Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.131
Filtrar
1.
Mayo Clin Proc ; 99(6): 971-979, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839189

RESUMEN

Clostridioides difficile infection (CDI) is a significant public health challenge in the developed world. Although previously CDI was primarily a health care-acquired infection, there are now rising numbers of community-acquired cases in patients without traditional risk factors, such as antibiotic exposure. The landscape for the treatment of CDI has changed significantly during the past decade, including newer diagnostic tests, novel antibiotic regimens, and strategies for microbiome restoration in the form of traditional fecal microbiota transplant and approved live biotherapeutics in an effort to address the underlying pathophysiologic process of gut microbial dysbiosis. We present a concise review for clinicians on the diagnosis and management of both primary and recurrent CDI.


Asunto(s)
Antibacterianos , Infecciones por Clostridium , Trasplante de Microbiota Fecal , Humanos , Infecciones por Clostridium/terapia , Infecciones por Clostridium/diagnóstico , Antibacterianos/uso terapéutico , Trasplante de Microbiota Fecal/métodos , Clostridioides difficile , Microbioma Gastrointestinal , Factores de Riesgo
2.
Nat Commun ; 15(1): 4704, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830845

RESUMEN

Metabolic syndrome encompasses amongst other conditions like obesity and type-2 diabetes and is associated with gut microbiome (GM) dysbiosis. Fecal microbiota transplantation (FMT) has been explored to treat metabolic syndrome by restoring the GM; however, concerns on accidentally transferring pathogenic microbes remain. As a safer alternative, fecal virome transplantation (FVT, sterile-filtrated feces) has the advantage over FMT in that mainly bacteriophages are transferred. FVT from lean male donors have shown promise in alleviating the metabolic effects of high-fat diet in a preclinical mouse study. However, FVT still carries the risk of eukaryotic viral infections. To address this, recently developed methods are applied for removing or inactivating eukaryotic viruses in the viral component of FVT. Modified FVTs are compared with unmodified FVT and saline in a diet-induced obesity model on male C57BL/6 N mice. Contrasted with obese control, mice administered a modified FVT (nearly depleted for eukaryotic viruses) exhibits enhanced blood glucose clearance but not weight loss. The unmodified FVT improves liver pathology and reduces the proportions of immune cells in the adipose tissue with a non-uniform response. GM analysis suggests that bacteriophage-mediated GM modulation influences outcomes. Optimizing these approaches could lead to the development of safe bacteriophage-based therapies targeting metabolic syndrome through GM restoration.


Asunto(s)
Dieta Alta en Grasa , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Síndrome Metabólico , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad , Viroma , Animales , Masculino , Síndrome Metabólico/terapia , Obesidad/terapia , Ratones , Dieta Alta en Grasa/efectos adversos , Disbiosis/terapia , Heces/virología , Heces/microbiología , Bacteriófagos/fisiología , Glucemia/metabolismo , Modelos Animales de Enfermedad , Hígado/patología , Hígado/metabolismo , Tejido Adiposo
3.
Curr Opin Gastroenterol ; 40(4): 258-267, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38841848

RESUMEN

PURPOSE OF REVIEW: The role of the microbiome and dysbiosis is increasingly recognized in the pathogenesis of inflammatory bowel disease (IBD). Intestinal microbiota transplant (IMT), previously termed fecal microbiota transplant has demonstrated efficacy in restoring a healthy microbiome and promoting gut health in recurrent Clostridioides difficile infection. Several randomized trials (RCTs) highlighted IMT's potential in treating ulcerative colitis, while smaller studies reported on its application in managing Crohn's disease and pouchitis. RECENT FINDINGS: This review delves into the current understanding of dysbiosis in IBD, highlighting the distinctions in the microbiota of patients with IBD compared to healthy controls. It explores the mechanisms by which IMT can restore a healthy microbiome and provides a focused analysis of recent RCTs using IMT for inducing and maintaining remission in IBD. Lastly, we discuss the current knowledge gaps that limit its widespread use. SUMMARY: The body of evidence supporting the use of IMT in IBD is growing. The lack of a standardized protocol impedes its application beyond clinical trials. Further research is needed to identify patient profile and disease phenotypes that benefit from IMT, to delineate key donor characteristics, optimize the delivery route, dosage, and frequency.


Asunto(s)
Disbiosis , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Humanos , Trasplante de Microbiota Fecal/métodos , Disbiosis/terapia , Disbiosis/microbiología , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
J Transl Med ; 22(1): 570, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879538

RESUMEN

BACKGROUND: Gut microbiota (GM) have been implicated as important regulators of gastrointestinal symptom which is commonly occurred along with respiratory influenza A virus (IAV) infection, suggesting the involvement of the gut-to-lung axis in a host's response to IAV. IAV primarily destroys airway epithelium tight junctions (TJs) and consequently causes acute respiratory disease syndrome. It is known that GM and their metabolism produce an anti-influenza effect, but their role in IAV-induced airway epithelial integrity remains unknown. METHODS: A mouse model of IAV infection was established. GM were analyzed using 16S rRNA gene sequencing, and short-chain fatty acids (SCFAs) levels were measured. GM depletion and fecal microbiota transplantation (FMT) were conducted to validate the role of GM in IAV infection. A pair-feeding experiment was conducted to reveal whether IAV-induced GM dysbiosis is attributed to impaired food intake. Furthermore, human bronchial epithelial (HBE) cells were cocultured with IAV in the presence or absence of acetate. TJs function was analyzed by paracellular permeability and transepithelial electronic resistance (TEER). The mechanism of how acetate affects TJs integrity was evaluated in HBE cells transfected with G protein-coupled receptor 43 (GPR43) short hairpin RNA (shRNA). RESULTS: IAV-infected mice exhibited lower relative abundance of acetate-producing bacteria (Bacteroides, Bifidobacterium, and Akkermansia) and decreased acetate levels in gut and serum. These changes were partly caused by a decrease in food consumption (due to anorexia). GM depletion exacerbated and FMT restored IAV-induced lung inflammatory injury. IAV infection suppressed expressions of TJs (occludin, ZO-1) leading to disrupted airway epithelial barrier function as evidenced by decreased TEER and increased permeability. Acetate pretreatment activated GPR43, partially restored IAV-induced airway epithelial barrier function, and reduced inflammatory cytokines levels (TNF-α, IL-6, and IL-1ß). Such protective effects of acetate were absent in HBE cells transfected with GPR43 shRNA. Acetate and GPR43 improved TJs in an AMP-activated protein kinase (AMPK)-dependent manner. CONCLUSION: Collectively, our results demonstrated that GM protected airway TJs by modulating GPR43-AMPK signaling in IAV-induced lung injury. Therefore, improving GM dysbiosis may be a potential therapeutic target for patients with IAV infection.


Asunto(s)
Acetatos , Microbioma Gastrointestinal , Lesión Pulmonar , Infecciones por Orthomyxoviridae , Uniones Estrechas , Animales , Uniones Estrechas/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Acetatos/metabolismo , Humanos , Infecciones por Orthomyxoviridae/complicaciones , Ratones Endogámicos C57BL , Virus de la Influenza A , Trasplante de Microbiota Fecal , Receptores Acoplados a Proteínas G/metabolismo , Ratones , Células Epiteliales/metabolismo , Disbiosis , Ácidos Grasos Volátiles/metabolismo
5.
Life Sci ; 350: 122789, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38848942

RESUMEN

AIMS: Precocious puberty (PP) may lead to many adverse outcomes. Recent evidence suggests that PP is a gut-brain disease. On the other hand, the use of glycyrrhizin, a natural sweetener, has become popular in the past decade. Glycyrrhizin possesses various health benefits, but its impact on PP has yet to be investigated. We aimed to explore the protective effects of glycyrrhizin against PP in both humans (observational) and animals (interventional). MATERIALS AND METHODS: In the human cohort, we investigated the association between glycyrrhizin consumption and risk of PP. In the animal experiment, we observed puberty onset after feeding danazol-induced PP rats with glycyrrizin. Blood, fecal, and hypothalamic samples were harvested to evaluate potential mechanistic pathways. We also performed a fecal microbiota transplantation to confirm to causal relationship between glycyrrhizin and PP risk. KEY FINDINGS: Glycyrrhizin exhibited a protective effect against PP in children (OR 0.60, 95%CI: 0.39-0.89, p = 0.013), primarily driven by its significance in girls, while no significant effect was observed in boys. This effect was consistent with findings in rodents. These benefits were achieved through the modulation of the gut microbiome, which functionally suppressed the hypothalamic-pituitary-gonadal axis and prevented PP progression. A fecal microbiota transplantation indicated that the causal correlation between glycyrrhizin intake and PP is mediated by the gut microbiome alterations. SIGNIFICANCE: Our findings suggest that glycyrrhizin can protect against PP by altering the gut microbiome. Long term use of glycyrrhizin is safe and tolerable. Therefore, glycyrrhizin can serve as a safe and affordable complementary therapy for PP.


Asunto(s)
Microbioma Gastrointestinal , Ácido Glicirrínico , Pubertad Precoz , Edulcorantes , Microbioma Gastrointestinal/efectos de los fármacos , Ácido Glicirrínico/farmacología , Animales , Ratas , Masculino , Femenino , Pubertad Precoz/prevención & control , Pubertad Precoz/tratamiento farmacológico , Edulcorantes/farmacología , Edulcorantes/efectos adversos , Humanos , Niño , Ratas Sprague-Dawley , Trasplante de Microbiota Fecal
6.
Med Oncol ; 41(7): 175, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874788

RESUMEN

The immune system plays a pivotal role in the battle against cancer, serving as a formidable guardian in the ongoing fight against malignant cells. To combat these malignant cells, immunotherapy has emerged as a prevalent approach leveraging antibodies and peptides such as anti-PD-1, anti-PD-L1, and anti-CTLA-4 to inhibit immune checkpoints and activate T lymphocytes. The optimization of gut microbiota plays a significant role in modulating the defense system in the body. This study explores the potential of certain gut-resident bacteria to amplify the impact of immunotherapy. Contemporary antibiotic treatments, which can impair gut flora, may diminish the efficacy of immune checkpoint blockers. Conversely, probiotics or fecal microbiota transplantation can help re-establish intestinal microflora equilibrium. Additionally, the gut microbiome has been implicated in various strategies to counteract immune resistance, thereby enhancing the success of cancer immunotherapy. This paper also acknowledges cutting-edge technologies such as nanotechnology, CAR-T therapy, ACT therapy, and oncolytic viruses in modulating gut microbiota. Thus, an exhaustive review of literature was performed to uncover the elusive link that could potentiate the gut microbiome's role in augmenting the success of cancer immunotherapy.


Asunto(s)
Microbioma Gastrointestinal , Inmunoterapia , Neoplasias , Microbioma Gastrointestinal/inmunología , Humanos , Inmunoterapia/métodos , Neoplasias/terapia , Neoplasias/inmunología , Trasplante de Microbiota Fecal/métodos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Probióticos/uso terapéutico
7.
Cell Host Microbe ; 32(6): 1011-1024.e4, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38870892

RESUMEN

Microbial colonization of the neonatal gut involves maternal seeding, which is partially disrupted in cesarean-born infants and after intrapartum antibiotic prophylaxis. However, other physically close individuals could complement such seeding. To assess the role of both parents and of induced seeding, we analyzed two longitudinal metagenomic datasets (health and early life microbiota [HELMi]: N = 74 infants, 398 samples, and SECFLOR: N = 7 infants, 35 samples) with cesarean-born infants who received maternal fecal microbiota transplantation (FMT). We found that the father constitutes a stable source of strains for the infant independently of the delivery mode, with the cumulative contribution becoming comparable to that of the mother after 1 year. Maternal FMT increased mother-infant strain sharing in cesarean-born infants, raising the average bacterial empirical growth rate while reducing pathogen colonization. Overall, our results indicate that maternal seeding is partly complemented by that of the father and support the potential of induced seeding to restore potential deviations in this process.


Asunto(s)
Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Humanos , Femenino , Masculino , Recién Nacido , Lactante , Padre , Madres , Heces/microbiología , Cesárea , Embarazo , Transmisión Vertical de Enfermedad Infecciosa , Bacterias/genética
8.
Microbiol Res ; 285: 127773, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38833830

RESUMEN

Salmonella is an important foodborne pathogen. Given the ban on the use of antibiotics during the egg-laying period in China, finding safe and effective alternatives to antibiotics to reduce Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) infections in chickens is essential for the prevention and control of this pathogen and the protection of human health. Numerous studies have shown that unsaturated fatty acids have a positive effect on intestinal inflammation and resistance to infection by intestinal pathogens. Here we investigated the protective effect of α-linolenic acid (ALA) against S. Typhimurium infection in chickens and further explored its mechanism of action. We added different proportions of ALA to the feed and observed the effect of ALA on S. Typhimurium colonization using metagenomic sequencing technology and physiological index measurements. The role of gut flora on S. Typhimurium colonization was subsequently verified by fecal microbiota transplantation (FMT). We found that ALA protects chickens from S. Typhimurium infection by reducing intestinal inflammation through remodeling the gut microbiota, up-regulating the expression of ileocecal barrier-related genes, and maintaining the integrity of the intestinal epithelium. Our data suggest that supplementation of feed with ALA may be an effective strategy to alleviate S. Typhimurium infection in chickens.


Asunto(s)
Ciego , Pollos , Suplementos Dietéticos , Microbioma Gastrointestinal , Mucosa Intestinal , Enfermedades de las Aves de Corral , Salmonelosis Animal , Salmonella typhimurium , Ácido alfa-Linolénico , Animales , Pollos/microbiología , Salmonella typhimurium/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Ácido alfa-Linolénico/farmacología , Ácido alfa-Linolénico/administración & dosificación , Salmonelosis Animal/prevención & control , Salmonelosis Animal/microbiología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Mucosa Intestinal/microbiología , Ciego/microbiología , Alimentación Animal , Trasplante de Microbiota Fecal
9.
BMJ Open ; 14(6): e073275, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858151

RESUMEN

INTRODUCTION: The observed alteration of the intestinal microbiota in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and the effect of transferring a healthy gut flora from a faecal donor using a faecal microbiota transplantation (FMT) will be explored in this trial. METHODS AND ANALYSIS: This is a protocol for a randomised, double-blind, placebo-controlled, parallel-group, single-centre trial, with 12 months follow-up. 80 participants will be included and randomised (1:1:2) to either donor FMT (from two different donors) or placebo (autologous FMT). Participants will be included by the International Clinical Criteria for ME/CFS. The clinical measures of ME/CFS and disease activity include Modified DePaul Questionnaire, Fatigue Severity Scale (FSS), Hospital Anxiety and Depression Scale (HADS), 36-Item Short Form Health Survey (SF-36), ROMA IV criteria, Food Frequency Questionnaire, Repeatable Battery for the Assessment of Neuropsychological Status, heart rate variability testing and reports on the use of antibiotics and food supplements, as well as biobanking of blood, urine and faeces.The primary endpoint is proportion with treatment success in FSS score in donor versus autologous FMT group 3 months after treatment. Treatment success is defined as an FSS improvement of more than 1.2 points from baseline at 3 months after treatment. Adverse events will be registered throughout the study. ETHICS AND DISSEMINATION: The Regional Committee for Medical Research Ethics Northern Norway has approved the study. The study has commenced in May 2019. Findings will be disseminated in international peer-reviewed journal(s), submitted to relevant conferences, and trial participants will be informed via phone calls. TRIAL REGISTRATION NUMBER: NCT03691987.


Asunto(s)
Síndrome de Fatiga Crónica , Trasplante de Microbiota Fecal , Humanos , Trasplante de Microbiota Fecal/métodos , Síndrome de Fatiga Crónica/terapia , Método Doble Ciego , Noruega , Ensayos Clínicos Controlados Aleatorios como Asunto , Adulto , Microbioma Gastrointestinal , Resultado del Tratamiento , Femenino , Masculino
10.
Arch Microbiol ; 206(7): 306, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878076

RESUMEN

In an age of cutting-edge sequencing methods and worldwide endeavors such as The Human Microbiome Project and MetaHIT, the human microbiome stands as a complex and diverse community of microorganisms. A central theme in current scientific inquiry revolves around reinstating a balanced microbial composition, referred to as "eubiosis," as a targeted approach for treating vast array of diseases. Vaginal Microbiota Transplantation (VMT), inspired by the success of fecal microbiota transplantation, emerges as an innovative therapy addressing vaginal dysbacteriosis by transferring the complete microbiota from a healthy donor. Antibiotics, while effective, pose challenges with adverse effects, high recurrence rates, and potential harm to beneficial Lactobacillus strains. Continued antibiotic usage also sparks worries regarding the development of resistant strains. Probiotics, though showing promise, exhibit inconsistency in treating multifactorial diseases, and concerns linger about their suitability for diverse genetic backgrounds. Given the recurrent challenges associated with antibiotic and probiotic treatments, VMT emerges as an imperative alternative, offering a unique and promising avenue for efficiently and reliably managing vaginal dysbiosis among a majority of women. This review critically evaluates findings from both animal and human studies, offering nuanced insights into the efficacy and challenges of VMT. An extensive analysis of clinical trials, provides a current overview of ongoing and completed trials, shedding light on the evolving clinical landscape and therapeutic potential of VMT. Delving into the origins, mechanisms, and optimized protocols of VMT, the review underscores the imperative for sustained research efforts to advance this groundbreaking gynecological therapy.


Asunto(s)
Disbiosis , Microbiota , Probióticos , Vagina , Humanos , Vagina/microbiología , Femenino , Probióticos/administración & dosificación , Disbiosis/microbiología , Disbiosis/terapia , Animales , Antibacterianos/uso terapéutico , Trasplante de Microbiota Fecal , Lactobacillus
11.
Eur J Gastroenterol Hepatol ; 36(7): 815-830, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38829940

RESUMEN

Currently, there are increasingly diverse treatment modalities for chronic functional constipation (CFC). This study aims to compare the relative efficacy and safety of chemical drugs, fecal microbiota transplantation (FMT), probiotics, dietary fiber, and acupuncture in the treatment of patients with CFC. We searched relevant randomized controlled trials (RCTs) published in five databases up to November 2023. Network meta-analysis (NMA) was carried out using R Studio 4.2.1. Cumulative ranking probability plots, assessed through the surface under the cumulative ranking (SUCRA), were employed to rank the included drugs for various outcome measures. We included a total of 45 RCT studies with 17 118 patients with CFC. From the SUCRA values and NMA results FMT showed the best utility in terms of clinical efficacy, Bristol stool form scale scores, patient assessment of constipation quality of life scores, and the treatment modality with the lowest ranked incidence of adverse effects was electroacupuncture. Subgroup analysis of the chemotherapy group showed that sodium A subgroup analysis of the chemical group showed that sodium picosulfate 10 mg had the highest clinical efficacy. FMT is more promising in the treatment of CFC and may be more effective in combination with the relatively safe treatment of acupuncture.


Asunto(s)
Terapia por Acupuntura , Estreñimiento , Fibras de la Dieta , Trasplante de Microbiota Fecal , Probióticos , Estreñimiento/terapia , Estreñimiento/microbiología , Humanos , Trasplante de Microbiota Fecal/efectos adversos , Fibras de la Dieta/uso terapéutico , Probióticos/uso terapéutico , Probióticos/efectos adversos , Enfermedad Crónica , Terapia por Acupuntura/métodos , Resultado del Tratamiento , Metaanálisis en Red , Ensayos Clínicos Controlados Aleatorios como Asunto , Calidad de Vida , Laxativos/uso terapéutico
13.
World J Gastroenterol ; 30(16): 2179-2183, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38690018

RESUMEN

In this editorial we comment on the article published in the recent issue of the World journal of Gastroenterology. We focus specifically on the mechanisms un-derlying the effects of fecal microbiota transplantation (FMT) for irritable bowel syndrome (IBS), the factors which affect the outcomes of FMT in IBS patients, and challenges. FMT has emerged as a efficacious intervention for clostridium difficile infection and holds promise as a therapeutic modality for IBS. The utilization of FMT in the treatment of IBS has undergone scrutiny in numerous randomized controlled trials, yielding divergent outcomes. The current frontier in this field seeks to elucidate these variations, underscore the existing knowledge gaps that necessitate exploration, and provide a guideline for successful FMT imple-mentation in IBS patients. At the same time, the application of FMT as a treatment for IBS confronts several challenges.


Asunto(s)
Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Síndrome del Colon Irritable , Síndrome del Colon Irritable/terapia , Síndrome del Colon Irritable/microbiología , Trasplante de Microbiota Fecal/métodos , Humanos , Resultado del Tratamiento , Heces/microbiología , Ensayos Clínicos Controlados Aleatorios como Asunto , Clostridioides difficile/patogenicidad , Infecciones por Clostridium/terapia , Infecciones por Clostridium/microbiología
14.
J Int Med Res ; 52(5): 3000605241241000, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38749910

RESUMEN

Ileostomy diverts the flow of feces, which can result in malnutrition in the distal part of the intestine. The diversity of the gut microbiota consequently decreases, ultimately leading to intestinal dysbiosis and dysfunction. This condition can readily result in diversion colitis (DC). Potential treatment strategies include interventions targeting the gut microbiota. In this case study, we effectively treated a patient with severe DC by ileostomy and allogeneic fecal microbiota transplantation (FMT). A 69-year-old man presented with a perforated malignant tumor in the descending colon and an iliac abscess. He underwent laparoscopic radical sigmoid colon tumor resection and prophylactic ileostomy. Follow-up colonoscopy 3 months postoperatively revealed diffuse intestinal mucosal congestion and edema along with granular inflammatory follicular hyperplasia, leading to a diagnosis of severe DC. After two rounds of allogeneic FMT, both the intestinal mucosal bleeding and edema significantly improved, as did the diversity of the gut microbiota. The positive outcome of allogeneic FMT in this case highlights the potential advantages that this procedure can offer patients with DC. However, few studies have focused on allogeneic FMT, and more in-depth research is needed to gain a better understanding.


Asunto(s)
Colitis , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Ileostomía , Humanos , Masculino , Anciano , Trasplante de Microbiota Fecal/métodos , Colitis/microbiología , Colitis/terapia , Trasplante Homólogo/métodos , Resultado del Tratamiento , Colonoscopía
15.
Clin Exp Rheumatol ; 42(5): 1097-1103, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38743445

RESUMEN

The relationship between intestinal microbiota and arthritis has garnered significant attention, with emerging evidence suggesting a potential association between dysbiosis and various forms of inflammatory arthropathies. While observational studies have provided valuable insights into microbiota alterations in patients with arthritis, establishing causality remains challenging. Observational data, influenced by multiple confounders such as environmental factors, medication effects, and dietary habits, are insufficient to conclusively determine whether microbiota changes are somehow causally linked to arthritis. The heterogeneity of results across independent studies further complicates interpretation. To further support this hypothesis, interventional randomised trials are deemed necessary, yet their implementation in this area presents significant technical limitations. Experimental animal models offer insights into potential pathogenic mechanisms linking dysbiosis to arthritis, including compromised intestinal barrier function, the role of microbiota-derived metabolites and molecular mimicry. However, conflicting findings underscore the complexity of hostmicrobiota interactions and the challenges in establishing causality.Efforts to modulate the microbiota for arthritis treatment or prevention have shown promise, yet efficacy and applicability remains uncertain. Antibacterial drugs, dietary interventions, probiotics, and faecal microbiota transplantation have been explored, but their clinical utility awaits further validation. In conclusion, while the association between intestinal microbiota and arthritis is increasingly recognised, establishing causality remains elusive.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Humanos , Animales , Probióticos/uso terapéutico , Artritis/microbiología , Trasplante de Microbiota Fecal , Interacciones Huésped-Patógeno , Factores de Riesgo
16.
Medicine (Baltimore) ; 103(19): e38088, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728472

RESUMEN

Microbiota modulation, the intentional change in the structure and function of the microbial community, is an emerging trajectory that holds the promise to mitigate an infinite number of health issues. The present review illustrates the underlying principles of microbiota modulation and the various applications of this fundamental process to human health, healthcare management, and pharmacologic interventions. Different strategies, directing on dietary interventions, fecal microbiota transplantation, treatment with antibiotics, bacteriophages, microbiome engineering, and modulation of the immune system, are described in detail. This therapeutic implication is reflected in clinical applications to gastrointestinal disorders and immune-mediated diseases for microbiota-modulating agents. In addition to this, the review outlines the challenges of translating researched outcomes into clinical practice to consider safety and provides insights into future research directions of this rapidly developing area.


Asunto(s)
Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Humanos , Trasplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal/fisiología , Antibacterianos/uso terapéutico , Probióticos/uso terapéutico , Enfermedades Gastrointestinales/terapia , Enfermedades Gastrointestinales/microbiología
17.
Int J Mol Sci ; 25(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38791599

RESUMEN

This review scrutinizes the intricate interplay between the microbiome and the human body, exploring its multifaceted dimensions and far-reaching implications. The human microbiome, comprising diverse microbial communities inhabiting various anatomical niches, is increasingly recognized as a critical determinant of human health and disease. Through an extensive examination of current research, this review elucidates the dynamic interactions between the microbiome and host physiology across multiple organ systems. Key topics include the establishment and maintenance of microbiota diversity, the influence of host factors on microbial composition, and the bidirectional communication pathways between microbiota and host cells. Furthermore, we delve into the functional implications of microbiome dysbiosis in disease states, emphasizing its role in shaping immune responses, metabolic processes, and neurological functions. Additionally, this review discusses emerging therapeutic strategies aimed at modulating the microbiome to restore host-microbe homeostasis and promote health. Microbiota fecal transplantation represents a groundbreaking therapeutic approach in the management of dysbiosis-related diseases, offering a promising avenue for restoring microbial balance within the gut ecosystem. This innovative therapy involves the transfer of fecal microbiota from a healthy donor to an individual suffering from dysbiosis, aiming to replenish beneficial microbial populations and mitigate pathological imbalances. By synthesizing findings from diverse fields, this review offers valuable insights into the complex relationship between the microbiome and the human body, highlighting avenues for future research and clinical interventions.


Asunto(s)
Disbiosis , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Humanos , Disbiosis/microbiología , Disbiosis/terapia , Microbiota , Animales , Cuerpo Humano , Interacciones Microbiota-Huesped/fisiología
19.
Phytomedicine ; 129: 155699, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733907

RESUMEN

BACKGROUND: Pulmonary Fibrosis (PF) is a progressive lung disease characterized by the diffuse interstitial tissue, leading to severe breathing difficulties. The existing treatment methods are primarily aimed at slowing the progression of the disease, underscoring the urgent need to discover new drug interventions targeting novel sites. The "gut-lung axis" represents a complex bidirectional communication system where the gut microbiota not only influences lung immunity but also responds to lung-derived signals. Recent advances have uncovered that alterations in gut microbiota composition can significantly impact respiratory diseases, offering new insights into their pathogenesis and potential therapeutic approaches. METHODS: This study is based on the fundamental concepts of the lung-gut axis and our previous research, further exploring the potential mechanisms of 20(S)-Protopanaxadiol (PPD) in ginseng against PF. We utilized a bleomycin-induced mouse model of PF and employed metabolomics and 16S rRNA sequencing to investigate the pathways through which PPD regulates the pulmonary fibrosis process via the gut-lung axis. Finally, we employed strategies such as antibiotic-induced microbiota disruption and fecal microbiota transplantation (FMT) to provide a comprehensive perspective on how PPD regulates pulmonary fibrosis through gut microbiota. RESULTS: The results of the bleomycin (BLM) mouse model of PF proved that PPD can directly act on the glycolysis- related metabolic reprogramming process in lung and the AMPK/STING pathway to improve PF. Combined the analysis of gut microbiota and related metabolites, we found that PPD can regulate the process of PF through the gut-lung axis target points G6PD and SPHK1. FMT and antibiotic-induced microbiota disruption further confirmed intermediate effect of gut microbiota in PF process and the treatment of PPD. Our study suggests that PPD can alleviate the process of pulmonary fibrosis either by directly acting on the lungs or by regulating the gut microbiota. CONCLUSION: This study positions PPD as a vanguard in the therapeutic landscape for pulmonary fibrosis, offering a dual mechanism of action that encompasses both modulation of gut microbiota and direct intervention at molecular targets. These insights highlight the immense therapeutic potential of harnessing the gut-lung axis.


Asunto(s)
Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Pulmón , Ratones Endogámicos C57BL , Panax , Fibrosis Pulmonar , Sapogeninas , Animales , Sapogeninas/farmacología , Fibrosis Pulmonar/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Pulmón/efectos de los fármacos , Ratones , Panax/química , Bleomicina , Trasplante de Microbiota Fecal , Masculino , ARN Ribosómico 16S
20.
Mol Med Rep ; 30(1)2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38757304

RESUMEN

Gut microbiota dysfunction is a key factor affecting chronic kidney disease (CKD) susceptibility. Puerariae lobatae Radix (PLR), a traditional Chinese medicine and food homologous herb, is known to promote the gut microbiota homeostasis; however, its role in renoprotection remains unknown. The present study aimed to investigate the efficacy and potential mechanism of PLR to alleviate CKD. An 8­week 2% NaCl­feeding murine model was applied to induce CKD and evaluate the therapeutic effect of PLR supplementary. After gavage for 8 weeks, The medium and high doses of PLR significantly alleviated CKD­associated creatinine, urine protein increasement and nephritic histopathological injury. Moreover, PLR protected kidney from fibrosis by reducing inflammatory response and downregulating the canonical Wnt/ß­catenin pathway. Furthermore, PLR rescued the gut microbiota dysbiosis and protected against high salt­induced gut barrier dysfunction. Enrichment of Akkermansia and Bifidobacterium was found after PLR intervention, the relative abundances of which were in positive correlation with normal maintenance of renal histology and function. Next, fecal microbiota transplantation experiment verified that the positive effect of PLR on CKD was, at least partially, exerted through gut microbiota reestablishment and downregulation of the Wnt/ß­catenin pathway. The present study provided evidence for a new function of PLR on kidney protection and put forward a potential therapeutic strategy target for CKD.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Pueraria , Insuficiencia Renal Crónica , Vía de Señalización Wnt , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Ratones , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Masculino , Pueraria/química , Modelos Animales de Enfermedad , Disbiosis/tratamiento farmacológico , Regulación hacia Abajo/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Ratones Endogámicos C57BL , Trasplante de Microbiota Fecal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA