Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110.687
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731891

RESUMEN

The past five decades have witnessed remarkable advancements in the field of inhaled medicines targeting the lungs for respiratory disease treatment. As a non-invasive drug delivery route, inhalation therapy offers numerous benefits to respiratory patients, including rapid and targeted exposure at specific sites, quick onset of action, bypassing first-pass metabolism, and beyond. Understanding the characteristics of pulmonary drug transporters and metabolizing enzymes is crucial for comprehending efficient drug exposure and clearance processes within the lungs. These processes are intricately linked to both local and systemic pharmacokinetics and pharmacodynamics of drugs. This review aims to provide a comprehensive overview of the literature on lung transporters and metabolizing enzymes while exploring their roles in exogenous and endogenous substance disposition. Additionally, we identify and discuss the principal challenges in this area of research, providing a foundation for future investigations aimed at optimizing inhaled drug administration. Moving forward, it is imperative that future research endeavors to focus on refining and validating in vitro and ex vivo models to more accurately mimic the human respiratory system. Such advancements will enhance our understanding of drug processing in different pathological states and facilitate the discovery of novel approaches for investigating lung-specific drug transporters and metabolizing enzymes. This deeper insight will be crucial in developing more effective and targeted therapies for respiratory diseases, ultimately leading to improved patient outcomes.


Asunto(s)
Pulmón , Proteínas de Transporte de Membrana , Humanos , Administración por Inhalación , Pulmón/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Transporte Biológico
2.
Food Res Int ; 186: 114339, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729694

RESUMEN

The health-promoting activities of polyphenols and their metabolites originating from germinated quinoa (GQ) are closely related to their digestive behavior, absorption, and colonic fermentation; however, limited knowledge regarding these properties hinder further development. The aim of this study was to provide metabolomic insights into the profile, bioaccessibility, and transepithelial transport of polyphenols from germinated quinoa during in vitro gastrointestinal digestion and Caco-2 cell transport, whilst also investigating the changes in the major polyphenol metabolites and the effects of prebiotics during colonic fermentation. It was found that germination treatment increased the polyphenol content of quinoa by 21.91%. Compared with RQ group, 23 phenolic differential metabolites were upregulated and 47 phenolic differential metabolites were downregulated in GQ group. Compared with RQ group after simulated digestion, 7 kinds of phenolic differential metabolites were upregulated and 17 kinds of phenolic differential metabolites were downregulated in GQ group. Compared with RQ group after cell transport, 7 kinds of phenolic differential metabolites were upregulated and 9 kinds of phenolic differential metabolites were downregulated in GQ group. In addition, GQ improved the bioaccessibilities and transport rates of various polyphenol metabolites. During colonic fermentation, GQ group can also increase the content of SCFAs, reduce pH value, and adjust gut microbial populations by increasing the abundance of Actinobacteria, Bacteroidetes, Verrucomicrobiota, and Spirochaeota at the phylum level, as well as Bifidobacterium, Megamonas, Bifidobacterium, Brevundimonas, and Bacteroides at the genus level. Furthermore, the GQ have significantly inhibited the activity of α-amylase and α-glucosidase. Based on these results, it was possible to elucidate the underlying mechanisms of polyphenol metabolism in GQ and highlight its beneficial effects on the gut microbiota.


Asunto(s)
Chenopodium quinoa , Colon , Digestión , Fermentación , Metabolómica , Polifenoles , Prebióticos , Humanos , Polifenoles/metabolismo , Chenopodium quinoa/metabolismo , Células CACO-2 , Colon/metabolismo , Colon/microbiología , Germinación , Transporte Biológico , Disponibilidad Biológica , Microbioma Gastrointestinal/fisiología
3.
Nat Commun ; 15(1): 4036, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740750

RESUMEN

Microbial Ni2+ homeostasis underpins the virulence of several clinical pathogens. Ni2+ is an essential cofactor in urease and [NiFe]-hydrogenases involved in colonization and persistence. Many microbes produce metallophores to sequester metals necessary for their metabolism and starve competing neighboring organisms. The fungal metallophore aspergillomarasmine A (AMA) shows narrow specificity for Zn2+, Ni2+, and Co2+. Here, we show that this specificity allows AMA to block the uptake of Ni2+ and attenuate bacterial Ni-dependent enzymes, offering a potential strategy for reducing virulence. Bacterial exposure to AMA perturbs H2 metabolism, ureolysis, struvite crystallization, and biofilm formation and shows efficacy in a Galleria mellonella animal infection model. The inhibition of Ni-dependent enzymes was aided by Zn2+, which complexes with AMA and competes with the native nickelophore for the uptake of Ni2+. Biochemical analyses demonstrated high-affinity binding of AMA-metal complexes to NikA, the periplasmic substrate-binding protein of the Ni2+ uptake system. Structural examination of NikA in complex with Ni-AMA revealed that the coordination geometry of Ni-AMA mimics the native ligand, Ni-(L-His)2, providing a structural basis for binding AMA-metal complexes. Structure-activity relationship studies of AMA identified regions of the molecule that improve NikA affinity and offer potential routes for further developing this compound as an anti-virulence agent.


Asunto(s)
Proteínas Bacterianas , Níquel , Níquel/metabolismo , Níquel/química , Animales , Virulencia/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Zinc/metabolismo , Zinc/química , Mariposas Nocturnas/microbiología , Ureasa/metabolismo , Ureasa/antagonistas & inhibidores , Transporte Biológico
4.
Fluids Barriers CNS ; 21(1): 39, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711118

RESUMEN

BACKGROUND: Triptans are anti-migraine drugs with a potential central site of action. However, it is not known to what extent triptans cross the blood-brain barrier (BBB). The aim of this study was therefore to determine if triptans pass the brain capillary endothelium and investigate the possible underlying mechanisms with focus on the involvement of the putative proton-coupled organic cation (H+/OC) antiporter. Additionally, we evaluated whether triptans interacted with the efflux transporter, P-glycoprotein (P-gp). METHODS: We investigated the cellular uptake characteristics of the prototypical H+/OC antiporter substrates, pyrilamine and oxycodone, and seven different triptans in the human brain microvascular endothelial cell line, hCMEC/D3. Triptan interactions with P-gp were studied using the IPEC-J2 MDR1 cell line. Lastly, in vivo neuropharmacokinetic assessment of the unbound brain-to-plasma disposition of eletriptan was conducted in wild type and mdr1a/1b knockout mice. RESULTS: We demonstrated that most triptans were able to inhibit uptake of the H+/OC antiporter substrate, pyrilamine, with eletriptan emerging as the strongest inhibitor. Eletriptan, almotriptan, and sumatriptan exhibited a pH-dependent uptake into hCMEC/D3 cells. Eletriptan demonstrated saturable uptake kinetics with an apparent Km of 89 ± 38 µM and a Jmax of 2.2 ± 0.7 nmol·min-1·mg protein-1 (n = 3). Bidirectional transport experiments across IPEC-J2 MDR1 monolayers showed that eletriptan is transported by P-gp, thus indicating that eletriptan is both a substrate of the H+/OC antiporter and P-gp. This was further confirmed in vivo, where the unbound brain-to-unbound plasma concentration ratio (Kp,uu) was 0.04 in wild type mice while the ratio rose to 1.32 in mdr1a/1b knockout mice. CONCLUSIONS: We have demonstrated that the triptan family of compounds possesses affinity for the H+/OC antiporter proposing that the putative H+/OC antiporter plays a role in the BBB transport of triptans, particularly eletriptan. Our in vivo studies indicate that eletriptan is subjected to simultaneous brain uptake and efflux, possibly facilitated by the putative H+/OC antiporter and P-gp, respectively. Our findings offer novel insights into the potential central site of action involved in migraine treatment with triptans and highlight the significance of potential transporter related drug-drug interactions.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Células Endoteliales , Ratones Noqueados , Pirrolidinas , Triptaminas , Triptaminas/farmacología , Triptaminas/metabolismo , Triptaminas/farmacocinética , Animales , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Humanos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular , Ratones , Ratones Endogámicos C57BL , Transporte Biológico/fisiología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Masculino , Antiportadores/metabolismo , Pirilamina/metabolismo , Pirilamina/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo
5.
J Plant Res ; 137(3): 293-295, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38700602
7.
Planta ; 259(6): 141, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695915

RESUMEN

MAIN CONCLUSION: This review highlights the roles of phloem in the long-distance transport and accumulation of As in rice plants, facilitating the formulation of new strategies to reduce the grain As content. Rice is a staple diet for a significant proportion of the global population. As toxicity is a major issue affecting the rice productivity and quality worldwide. Phloem tissues of rice plants play vital roles in As speciation, long-distance transport, and unloading, thereby controlling the As accumulation in rice grains. Phloem transport accounts for a significant proportion of As transport to grains, ranging from 54 to 100% depending on the species [inorganic arsenate (As(V)), arsenite (As(III)), or organic dimethylarsinic acid (DMA(V)]. However, the specific mechanism of As transport through phloem leading to its accumulation in grains remains unknown. Therefore, understanding the molecular mechanism of phloem-mediated As transport is necessary to determine the roles of phloem in long-distance As transport and subsequently reduce the grain As content via biotechnological interventions. This review discusses the roles of phloem tissues in the long-distance transport and accumulation of As in rice grains. This review also highlights the biotechnological approaches using critical genetic factors involved in nodal accumulation, vacuolar sequestration, and cellular efflux of As in phloem- or phloem-associated tissues. Furthermore, the limitations of existing transgenic techniques are outlined to facilitate the formulation of novel strategies for the development of rice with reduced grain As content.


Asunto(s)
Arsénico , Oryza , Floema , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Oryza/genética , Floema/metabolismo , Arsénico/metabolismo , Transporte Biológico , Grano Comestible/metabolismo , Grano Comestible/crecimiento & desarrollo
8.
Nat Commun ; 15(1): 3985, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734677

RESUMEN

Pentamidine and melarsoprol are primary drugs used to treat the lethal human sleeping sickness caused by the parasite Trypanosoma brucei. Cross-resistance to these two drugs has recently been linked to aquaglyceroporin 2 of the trypanosome (TbAQP2). TbAQP2 is the first member of the aquaporin family described as capable of drug transport; however, the underlying mechanism remains unclear. Here, we present cryo-electron microscopy structures of TbAQP2 bound to pentamidine or melarsoprol. Our structural studies, together with the molecular dynamic simulations, reveal the mechanisms shaping substrate specificity and drug permeation. Multiple amino acids in TbAQP2, near the extracellular entrance and inside the pore, create an expanded conducting tunnel, sterically and energetically allowing the permeation of pentamidine and melarsoprol. Our study elucidates the mechanism of drug transport by TbAQP2, providing valuable insights to inform the design of drugs against trypanosomiasis.


Asunto(s)
Acuagliceroporinas , Microscopía por Crioelectrón , Melarsoprol , Simulación de Dinámica Molecular , Pentamidina , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Acuagliceroporinas/metabolismo , Acuagliceroporinas/química , Melarsoprol/metabolismo , Melarsoprol/química , Pentamidina/química , Pentamidina/metabolismo , Transporte Biológico , Tripanocidas/química , Tripanocidas/metabolismo , Tripanocidas/farmacología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Humanos
9.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732233

RESUMEN

Donepezil (DNPZ) is a cholinesterase inhibitor used for the management of Alzheimer's disease (AD) and is dependent on membrane transporters such as ABCG2 to actively cross brain barriers and reach its target site of action in the brain. Located in the brain ventricles, the choroid plexus (CP) forms an interface between the cerebrospinal fluid (CSF) and the bloodstream, known as the blood-CSF barrier (BCSFB). Historically, the BCSFB has received little attention as a potential pathway for drug delivery to the central nervous system (CNS). Nonetheless, this barrier is presently viewed as a dynamic transport interface that limits the traffic of molecules into and out of the CNS through the presence of membrane transporters, with parallel activity with the BBB. The localization and expression of drug transporters in brain barriers represent a huge obstacle for drug delivery to the brain and a major challenge for the development of therapeutic approaches to CNS disorders. The widespread interest in understanding how circadian clocks modulate many processes that define drug delivery in order to predict the variability in drug safety and efficacy is the next bridge to improve effective treatment. In this context, this study aims at characterizing the circadian expression of ABCG2 and DNPZ circadian transport profile using an in vitro model of the BCSFB. We found that ABCG2 displays a circadian pattern and DNPZ is transported in a circadian way across this barrier. This study will strongly impact on the capacity to modulate the BCSFB in order to control the penetration of DNPZ into the brain and improve therapeutic strategies for the treatment of AD according to the time of the day.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Barrera Hematoencefálica , Donepezilo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Barrera Hematoencefálica/metabolismo , Animales , Humanos , Encéfalo/metabolismo , Inhibidores de la Colinesterasa/farmacocinética , Inhibidores de la Colinesterasa/farmacología , Transporte Biológico , Plexo Coroideo/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Ratones , Ritmo Circadiano , Proteínas de Neoplasias
10.
Nat Microbiol ; 9(5): 1244-1255, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649414

RESUMEN

Carbapenem-resistant Acinetobacter baumannii infections have limited treatment options. Synthesis, transport and placement of lipopolysaccharide or lipooligosaccharide (LOS) in the outer membrane of Gram-negative bacteria are important for bacterial virulence and survival. Here we describe the cerastecins, inhibitors of the A. baumannii transporter MsbA, an LOS flippase. These molecules are potent and bactericidal against A. baumannii, including clinical carbapenem-resistant Acinetobacter baumannii isolates. Using cryo-electron microscopy and biochemical analysis, we show that the cerastecins adopt a serpentine configuration in the central vault of the MsbA dimer, stalling the enzyme and uncoupling ATP hydrolysis from substrate flipping. A derivative with optimized potency and pharmacokinetic properties showed efficacy in murine models of bloodstream or pulmonary A. baumannii infection. While resistance development is inevitable, targeting a clinically unexploited mechanism avoids existing antibiotic resistance mechanisms. Although clinical validation of LOS transport remains undetermined, the cerastecins may open a path to narrow-spectrum treatment modalities for important nosocomial infections.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Proteínas Bacterianas , Lipopolisacáridos , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/metabolismo , Lipopolisacáridos/metabolismo , Animales , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/tratamiento farmacológico , Ratones , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Transporte Biológico , Pruebas de Sensibilidad Microbiana , Humanos , Microscopía por Crioelectrón , Carbapenémicos/farmacología , Carbapenémicos/metabolismo , Modelos Animales de Enfermedad , Femenino , Transportadoras de Casetes de Unión a ATP
11.
Artículo en Inglés | MEDLINE | ID: mdl-38670480

RESUMEN

The role of the mosquito excretory organs (Malpighian tubules, MT and hindgut, HG) in ammonia transport as well as expression and function of the Rhesus (Rh protein) ammonia transporters within these organs was examined in Aedes aegypti larvae and adult females. Immunohistological examination revealed that the Rh proteins are co-localized with V-type H+-ATPase (VA) to the apical membranes of MT and HG epithelia of both larvae and adult females. Of the two Rh transporter genes present in A. aegypti, AeRh50-1 and AeRh50-2, we show using quantitative real-time PCR (qPCR) and an RNA in-situ hybridization (ISH) assay that AeRh50-1 is the predominant Rh protein expressed in the excretory organs of larvae and adult females. Further assessment of AeRh50-1 function in larvae and adults using RNAi (i.e. dsRNA-mediated knockdown) revealed significantly decreased [NH4+] (mmol l-1) levels in the secreted fluid of larval MT which does not affect overall NH4+ transport rates, as well as significantly decreased NH4+ flux rates across the HG (haemolymph to lumen) of adult females. We also used RNA sequencing to identify the expression of ion transporters and enzymes within the rectum of larvae, of which limited information currently exists for this important osmoregulatory organ. Of the ammonia transporters in A. aegypti, AeRh50-1 transcript is most abundant in the rectum thus validating our immunohistochemical and RNA ISH findings. In addition to enriched VA transcript (subunits A and d1) in the rectum, we also identified high Na+-K+-ATPase transcript (α subunit) expression which becomes significantly elevated in response to HEA, and we also found enriched carbonic anhydrase 9, inwardly rectifying K+ channel Kir2a, and Na+-coupled cation-chloride (Cl-) co-transporter CCC2 transcripts. Finally, the modulation in excretory organ function and/or Rh protein expression was examined in relation to high ammonia challenge, specifically high environmental ammonia (HEA) rearing of larvae. NH4+ flux measurements using the scanning-ion selective electrode (SIET) technique revealed no significant differences in NH4+ transport across organs comprising the alimentary canal of larvae reared in HEA vs freshwater. Further, significantly increased VA activity, but not NKA, was observed in the MT of HEA-reared larvae. Relatively high Rh protein immunostaining persists within the hindgut epithelium, as well as the ovary, of females at 24-48 h post blood meal corresponding with previously demonstrated peak levels of ammonia formation. These data provide new insight into the role of the excretory organs in ammonia transport physiology and the contribution of Rh proteins in mediating ammonia movement across the epithelia of the MT and HG, and the first comprehensive examination of ion transporter and channel expression in the mosquito rectum.


Asunto(s)
Aedes , Amoníaco , Proteínas de Insectos , Larva , Recto , Transcriptoma , Animales , Aedes/metabolismo , Aedes/genética , Larva/metabolismo , Larva/genética , Amoníaco/metabolismo , Recto/metabolismo , Femenino , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Transporte Biológico , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Túbulos de Malpighi/metabolismo
12.
Biochem Biophys Res Commun ; 715: 149980, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678780

RESUMEN

The transport of ceramide from the endoplasmic reticulum (ER) to the Golgi is a key step in the synthesis of complex sphingolipids, the main building blocks of the plasma membrane. In yeast, ceramide is transported to the Golgi either through ATP-dependent COPII vesicles of the secretory pathway or by ATP-independent non-vesicular transport that involves tethering proteins at ER-Golgi membrane contact sites. Studies in both mammalian and yeast cells reported that vesicular transport mainly carries ceramide containing very long chain fatty acids, while the main mammalian non-vesicular ceramide transport protein CERT only transports ceramides containing short chain fatty acids. However, if non-vesicular ceramide transport in yeast similarly favors short chain ceramides remained unanswered. Here we employed a yeast GhLag1 strain in which the endogenous ceramide synthase is replaced by the cotton-derived GhLag1 gene, resulting in the production of short chain C18 rather than C26 ceramides. We show that block of vesicular transport through ATP-depletion or the use of temperature-sensitive sec mutants caused a reduction in inositolphosphorylceramide (IPC) synthesis to similar extent in WT and GhLag1 backgrounds. Since the remaining IPC synthesis is a readout for non-vesicular ceramide transport, our results indicate that non-vesicular ceramide transport is neither blocked nor facilitated when only short chain ceramides are present. Therefore, we propose that the sorting of ceramide into non-vesicular transport is independent of acyl chain length in budding yeast.


Asunto(s)
Ceramidas , Aparato de Golgi , Saccharomyces cerevisiae , Ceramidas/metabolismo , Aparato de Golgi/metabolismo , Transporte Biológico , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomycetales/metabolismo , Saccharomycetales/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Retículo Endoplásmico/metabolismo , Adenosina Trifosfato/metabolismo , Glicoesfingolípidos
13.
Plant Physiol Biochem ; 210: 108608, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615445

RESUMEN

Tonoplast Intrinsic Proteins (TIPs) are vital in transporting water and solutes across vacuolar membrane. The role of TIPs in the arsenic stress response is largely undefined. Rice shows sensitivity to the arsenite [As[III]] stress and its accumulation at high concentrations in grains poses severe health hazards. In this study, functional characterization of OsTIP1;2 from Oryza sativa indica cultivar Pusa Basmati-1 (PB-1) was done under the As[III] stress. Overexpression of OsTIP1;2 in PB-1 rice conferred tolerance to As[III] treatment measured in terms of enhanced shoot growth, biomass, and shoot/root ratio of overexpression (OE) lines compared to the wild-type (WT) plants. Moreover, seed priming with the IRW100 yeast cells (deficient in vacuolar membrane As[III] transporter YCF1) expressing OsTIP1;2 further increased As[III] stress tolerance of both WT and OE plants. The dithizone assay showed that WT plants accumulated high arsenic in shoots, while OE lines accumulated more arsenic in roots than shoots thereby limiting the translocation of arsenic to shoot. The activity of enzymatic and non-enzymatic antioxidants also increased in the OE lines on exposure to As[III]. The tissue-specific localization showed OsTIP1;2 promoter activity in root and root hairs, indicating its possible root-specific function. After As[III] treatment in hydroponic medium, the arsenic translocation factor (TF) for WT was around 0.8, while that of OE lines was around 0.2. Moreover, the arsenic content in the grains of OE lines reduced significantly compared to WT plants.


Asunto(s)
Arsénico , Arsenitos , Oryza , Proteínas de Plantas , Raíces de Plantas , Brotes de la Planta , Plantas Modificadas Genéticamente , Oryza/genética , Oryza/metabolismo , Oryza/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Arsénico/metabolismo , Brotes de la Planta/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética
14.
Elife ; 122024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38650461

RESUMEN

Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While d-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, and ex vivo transport analyses, we have identified two types of renal d-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a d-serine transporter previously uncharacterized in the kidney and discovered d-serine as a non-canonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal d-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC , Transportadores de Ácidos Monocarboxílicos , Serina , Serina/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Sistema de Transporte de Aminoácidos ASC/metabolismo , Animales , Humanos , Riñón/metabolismo , Ratones , Sodio/metabolismo , Transporte Biológico , Masculino
15.
Chem Commun (Camb) ; 60(36): 4810-4813, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38602391

RESUMEN

The non-canonical amino acid adamantylglycine (Ada) is introduced into peptides to allow high-affinity binding to cucurbit[7]uril (CB7). Introduction of Ada into a cell-penetrating peptide (CPP) sequence had minimal influence on the membrane transport, yet enabled up- and down-regulation of the membrane transport activity.


Asunto(s)
Péptidos de Penetración Celular , Glicina , Compuestos Heterocíclicos con 2 Anillos , Imidazolidinas , Compuestos Macrocíclicos , Glicina/química , Glicina/análogos & derivados , Glicina/metabolismo , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Imidazoles/química , Humanos , Hidrocarburos Aromáticos con Puentes/química , Hidrocarburos Aromáticos con Puentes/metabolismo , Adamantano/química , Adamantano/análogos & derivados , Membrana Celular/metabolismo , Membrana Celular/química , Transporte Biológico
16.
J R Soc Interface ; 21(213): 20230659, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38565158

RESUMEN

The flow of cerebrospinal fluid (CSF) along perivascular spaces (PVSs) is an important part of the brain's system for clearing metabolic waste. Astrocyte endfeet bound the PVSs of penetrating arteries, separating them from brain extracellular space. Gaps between astrocyte endfeet might provide a low-resistance pathway for fluid transport across the wall. Recent studies suggest that the astrocyte endfeet function as valves that rectify the CSF flow, producing the net flow observed in pial PVSs by changing the size of the gaps in response to pressure changes. In this study, we quantify this rectification based on three features of the PVSs: the quasi-circular geometry, the deformable endfoot wall, and the pressure oscillation inside. We provide an analytical model, based on the thin-shell hoop-stress approximation, and predict a pumping efficiency of about 0.4, which would contribute significantly to the observed flow. When we add the flow resistance of the extracellular space (ECS) to the model, we find an increased net flow during sleep, due to the known increase in ECS porosity (decreased flow resistance) compared to that in the awake state. We corroborate our analytical model with three-dimensional fluid-solid interaction simulations.


Asunto(s)
Sistema Glinfático , Sistema Glinfático/fisiología , Encéfalo/irrigación sanguínea , Arterias/fisiología , Presión , Transporte Biológico , Líquido Cefalorraquídeo/metabolismo
17.
Plant Physiol Biochem ; 210: 108592, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569422

RESUMEN

The present study investigates the phytotoxic potential of azelaic acid (AZA) on Arabidopsis thaliana roots. Effects on root morphology, anatomy, auxin content and transport, gravitropic response and molecular docking were analysed. AZA inhibited root growth, stimulated lateral and adventitious roots, and altered the root apical meristem by reducing meristem cell number, length and width. The treatment also slowed down the roots' gravitropic response, likely due to a reduction in statoliths, starch-rich organelles involved in gravity perception. In addition, auxin content, transport and distribution, together with PIN proteins' expression and localisation were altered after AZA treatment, inducing a reduction in auxin transport and its distribution into the meristematic zone. Computational simulations showed that AZA has a high affinity for the auxin receptor TIR1, competing with auxin for the binding site. The AZA binding with TIR1 could interfere with the normal functioning of the TIR1/AFB complex, disrupting the ubiquitin E3 ligase complex and leading to alterations in the response of the plant, which could perceive AZA as an exogenous auxin. Our results suggest that AZA mode of action could involve the modulation of auxin-related processes in Arabidopsis roots. Understanding such mechanisms could lead to find environmentally friendly alternatives to synthetic herbicides.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Dicarboxílicos , Proteínas F-Box , Gravitropismo , Ácidos Indolacéticos , Raíces de Plantas , Receptores de Superficie Celular , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Gravitropismo/efectos de los fármacos , Ácidos Dicarboxílicos/metabolismo , Proteínas F-Box/metabolismo , Receptores de Superficie Celular/metabolismo , Sitios de Unión , Transporte Biológico/efectos de los fármacos , Simulación del Acoplamiento Molecular
18.
Sci Rep ; 14(1): 8519, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609407

RESUMEN

The recent expansion of multidrug-resistant (MDR) pathogens poses significant challenges in treating healthcare-associated infections. Although antibacterial resistance occurs by numerous mechanisms, active efflux of the drugs is a critical concern. A single species of efflux pump can produce a simultaneous resistance to several drugs. One of the best-studied efflux pumps is the TtgABC: a tripartite resistance-nodulation-division (RND) efflux pump implicated in the intrinsic antibiotic resistance in Pseudomonas putida DOT-T1E. The expression of the TtgABC gene is down-regulated by the HTH-type transcriptional repressor TtgR. In this context, by employing quantum chemistry methods based on the Density Functional Theory (DFT) within the Molecular Fragmentation with Conjugate Caps (MFCC) approach, we investigate the coupling profiles of the transcriptional regulator TtgR in complex with quercetin (QUE), a natural polyphenolic flavonoid, tetracycline (TAC), and chloramphenicol (CLM), two broad-spectrum antimicrobial agents. Our quantum biochemical computational results show the: [i] convergence radius, [ii] total binding energy, [iii] relevance (energetically) of the ligands regions, and [iv] most relevant amino acids residues of the TtgR-QUE/TAC/CLM complexes, pointing out distinctions and similarities among them. These findings improve the understanding of the binding mechanism of effectors and facilitate the development of new chemicals targeting TtgR, helping in the battle against the rise of resistance to antimicrobial drugs. These advances are crucial in the ongoing fight against rising antimicrobial drug resistance, providing hope for a future where healthcare-associated infections can be more beneficially treated.


Asunto(s)
Antifibrinolíticos , Infección Hospitalaria , Humanos , Antibacterianos/farmacología , Cloranfenicol , Aminoácidos , Transporte Biológico
19.
NPJ Syst Biol Appl ; 10(1): 39, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609421

RESUMEN

Lutetium-177 prostate-specific membrane antigen (177Lu-PSMA)-targeted radiopharmaceutical therapy is a clinically approved treatment for patients with metastatic castration-resistant prostate cancer (mCRPC). Even though common practice reluctantly follows "one size fits all" approach, medical community believes there is significant room for deeper understanding and personalization of radiopharmaceutical therapies. To pursue this aim, we present a 3-dimensional spatiotemporal radiopharmaceutical delivery model based on clinical imaging data to simulate pharmacokinetic of 177Lu-PSMA within the prostate tumors. The model includes interstitial flow, radiopharmaceutical transport in tissues, receptor cycles, association/dissociation with ligands, synthesis of PSMA receptors, receptor recycling, internalization of radiopharmaceuticals, and degradation of receptors and drugs. The model was studied for a range of values for injection amount (100-1000 nmol), receptor density (10-500 nmol•l-1), and recycling rate of receptors (10-4 to 10-1 min-1). Furthermore, injection type, different convection-diffusion-reaction mechanisms, characteristic time scales, and length scales are discussed. The study found that increasing receptor density, ligand amount, and labeled ligands improved radiopharmaceutical uptake in the tumor. A high receptor recycling rate (0.1 min-1) increased radiopharmaceutical concentration by promoting repeated binding to tumor cell receptors. Continuous infusion results in higher radiopharmaceutical concentrations within tumors compared to bolus administration. These insights are crucial for advancing targeted therapy for prostate cancer by understanding the mechanism of radiopharmaceutical distribution in tumors. Furthermore, measures of characteristic length and advection time scale were computed. The presented spatiotemporal tumor transport model can analyze different physiological parameters affecting 177Lu-PSMA delivery.


Asunto(s)
Neoplasias de la Próstata , Radiofármacos , Masculino , Humanos , Neoplasias de la Próstata/radioterapia , Transporte Biológico , Difusión
20.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612559

RESUMEN

The cornea is an avascular, transparent tissue that allows light to enter the visual system. Accurate vision requires proper maintenance of the cornea's integrity and structure. Due to its exposure to the external environment, the cornea is prone to injury and must undergo proper wound healing to restore vision. Aquaporins (AQPs) are a family of water channels important for passive water transport and, in some family members, the transport of other small molecules; AQPs are expressed in all layers of the cornea. Although their functions as water channels are well established, the direct function of AQPs in the cornea is still being determined and is the focus of this review. AQPs, primarily AQP1, AQP3, and AQP5, have been found to play an important role in maintaining water homeostasis, the corneal structure in relation to proper hydration, and stress responses, as well as wound healing in all layers of the cornea. Due to their many functions in the cornea, the identification of drug targets that modulate the expression of AQPs in the cornea could be beneficial to promote corneal wound healing and restore proper function of this tissue crucial for vision.


Asunto(s)
Acuaporinas , Lesiones de la Cornea , Humanos , Córnea , Acuaporinas/genética , Transporte Biológico , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA