sodio/metabolismo , Modelos Teóricos , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Antiportadores/genética , Antiportadores/metabolismo
11.
Sci Rep ; 14(1): 246, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168913

RESUMEN

Chronic obstructive pulmonary disease (COPD) is the 3rd leading cause of death worldwide. Cigarette smoke which has approximately 2-3 µg of Cadmium (Cd) per cigarette contributes to the environmental exposure and development and severity of COPD. With the lack of a cadmium elimination mechanism in humans, the contribution of cadmium induced stress to lung epithelial cells remains unclear. Studies on cadmium responsive miRNAs suggest regulation of target genes with an emphasis on the critical role of miRNA-mRNA interaction for cellular homeostasis. Mir-381, the target miRNA in this study is negatively regulated by cadmium in airway epithelial cells. miR-381 is reported to also regulate ANO1 (Anoctamin 1) expression negatively and in this study low dose cadmium exposure to airway epithelial cells was observed to upregulate ANO1 mRNA expression via mir-381 inhibition. ANO1 which is a Ca2+-activated chloride channel has multiple effects on cellular functions such as proliferation, mucus hypersecretion and fibroblast differentiation in inflamed airways in chronic respiratory diseases. In vitro studies with cadmium at a high concentration range of 100-500 µM is reported to activate chloride channel, ANO1. The secretory epithelial cells are regulated by chloride channels like CFTR, ANO1 and SLC26A9. We examined "ever" smokers with COPD (n = 13) lung tissue sections compared to "never" smoker without COPD (n = 9). We found that "ever" smokers with COPD had higher ANO1 expression. Using mir-381 mimic to inhibit ANO1, we demonstrate here that ANO1 expression is significantly (p < 0.001) downregulated in COPD derived airway epithelial cells exposed to cadmium. Exposure to environmental cadmium contributes significantly to ANO1 expression.


Asunto(s)
MicroARNs , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Cadmio/metabolismo , Anoctamina-1/genética , Anoctamina-1/metabolismo , Células Epiteliales/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , MicroARNs/metabolismo , ARN Mensajero/genética , Proteínas de Neoplasias/metabolismo , Transportadores de Sulfato/metabolismo , Antiportadores/metabolismo
12.
Br J Nutr ; 131(9): 1488-1496, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38221821

RESUMEN

Iodine and thyroid hormones (TH) transport in the placenta are essential for fetal growth and development, but there is little research focus on the human placenta. The research aimed to investigate iodine and TH transport mechanisms in the human placenta. The placenta was collected from sixty healthy pregnant women. Urinary iodine concentration (UIC), serum iodine concentration (SIC), placenta iodine storage (PIS) and the concentration of serum and placenta TH were examined. Five pregnant women were selected as insufficient intake (II), adequate intake (AI) and above requirements intake (ARI) groups. Localisation/expression of placental sodium/iodide symporter (NIS) and Pendrin were also studied. Results showed that PIS positively correlated with the UIC (R = 0·58, P < 0·001) and SIC (R = 0·55, P < 0·001), and PIS was higher in the ARI group than that in the AI group (P = 0·017). NIS in the ARI group was higher than that in the AI group on the maternal side of the placenta (P < 0·05). NIS in the II group was higher than that in the AI group on the fetal side (P < 0·05). In the II group, NIS on the fetal side was higher than on the maternal side (P < 0·05). Pendrin was higher in the II group than in the AI group on the maternal side (P < 0·05). Free triiodothyronine (r = 0·44, P = 0·0067) and thyroid-stimulating hormone (r = 0·75, P < 0·001) between maternal and fetal side is positively correlated. This study suggests that maternal iodine intake changes the expression of NIS and Pendrin, thereby affecting PIS. Serum TH levels were not correlated with placental TH levels.


Asunto(s)
Yodo , Estado Nutricional , Placenta , Simportadores , Hormonas Tiroideas , Humanos , Femenino , Embarazo , Yodo/orina , Yodo/metabolismo , Placenta/metabolismo , Adulto , Hormonas Tiroideas/sangre , Hormonas Tiroideas/metabolismo , Simportadores/metabolismo , Transportadores de Sulfato/metabolismo , Transporte Biológico
13.
Pflugers Arch ; 476(4): 545-554, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38221598

RESUMEN

Secretin is a key hormone of the intestinal phase of digestion which activates pancreatic, bile duct and Brunner gland HCO3- secretion. Recently, the secretin receptor (SCTR) was also found in the basolateral membrane of the beta-intercalated cell (B-IC) of the collecting duct. Experimental addition of secretin triggers a pronounced activation of urinary HCO3- excretion, which is fully dependent on key functional proteins of the B-IC, namely apical pendrin and CFTR and the basolateral SCTR. Recent studies demonstrated that the SCTR knock-out mouse is unable to respond to an acute base load. Here, SCTR KO mice could not rapidly increase urine base excretion, developed prolonged metabolic alkalosis and exhibited marked compensatory hypoventilation. Here, we review the physiological effects of secretin with distinct focus on how secretin activates renal HCO3- excretion. We describe its new function as a hormone for HCO3- homeostasis.


Asunto(s)
Bicarbonatos , Secretina , Ratones , Animales , Secretina/metabolismo , Secretina/farmacología , Membrana Celular/metabolismo , Transportadores de Sulfato/metabolismo , Transporte Biológico , Homeostasis , Bicarbonatos/metabolismo
14.
Handb Exp Pharmacol ; 283: 319-360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37947907

RESUMEN

Solute carrier family 26 (SLC26) is a family of functionally diverse anion transporters found in all kingdoms of life. Anions transported by SLC26 proteins include chloride, bicarbonate, and sulfate, but also small organic dicarboxylates such as fumarate and oxalate. The human genome encodes ten functional homologs, several of which are causally associated with severe human diseases, highlighting their physiological importance. Here, we review novel insights into the structure and function of SLC26 proteins and summarize the physiological relevance of human members.


Asunto(s)
Proteínas de Transporte de Anión , Humanos , Transportadores de Sulfato/metabolismo , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/metabolismo , Aniones/metabolismo , Transporte Biológico
15.
J Am Soc Nephrol ; 35(1): 7-21, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37990364

RESUMEN

SIGNIFICANCE STATEMENT: In the kidney, the B1 H + -ATPase subunit is mostly expressed in intercalated cells (IC). Its importance in acid-secreting type A ICs is evident in patients with inborn distal renal tubular acidosis and ATP6V1B1 mutations. However, the protein is also highly expressed in alkali-secreting non-type A ICs where its function is incompletely understood. We demonstrate in Atp6v1b1 knock out mice that the B1 subunit is critical for the renal response to defend against alkalosis during an alkali load or chronic furosemide treatment. These findings highlight the importance of non-type A ICs in maintaining acid-base balance in response to metabolic challenges or commonly used diuretics. BACKGROUND: Non-type A ICs in the collecting duct system express the luminal Cl - /HCO 3- exchanger pendrin and apical and/or basolateral H + -ATPases containing the B1 subunit isoform. Non-type A ICs excrete bicarbonate during metabolic alkalosis. Mutations in the B1 subunit (ATP6V1B1) cause distal renal tubular acidosis due to its role in acid secretory type A ICs. The function of B1 in non-type A ICs has remained elusive. METHODS: We examined the responses of Atp6v1b1-/- and Atp6v1b1+/+ mice to an alkali load and to chronic treatment with furosemide. RESULTS: An alkali load or 1 week of furosemide resulted in a more pronounced hypokalemic alkalosis in male ATP6v1b1-/- versus Atp6v1b1+/+ mice that could not be compensated by respiration. Total pendrin expression and activity in non-type A ICs of ex vivo microperfused cortical collecting ducts were reduced, and ß2 -adrenergic stimulation of pendrin activity was blunted in ATP6v1b1-/- mice. Basolateral H + -ATPase activity was strongly reduced, although the basolateral expression of the B2 isoform was increased. Ligation assays for H + -ATPase subunits indicated impaired assembly of V 0 and V 1 H + -ATPase domains. During chronic furosemide treatment, ATP6v1b1-/- mice also showed polyuria and hyperchloremia versus Atp6v1b1+/+ . The expression of pendrin, the water channel AQP2, and subunits of the epithelial sodium channel ENaC were reduced. CONCLUSIONS: Our data demonstrate a critical role of H + -ATPases in non-type A ICs function protecting against alkalosis and reveal a hitherto unrecognized need of basolateral B1 isoform for a proper H + -ATPase complexes assembly and ability to be stimulated.


Asunto(s)
Acidosis Tubular Renal , Alcalosis , Túbulos Renales Colectores , ATPasas de Translocación de Protón Vacuolares , Humanos , Masculino , Ratones , Animales , Acidosis Tubular Renal/genética , Furosemida/farmacología , Acuaporina 2/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Riñón/metabolismo , Alcalosis/metabolismo , Transportadores de Sulfato/metabolismo , Isoformas de Proteínas , Álcalis , Túbulos Renales Colectores/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(47): e2307551120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37967223

RESUMEN

In cystic fibrosis (CF), defects in the CF transmembrane conductance regulator (CFTR) channel lead to an acidic airway surface liquid (ASL), which compromises innate defence mechanisms, predisposing to pulmonary failure. Restoring ASL pH is a potential therapy for people with CF, particularly for those who cannot benefit from current highly effective modulator therapy. However, we lack a comprehensive understanding of the complex mechanisms underlying ASL pH regulation. The calcium-activated chloride channel, TMEM16A, and the anion exchanger, SLC26A4, have been proposed as targets for restoring ASL pH, but current results are contradictory and often utilise nonphysiological conditions. To provide better evidence for a role of these two proteins in ASL pH homeostasis, we developed an efficient CRISPR-Cas9-based approach to knock-out (KO) relevant transporters in primary airway basal cells lacking CFTR and then measured dynamic changes in ASL pH under thin-film conditions in fully differentiated airway cultures, which better simulate the in vivo situation. Unexpectantly, we found that both proteins regulated steady-state as well as agonist-stimulated ASL pH, but only under inflammatory conditions. Furthermore, we identified two Food and Drug Administration (FDA)-approved drugs which raised ASL pH by activating SLC26A4. While we identified a role for SLC26A4 in fluid absorption, KO had no effect on cyclic adenosine monophosphate (cAMP)-stimulated fluid secretion in airway organoids. Overall, we have identified a role of TMEM16A in ASL pH homeostasis and shown that both TMEM16A and SLC26A4 could be important alternative targets for ASL pH therapy in CF, particularly for those people who do not produce any functional CFTR.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Mucosa Nasal/metabolismo , Concentración de Iones de Hidrógeno , Mutación , Mucosa Respiratoria/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
17.
Plant Cell Environ ; 46(11): 3558-3574, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37545348

RESUMEN

Adequate distribution of mineral sulphur (S) nutrition to nodules mediated by sulphate transporters is crucial for nitrogen fixation in symbiosis establishment process. However, the molecular mechanisms underlying this process remain largely unknown. In this study, we characterized the function of Early Senescent Nodule 2 (MtESN2), a gene crucial to nitrogen fixation in Medicago truncatula. Mutations in MtESN2 resulted in severe developmental and functional defects including dwarf shoots, early senescent nodules, and lower nitrogenase activity under symbiotic conditions compared to wild-type plants. MtESN2 encodes an M. truncatula sulphate transporter that is expressed only in roots and nodules, with the highest expression levels in the transition zone and nitrogen-fixing zone of nodules. MtESN2 exhibited sulphate transport activity when expressed in yeast. Immunolocalization analysis showed that MtESN2-yellow fluorescent protein fusion protein was localized to the plasma membranes of both uninfected and infected cells of nodules, where it might transport sulphate into both rhizobia-infected and uninfected cells within the nodules. Our results reveal an unreported sulphate transporter that contributes to effective symbiosis and prevents nodule early senescence in M. truncatula.


Asunto(s)
Medicago truncatula , Fijación del Nitrógeno , Fijación del Nitrógeno/genética , Nódulos de las Raíces de las Plantas/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Simbiosis/genética , Sulfatos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Nat Commun ; 14(1): 3051, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37236964

RESUMEN

The kidney plays a key role in the correction of systemic acid-base imbalances. Central for this regulation are the intercalated cells in the distal nephron, which secrete acid or base into the urine. How these cells sense acid-base disturbances is a long-standing question. Intercalated cells exclusively express the Na+-dependent Cl-/HCO3- exchanger AE4 (Slc4a9). Here we show that AE4-deficient mice exhibit a major dysregulation of acid-base balance. By combining molecular, imaging, biochemical and integrative approaches, we demonstrate that AE4-deficient mice are unable to sense and appropriately correct metabolic alkalosis and acidosis. Mechanistically, a lack of adaptive base secretion via the Cl-/HCO3- exchanger pendrin (Slc26a4) is the key cellular cause of this derailment. Our findings identify AE4 as an essential part of the renal sensing mechanism for changes in acid-base status.


Asunto(s)
Riñón , Proteínas de Transporte de Membrana , Ratones , Animales , Riñón/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Equilibrio Ácido-Base/fisiología , Nefronas/metabolismo , Transportadores de Sulfato/metabolismo , Bicarbonatos/metabolismo , Antiportadores de Cloruro-Bicarbonato
19.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175979

RESUMEN

Cholesterol-rich membrane domains, also called lipid rafts (LRs), are specialized membrane domains that provide a platform for intracellular signal transduction. Membrane proteins often cluster in LRs that further aggregate into larger platform-like structures that are enriched in ceramides and are called ceramide-rich platforms (CRPs). The role of CRPs in the regulation of intestinal epithelial functions remains unknown. Down-regulated in adenoma (DRA) is an intestinal Cl-/HCO3- antiporter that is enriched in LRs. However, little is known regarding the mechanisms involved in the regulation of DRA activity. The air-liquid interface (ALI) was created by removing apical media for a specified number of days; from 12-14 days post-confluency, Caco-2/BBe cells or a colonoid monolayer were grown as submerged cultures. Confocal imaging was used to examine the dimensions of membrane microdomains that contained DRA. DRA expression and activity were enhanced in Caco-2/BBe cells and human colonoids using an ALI culture method. ALI causes an increase in acid sphingomyelinase (ASMase) activity, an enzyme responsible for enhancing ceramide content in the plasma membrane. ALI cultures expressed a larger number of DRA-containing platforms with dimensions >2 µm compared to cells grown as submerged cultures. ASMase inhibitor, desipramine, disrupted CRPs and reduced the ALI-induced increase in DRA expression in the apical membrane. Exposing normal human colonoid monolayers to ALI increased the ASMase activity and enhanced the differentiation of colonoids along with basal and forskolin-stimulated DRA activities. ALI increases DRA activity and expression by increasing ASMase activity and platform formation in Caco-2/BBe cells and by enhancing the differentiation of colonoids.


Asunto(s)
Antiportadores , Lípidos de la Membrana , Humanos , Células CACO-2 , Antiportadores de Cloruro-Bicarbonato/metabolismo , Antiportadores/metabolismo , Diferenciación Celular , Transportadores de Sulfato/metabolismo
20.
Am J Physiol Cell Physiol ; 324(6): C1263-C1273, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37154494

RESUMEN

In polarized intestinal epithelial cells, downregulated in adenoma (DRA) is an apical Cl-/[Formula: see text] exchanger that is part of neutral NaCl absorption under baseline conditions, but in cyclic adenosine monophosphate (cAMP)-driven diarrheas, it is stimulated and contributes to increased anion secretion. To further understand the regulation of DRA in conditions mimicking some diarrheal diseases, Caco-2/BBE cells were exposed to forskolin (FSK) and adenosine 5'-triphosphate (ATP). FSK and ATP stimulated DRA in a concentration-dependent manner, with ATP acting via P2Y1 receptors. FSK at 1 µM and ATP at 0.25 µM had minimal to no effect on DRA given individually; however, together, they stimulated DRA to levels seen with maximum concentrations of FSK and ATP alone. In Caco-2/BBE cells expressing the Ca2+ indicator GCaMP6s, ATP increased intracellular Ca2+ (Ca2+i) in a concentration-dependent manner, whereas FSK (1 µM), which by itself did not significantly alter Ca2+i, followed by 0.25 µM ATP produced a large increase in Ca2+ that was approximately equal to the elevation caused by 1 µM ATP. 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM) pretreatment prevented the ATP and FSK/ATP synergistically increased the DRA activity and the increase in Ca2+i caused by FSK/ATP. FSK/ATP synergistic stimulation of DRA was similarly observed in human colonoids. In Caco-2/BBE cells, subthreshold concentrations of FSK (cAMP) and ATP (Ca2+) synergistically increased Ca2+i and stimulated DRA activity with both being blocked by BAPTA-AM pretreatment. Diarrheal diseases, such as bile acid diarrhea, in which both cAMP and Ca2+ are elevated, are likely to be associated with stimulated DRA activity contributing to increased anion secretion, whereas separation of DRA from Na+/H+ exchanger isoform-3 (NHE3) contributes to reduced NaCl absorption.NEW & NOTEWORTHY The BB Cl-/[Formula: see text] exchanger DRA takes part in both neutral NaCl absorption and stimulated anion secretion. Using intestinal cell line, Caco-2/BBE high concentrations of cAMP and Ca2+ individually stimulated DRA activity, whereas low concentrations, which had no/minimal effect, synergistically stimulated DRA activity that required a synergistic increase in intracellular Ca2+. This study increases understanding of diarrheal diseases, such as bile salt diarrhea, in which both cAMP and elevated Ca2+ are involved.


Asunto(s)
Células Epiteliales , Cloruro de Sodio , Humanos , Células CACO-2 , Células Epiteliales/metabolismo , Aniones/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Diarrea/metabolismo , Adenosina Trifosfato/farmacología , Adenosina Trifosfato/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Antiportadores de Cloruro-Bicarbonato/genética , Antiportadores de Cloruro-Bicarbonato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...