Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.494
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2401341121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38696466

RESUMEN

Neurotropic alphaherpesviruses, including herpes simplex virus type 1 (HSV-1), recruit microtubule motor proteins to invade cells. The incoming viral particle traffics to nuclei in a two-step process. First, the particle uses the dynein-dynactin motor to sustain transport to the centrosome. In neurons, this step is responsible for long-distance retrograde axonal transport and is an important component of the neuroinvasive property shared by these viruses. Second, a kinesin-dependent mechanism redirects the particle from the centrosome to the nucleus. We have reported that the kinesin motor used during the second step of invasion is assimilated into nascent virions during the previous round of infection. Here, we report that the HSV-1 pUL37 tegument protein suppresses the assimilated kinesin-1 motor during retrograde axonal transport. Region 2 (R2) of pUL37 was required for suppression and functioned independently of the autoinhibitory mechanism native to kinesin-1. Furthermore, the motor domain and proximal coiled coil of kinesin-1 were sufficient for HSV-1 assimilation, pUL37 suppression, and nuclear trafficking. pUL37 localized to the centrosome, the site of assimilated kinesin-1 activation during infection, when expressed in cells in the absence of other viral proteins; however, pUL37 did not suppress kinesin-1 in this context. These results indicate that the pUL37 tegument protein spatially and temporally regulates kinesin-1 via the amino-terminal motor region in the context of the incoming viral particle.


Asunto(s)
Herpesvirus Humano 1 , Cinesinas , Proteínas Estructurales Virales , Cinesinas/metabolismo , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 1/metabolismo , Humanos , Animales , Transporte Axonal/fisiología , Chlorocebus aethiops , Centrosoma/metabolismo , Neuronas/metabolismo , Neuronas/virología , Células Vero , Núcleo Celular/metabolismo , Núcleo Celular/virología
2.
Mol Biol Cell ; 35(6): ar81, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38598291

RESUMEN

Neurons are polarized and typically extend multiple dendrites and one axon. To maintain polarity, vesicles carrying dendritic proteins are arrested upon entering the axon. To determine whether kinesin regulation is required for terminating anterograde axonal transport, we overexpressed the dendrite-selective kinesin KIF13A. This caused mistargeting of dendrite-selective vesicles to the axon and a loss of dendritic polarity. Polarity was not disrupted if the kinase MARK2/Par1b was coexpressed. MARK2/Par1b is concentrated in the proximal axon, where it maintains dendritic polarity-likely by phosphorylating S1371 of KIF13A, which lies in a canonical 14-3-3 binding motif. We probed for interactions of KIF13A with 14-3-3 isoforms and found that 14-3-3ß and 14-3-3ζ bound KIF13A. Disruption of MARK2 or 14-3-3 activity by small molecule inhibitors caused a loss of dendritic polarity. These data show that kinesin regulation is integral for dendrite-selective transport. We propose a new model in which KIF13A that moves dendrite-selective vesicles in the proximal axon is phosphorylated by MARK2. Phosphorylated KIF13A is then recognized by 14-3-3, which causes dissociation of KIF13A from the vesicle and termination of transport. These findings define a new paradigm for the regulation of vesicle transport by localized kinesin tail phosphorylation, to restrict dendrite-selective vesicles from entering the axon.


Asunto(s)
Proteínas 14-3-3 , Axones , Dendritas , Cinesinas , Cinesinas/metabolismo , Dendritas/metabolismo , Proteínas 14-3-3/metabolismo , Animales , Axones/metabolismo , Fosforilación , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Polaridad Celular/fisiología , Transporte Axonal/fisiología , Ratas , Neuronas/metabolismo
3.
J Cell Sci ; 137(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38477340

RESUMEN

Axonal transport in neurons is essential for cargo movement between the cell body and synapses. Caenorhabditis elegans UNC-104 and its homolog KIF1A are kinesin-3 motors that anterogradely transport precursors of synaptic vesicles (pre-SVs) and are degraded at synapses. However, in C. elegans, touch neuron-specific knockdown of the E1 ubiquitin-activating enzyme, uba-1, leads to UNC-104 accumulation at neuronal ends and synapses. Here, we performed an RNAi screen and identified that depletion of fbxb-65, which encodes an F-box protein, leads to UNC-104 accumulation at neuronal distal ends, and alters UNC-104 net anterograde movement and levels of UNC-104 on cargo without changing synaptic UNC-104 levels. Split fluorescence reconstitution showed that UNC-104 and FBXB-65 interact throughout the neuron. Our theoretical model suggests that UNC-104 might exhibit cooperative cargo binding that is regulated by FBXB-65. FBXB-65 regulates an unidentified post-translational modification (PTM) of UNC-104 in a region beside the cargo-binding PH domain. Both fbxb-65 and UNC-104, independently of FBXB-65, regulate axonal pre-SV distribution, transport of pre-SVs at branch points and organismal lifespan. FBXB-65 regulates a PTM of UNC-104 and the number of motors on the cargo surface, which can fine-tune cargo transport to the synapse.


Asunto(s)
Transporte Axonal , Proteínas de Caenorhabditis elegans , Proteínas F-Box , Cinesinas , Animales , Transporte Axonal/fisiología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas F-Box/metabolismo , Cinesinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Dominios Homólogos a Pleckstrina , Procesamiento Proteico-Postraduccional
4.
Cytoskeleton (Hoboken) ; 81(1): 10-15, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37578198

RESUMEN

Over the last 50 years the different isoforms of tau proteins (45-60 kDa) have been a focus of research because of their roles in modulating the dynamic properties of microtubules shaping the structure and function of neurons but also becoming a center of attention in the pathology of neurodegeneration associated with tauopathies. Much less attention has been given to Big tau, a unique isoform containing exon 4a encoding about 250 amino acids to form a much longer projection domain of a protein of 110 kDa. Big tau is expressed in peripheral neurons and selective regions of the central nervous system in a defined transition during postnatal developmental stages. Although Big tau was discovered 30 years ago, there has been a persistent gap of knowledge regarding its physiological properties and pathological implications. This Perspective summarizes the progress so far in defining the structure and expression of Big tau within and outside the nervous system, proposes a role for Big tau in improving axonal transport in projecting axons, considers its potential in averting tau aggregation in tauopathies and highlights the need for further progress.


Asunto(s)
Tauopatías , Proteínas tau , Humanos , Proteínas tau/genética , Proteínas tau/química , Tauopatías/genética , Tauopatías/metabolismo , Tauopatías/patología , Axones , Neuronas/metabolismo , Transporte Axonal/fisiología
5.
J Neurochem ; 168(5): 719-727, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38124277

RESUMEN

The excitatory neurotransmitter glutamate has a role in neuronal migration and process elongation in the central nervous system (CNS). The effects of chronic glutamate hyperactivity on vesicular and protein transport within CNS neurons, that is, processes necessary for neurite growth, have not been examined previously. In this study, we measured the effects of lifelong hyperactivity of glutamate neurotransmission on axoplasmic transport in CNS neurons. We compared wild-type (wt) to transgenic (Tg) mice over-expressing the glutamate dehydrogenase gene Glud1 in CNS neurons and exhibiting increases in glutamate transmitter formation, release, and synaptic activation in brain throughout the lifespan. We found that Glud1 Tg as compared with wt mice exhibited increases in the rate of anterograde axoplasmic transport in neurons of the hippocampus measured in brain slices ex vivo, and in olfactory neurons measured in vivo. We also showed that the in vitro pharmacologic activation of glutamate synapses in wt mice led to moderate increases in axoplasmic transport, while exposure to selective inhibitors of ion channel forming glutamate receptors very significantly suppressed anterograde transport, suggesting a link between synaptic glutamate receptor activation and axoplasmic transport. Finally, axoplasmic transport in olfactory neurons of Tg mice in vivo was partially inhibited following 14-day intake of ethanol, a known suppressor of axoplasmic transport and of glutamate neurotransmission. The same was true for transport in hippocampal neurons in slices from Glud1 Tg mice exposed to ethanol for 2 h ex vivo. In conclusion, endogenous activity at glutamate synapses regulates and glutamate synaptic hyperactivity increases intraneuronal transport rates in CNS neurons.


Asunto(s)
Glutamato Deshidrogenasa , Ratones Transgénicos , Neuronas , Receptores de Glutamato , Animales , Ratones , Glutamato Deshidrogenasa/metabolismo , Glutamato Deshidrogenasa/genética , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Receptores de Glutamato/metabolismo , Transporte Axonal/efectos de los fármacos , Transporte Axonal/fisiología , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Ratones Endogámicos C57BL
6.
Science ; 382(6667): 223-230, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824668

RESUMEN

Neurons relay information via specialized presynaptic compartments for neurotransmission. Unlike conventional organelles, the specialized apparatus characterizing the neuronal presynapse must form de novo. How the components for presynaptic neurotransmission are transported and assembled is poorly understood. Our results show that the rare late endosomal signaling lipid phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] directs the axonal cotransport of synaptic vesicle and active zone proteins in precursor vesicles in human neurons. Precursor vesicles are distinct from conventional secretory organelles, endosomes, and degradative lysosomes and are transported by coincident detection of PI(3,5)P2 and active ARL8 via kinesin KIF1A to the presynaptic compartment. Our findings identify a crucial mechanism that mediates the delivery of synaptic vesicle and active zone proteins to developing synapses.


Asunto(s)
Transporte Axonal , Neuronas , Fosfatos de Fosfatidilinositol , Vesículas Sinápticas , Humanos , Transporte Axonal/fisiología , Cinesinas/metabolismo , Neuronas/metabolismo , Vesículas Sinápticas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
7.
Neurosci Res ; 197: 25-30, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37734449

RESUMEN

Kinesin motor proteins play crucial roles in anterograde transport of cargo vesicles in neurons, moving them along axons from the cell body towards the synaptic region. Not only the transport force and velocity of single motor protein, but also the number of kinesin molecules involved in transporting a specific cargo, is pivotal for synapse formation. This collective transport by multiple kinesins ensures stable and efficient cargo transport in neurons. Abnormal increases or decreases in the number of engaged kinesin molecules per cargo could potentially act as biomarkers for neurodegenerative diseases such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), spastic paraplegia, polydactyly syndrome, and virus transport disorders. We review here a model constructed using physical measurements to quantify the number of kinesin molecules associated with their cargo, which could shed light on the molecular mechanisms of neurodegenerative diseases related to axonal transport.


Asunto(s)
Esclerosis Amiotrófica Lateral , Cinesinas , Humanos , Cinesinas/metabolismo , Transporte Axonal/fisiología , Axones/metabolismo , Dineínas/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo
8.
Int J Numer Method Biomed Eng ; 39(12): e3770, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37688421

RESUMEN

Recent publications report that although the mitochondria population in an axon can be quickly replaced by a combination of retrograde and anterograde axonal transport (often within less than 24 hours), the axon contains much older mitochondria. This suggests that not all mitochondria that reach the soma are degraded and that some are recirculating back into the axon. To explain this, we developed a model that simulates mitochondria distribution when a portion of mitochondria that return to the soma are redirected back to the axon rather than being destroyed in somatic lysosomes. Utilizing the developed model, we studied how the percentage of returning mitochondria affects the mean age and age density distributions of mitochondria at different distances from the soma. We also investigated whether turning off the mitochondrial anchoring switch can reduce the mean age of mitochondria. For this purpose, we studied the effect of reducing the value of a parameter that characterizes the probability of mitochondria transition to the stationary (anchored) state. The reduction in mitochondria mean age observed when the anchoring probability is reduced suggests that some injured neurons may be saved if the percentage of stationary mitochondria is decreased. The replacement of possibly damaged stationary mitochondria with newly synthesized ones may restore the energy supply in an injured axon. We also performed a sensitivity study of the mean age of stationary mitochondria to the parameter that determines what portion of mitochondria re-enter the axon and the parameter that determines the probability of mitochondria transition to the stationary state. The sensitivity of the mean age of stationary mitochondria to the mitochondria stopping probability increases linearly with the number of compartments in the axon. High stopping probability in long axons can significantly increase mitochondrial age.


Asunto(s)
Axones , Neuronas , Axones/fisiología , Neuronas/metabolismo , Mitocondrias/metabolismo , Transporte Axonal/fisiología
9.
Mol Biol Cell ; 34(11): ar110, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37585286

RESUMEN

Alcadein α (Alcα) and amyloid-ß protein precursor (APP) are cargo receptors that associate vesicles with kinesin-1. These vesicles, which contain either Alcα or APP, transport various proteins/cargo molecules into axon nerve terminals. Here, we analyzed immune-isolated Alcα- and APP-containing vesicles of adult mouse brains with LC-MS/MS and identified proteins present in vesicles that contained either Alcα or APP. Among these proteins, Frizzled-5 (Fzd5), a Wnt receptor, was detected mainly in Alcα vesicles. Although colocalization ratios of Fzd5 with Alcα are low in the neurites of differentiating neurons by a low expression of Fzd5 in embryonic brains, the suppression of Alcα expression decreased the localization of Fzd5 in neurites of primary cultured neurons. Furthermore, Fzd5-EGFP expressed in primary cultured neurons was preferentially transported in axons with the transport velocities of Alcα vesicles. In synaptosomal fractions of adult-mice brains that express higher levels of Fzd5, the amount of Fzd5 and the phosphorylation level of calcium/calmodulin-dependent protein kinase-II were reduced in the Alcα-deficient mice. These results suggest that reduced transport of Fzd5 by Alcα-containing vesicles associated with kinesin-1 in axon terminals may impair the response to Wnt ligands in the noncanonical Ca2+-dependent signal transduction pathway at nerve terminals of mature neurons.


Asunto(s)
Transporte Axonal , Cinesinas , Animales , Ratones , Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal/fisiología , Cromatografía Liquida , Cinesinas/metabolismo , Espectrometría de Masas en Tándem
10.
Adv Exp Med Biol ; 1415: 223-227, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440037

RESUMEN

For the survival and maintenance of retinal ganglion cells (RGCs), axonal transportation is fundamental. Axonal transportation defects can cause severe neuropathies leading to neuronal loss. Axonal transport defects usually precede axonal degeneration and RGC loss in disease models. To date, the main causes of axonal transport defects have not been fully understood. Therefore, elucidation of the mechanisms that lead to transport defects will help us to develop novel therapeutic targets and early diagnostic tools. In this review, we provide an overview of optic neuropathies and axonal degeneration with a focus on axonal transport.


Asunto(s)
Enfermedades del Nervio Óptico , Células Ganglionares de la Retina , Animales , Humanos , Células Ganglionares de la Retina/fisiología , Transporte Axonal/fisiología , Modelos Animales de Enfermedad , Axones/metabolismo
11.
J Clin Invest ; 133(11)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37259916

RESUMEN

Neurons are markedly compartmentalized, which makes them reliant on axonal transport to maintain their health. Axonal transport is important for anterograde delivery of newly synthesized macromolecules and organelles from the cell body to the synapse and for the retrograde delivery of signaling endosomes and autophagosomes for degradation. Dysregulation of axonal transport occurs early in neurodegenerative diseases and plays a key role in axonal degeneration. Here, we provide an overview of mechanisms for regulation of axonal transport; discuss how these mechanisms are disrupted in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, hereditary spastic paraplegia, amyotrophic lateral sclerosis, and Charcot-Marie-Tooth disease; and discuss therapeutic approaches targeting axonal transport.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Transporte Axonal/fisiología , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Parkinson/metabolismo
12.
J Cell Sci ; 136(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37194499

RESUMEN

Stationary clusters of vesicles are a prominent feature of axonal transport, but little is known about their physiological and functional relevance to axonal transport. Here, we investigated the role of vesicle motility characteristics in modulating the formation and lifetimes of such stationary clusters, and their effect on cargo flow. We developed a simulation model describing key features of axonal cargo transport, benchmarking the model against experiments in the posterior lateral mechanosensory neurons of Caenorhabditis elegans. Our simulations included multiple microtubule tracks and varied cargo motion states, and account for dynamic cargo-cargo interactions. Our model also incorporates static obstacles to vesicle transport in the form of microtubule ends, stalled vesicles and stationary mitochondria. We demonstrate, both in simulations and in an experimental system, that a reduction in reversal rates is associated with a higher proportion of long-lived stationary vesicle clusters and reduced net anterograde transport. Our simulations support the view that stationary clusters function as dynamic reservoirs of cargo vesicles, and reversals aid cargo in navigating obstacles and regulate cargo transport by modulating the proportion of stationary vesicle clusters along the neuronal process.


Asunto(s)
Neuronas , Vesículas Sinápticas , Animales , Vesículas Sinápticas/metabolismo , Neuronas/fisiología , Transporte Axonal/fisiología , Fagocitosis , Orgánulos , Caenorhabditis elegans , Vesículas Transportadoras/metabolismo
13.
Cell Rep ; 42(5): 112448, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37133994

RESUMEN

Gain-of-function mutations in the LRRK2 gene cause Parkinson's disease (PD), increasing phosphorylation of RAB GTPases through hyperactive kinase activity. We find that LRRK2-hyperphosphorylated RABs disrupt the axonal transport of autophagosomes by perturbing the coordinated regulation of cytoplasmic dynein and kinesin. In iPSC-derived human neurons, knockin of the strongly hyperactive LRRK2-p.R1441H mutation causes striking impairments in autophagosome transport, inducing frequent directional reversals and pauses. Knockout of the opposing protein phosphatase 1H (PPM1H) phenocopies the effect of hyperactive LRRK2. Overexpression of ADP-ribosylation factor 6 (ARF6), a GTPase that acts as a switch for selective activation of dynein or kinesin, attenuates transport defects in both p.R1441H knockin and PPM1H knockout neurons. Together, these findings support a model where a regulatory imbalance between LRRK2-hyperphosphorylated RABs and ARF6 induces an unproductive "tug-of-war" between dynein and kinesin, disrupting processive autophagosome transport. This disruption may contribute to PD pathogenesis by impairing the essential homeostatic functions of axonal autophagy.


Asunto(s)
GTP Fosfohidrolasas , Enfermedad de Parkinson , Humanos , Factor 6 de Ribosilación del ADP , Autofagosomas/metabolismo , Transporte Axonal/fisiología , Dineínas/metabolismo , GTP Fosfohidrolasas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mutación , Enfermedad de Parkinson/patología , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación
14.
eNeuro ; 10(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36882311

RESUMEN

Studies in cultured neurons have shown that neurofilaments are cargoes of axonal transport that move rapidly but intermittently along microtubule tracks. However, the extent to which axonal neurofilaments move in vivo has been controversial. Some researchers have proposed that most axonally transported neurofilaments are deposited into a persistently stationary network and that only a small proportion of axonal neurofilaments are transported in mature axons. Here we use the fluorescence photoactivation pulse-escape technique to test this hypothesis in intact peripheral nerves of adult male hThy1-paGFP-NFM mice, which express low levels of mouse neurofilament protein M tagged with photoactivatable GFP. Neurofilaments were photoactivated in short segments of large, myelinated axons, and the mobility of these fluorescently tagged polymers was determined by analyzing the kinetics of their departure. Our results show that >80% of the fluorescence departed the window within 3 h after activation, indicating a highly mobile neurofilament population. The movement was blocked by glycolytic inhibitors, confirming that it was an active transport process. Thus, we find no evidence for a substantial stationary neurofilament population. By extrapolation of the decay kinetics, we predict that 99% of the neurofilaments would have exited the activation window after 10 h. These data support a dynamic view of the neuronal cytoskeleton in which neurofilaments cycle repeatedly between moving and pausing states throughout their journey along the axon, even in mature myelinated axons. The filaments spend a large proportion of their time pausing, but on a timescale of hours, most of them move.


Asunto(s)
Axones , Filamentos Intermedios , Ratones , Masculino , Animales , Filamentos Intermedios/metabolismo , Axones/metabolismo , Neuronas/fisiología , Transporte Axonal/fisiología , Citoesqueleto/metabolismo
15.
Mol Neurobiol ; 60(6): 3423-3438, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36859689

RESUMEN

Our understanding of the biological functions of the tau protein now includes its role as a scaffolding protein involved in signaling regulation, which also has implications for tau-mediated dysfunction and degeneration in Alzheimer's disease and other tauopathies. Recently, we found that pseudophosphorylation at sites linked to the pathology-associated AT8 phosphoepitope of tau disrupts normal fast axonal transport through a protein phosphatase 1 (PP1)-dependent pathway in squid axoplasm. Activation of the pathway and the resulting transport deficits required tau's N-terminal phosphatase-activating domain (PAD) and PP1 but the connection between tau and PP1 was not well defined. Here, we studied functional interactions between tau and PP1 isoforms and their effects on axonal transport in mammalian neurons. First, we found that wild-type tau interacted with PP1α and PP1γ primarily through its microtubule-binding repeat domain. Pseudophosphorylation of tau at S199/S202/T205 (psTau) increased PAD exposure, enhanced interactions with PP1γ, and increased active PP1γ levels in mammalian cells. Expression of psTau also significantly impaired axonal transport in primary rat hippocampal neurons. Deletion of PAD in psTau significantly reduced the interaction with PP1γ, eliminated increases of active PP1γ levels, and rescued axonal transport impairment in neurons. These data suggest that a functional consequence of phosphorylation within S199-T205 in tau, which occurs in AD and several other tauopathies, may be aberrant interaction with and activation of PP1γ and subsequent axonal transport disruption in a PAD-dependent fashion.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratas , Animales , Proteínas tau/metabolismo , Transporte Axonal/fisiología , Enfermedad de Alzheimer/metabolismo , Tauopatías/metabolismo , Neuronas/metabolismo , Fosforilación , Hipocampo/metabolismo , Mamíferos/metabolismo
16.
Elife ; 122023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36897066

RESUMEN

Neurons process real-time information from axon terminals to coordinate gene expression, growth, and plasticity. Inputs from distal axons are encoded as a stream of endocytic organelles, termed signalling endosomes, targeted to the soma. Formation of these organelles depends on target-derived molecules, such as brain-derived neurotrophic factor (BDNF), which is recognised by TrkB receptors on the plasma membrane, endocytosed, and transported to the cell body along the microtubules network. Notwithstanding its physiological and neuropathological importance, the mechanism controlling the sorting of TrkB to signalling endosomes is currently unknown. In this work, we use primary mouse neurons to uncover the small GTPase Rab10 as critical for TrkB sorting and propagation of BDNF signalling from axon terminals to the soma. Our data demonstrate that Rab10 defines a novel membrane compartment that is rapidly mobilised towards the axon terminal upon BDNF stimulation, enabling the axon to fine-tune retrograde signalling depending on BDNF availability at the synapse. These results help clarifying the neuroprotective phenotype recently associated to Rab10 polymorphisms in Alzheimer's disease and provide a new therapeutic target to halt neurodegeneration.


Asunto(s)
Transporte Axonal , Factor Neurotrófico Derivado del Encéfalo , Receptor trkB , Proteínas de Unión al GTP rab , Animales , Ratones , Transporte Axonal/fisiología , Axones/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuronas/fisiología , Transporte de Proteínas/fisiología , Proteínas de Unión al GTP rab/metabolismo , Receptor trkB/metabolismo
17.
J Neurosci ; 43(19): 3421-3438, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-36997314

RESUMEN

Mitochondria exert powerful control over cellular physiology, contributing to ion homeostasis, energy production, and metabolite biosynthesis. The trafficking and function of these organelles are particularly important in neurons, with impaired mitochondrial function or altered morphology observed in every neurodegenerative disorder studied. While mitochondrial biosynthetic products play a crucial role in maintaining cellular function, their resulting byproducts can have negative consequences. Thus, organelle quality control (QC) mechanisms that maintain mitochondrial function are imperative to restrict destructive signaling cascades in the cell. Axons are particularly sensitive to damage, and there is little consensus regarding the mechanisms that mediate mitochondrial QC in this compartment. Here, we first investigated the unstressed behavior of mitochondria in rat hippocampal neurons of mixed sex, focusing on mitochondrial trafficking and fusion to better understand potential QC mechanisms. We observed size and redox asymmetry of mitochondrial traffic in axons, suggesting an active QC mechanism in this compartment. We also document biochemical complementation upon the fusion and fission of axonal mitochondria. Eliminating fusion by knocking down the neuronal mitochondrial fusion protein mitofusin 2 (MFN2) reduced the rates of axonal mitochondrial trafficking and fusion, decreased the levels of synaptic vesicle (SV) proteins, inhibited exocytosis, and impaired SV recruitment from the reserve pool during extended stimulation. MFN2 knockdown also resulted in presynaptic Ca2+ dyshomeostasis. Remarkably, upon MFN2 knockdown, presynaptic mitochondria sequestered Ca2+ more efficiently, effectively limiting presynaptic Ca2+ transients during stimulation. These results support an active mitochondrial trafficking and fusion-related QC process that supports presynaptic Ca2+ handling and the SV cycle.SIGNIFICANCE STATEMENT Decreased or altered mitochondrial function is observed in many disease states. All neurodegenerative diseases co-present with some sort of mitochondrial abnormality. Therefore, identifying quality control mechanisms that sustain the mitochondrial network in neurons, and particularly in axons, is of significant interest. The response of axonal mitochondria to acutely applied toxins or injury has been studied in detail. Although informative, the response of neurons to these insults might not be physiologically relevant, so it is crucial to also study the basal behavior of axonal mitochondria. Here, we use fluorescent biosensors to investigate the mitochondrial network in neurons and examine the role of mitofusin 2 in maintaining the axonal mitochondrial network and in supporting the synaptic vesicle cycle.


Asunto(s)
Axones , Vesículas Sinápticas , Animales , Ratas , Transporte Axonal/fisiología , Axones/metabolismo , Hipocampo/metabolismo , Homeostasis , Mitocondrias/metabolismo , Vesículas Sinápticas/metabolismo
18.
Mol Biol Cell ; 34(7): ar68, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36989035

RESUMEN

Neurofilaments are cargoes of axonal transport which are unique among known intracellular cargoes in that they are long, flexible protein polymers. These polymers are transported into axons, where they accumulate in large numbers to drive the expansion of axon caliber, which is an important determinant of axonal conduction velocity. We reported previously that neurofilaments can be lengthened by joining ends, called end-to-end annealing, and that they can be shortened by severing. Here, we show that neurofilament annealing and severing are robust and quantifiable phenomena in cultured neurons that act antagonistically to regulate neurofilament length. We show that this in turn regulates neurofilament transport and that severing is regulated by N-terminal phosphorylation of the neurofilament subunit proteins. We propose that focal destabilization of intermediate filaments by site-directed phosphorylation may be a general enzymatic mechanism for severing these cytoskeletal polymers, providing a mechanism to regulate the transport and accumulation of neurofilaments in axons.


Asunto(s)
Axones , Filamentos Intermedios , Filamentos Intermedios/metabolismo , Axones/metabolismo , Neuronas/metabolismo , Transporte Axonal/fisiología , Citoesqueleto/metabolismo , Proteínas de Neurofilamentos/metabolismo
19.
J Vis Exp ; (192)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36912529

RESUMEN

Neuronal cells are highly polarized cells that stereotypically harbor several dendrites and an axon. The length of an axon necessitates efficient bidirectional transport by motor proteins. Various reports have suggested that defects in axonal transport are associated with neurodegenerative diseases. Also, the mechanism of the coordination of multiple motor proteins has been an attractive topic. Since the axon has uni-directional microtubules, it is easier to determine which motor proteins are involved in the movement. Therefore, understanding the mechanisms underlying the transport of axonal cargo is crucial for uncovering the molecular mechanism of neurodegenerative diseases and the regulation of motor proteins. Here, we introduce the entire process of axonal transport analysis, including the culturing of mouse primary cortical neurons, transfection of plasmids encoding cargo proteins, and directional and velocity analyses without the effect of pauses. Furthermore, the open-access software "KYMOMAKER" is introduced, which enables the generation of a kymograph to highlight transport traces according to their direction and allow easier visualization of axonal transport.


Asunto(s)
Transporte Axonal , Enfermedades Neurodegenerativas , Ratones , Animales , Transporte Axonal/fisiología , Neuronas/metabolismo , Axones/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Células Cultivadas
20.
J Biomech Eng ; 145(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36795013

RESUMEN

Here, we report computational studies of bidirectional transport in an axon, specifically focusing on predictions when the retrograde motor becomes dysfunctional. We are motivated by reports that mutations in dynein-encoding genes can cause diseases associated with peripheral motor and sensory neurons, such as type 2O Charcot-Marie-Tooth disease. We use two different models to simulate bidirectional transport in an axon: an anterograde-retrograde model, which neglects passive transport by diffusion in the cytosol, and a full slow transport model, which includes passive transport by diffusion in the cytosol. As dynein is a retrograde motor, its dysfunction should not directly influence anterograde transport. However, our modeling results unexpectedly predict that slow axonal transport fails to transport cargos against their concentration gradient without dynein. The reason is the lack of a physical mechanism for the reverse information flow from the axon terminal, which is required so that the cargo concentration at the terminal could influence the cargo concentration distribution in the axon. Mathematically speaking, to achieve a prescribed concentration at the terminal, equations governing cargo transport must allow for the imposition of a boundary condition postulating the cargo concentration at the terminal. Perturbation analysis for the case when the retrograde motor velocity becomes close to zero predicts uniform cargo distributions along the axon. The obtained results explain why slow axonal transport must be bidirectional to allow for the maintenance of concentration gradients along the axon length. Our result is limited to small cargo diffusivity, which is a reasonable assumption for many slow axonal transport cargos (such as cytosolic and cytoskeletal proteins, neurofilaments, actin, and microtubules) which are transported as large multiprotein complexes or polymers.


Asunto(s)
Transporte Axonal , Dineínas , Dineínas/genética , Transporte Axonal/fisiología , Terminales Presinápticos/metabolismo , Axones/metabolismo , Microtúbulos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA