Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49.438
Filtrar
1.
Prostate ; 84(9): 823-831, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38606933

RESUMEN

BACKGROUND: There are limited preclinical orthotopic prostate cancer models due to the technical complexity of surgical engraftment and tracking the tumor growth in the mouse prostate gland. Orthotopic xenografts recapitulate the tumor microenvironment, tumor stromal interactions, and clinical behavior to a greater extent than xenografts grown at subcutaneous or intramuscular sites. METHODS: This study describes a novel micro-surgical technique for orthotopically implanting intact tumors pieces from cell line derived (transgenic adenocarcinoma mouse prostate [TRAMP]-C2) or patient derived (neuroendocrine prostate cancer [NEPC]) tumors in the mouse prostate gland and monitoring tumor growth using magnetic resonance (MR) imaging. RESULTS: The TRAMP-C2 tumors grew rapidly to a predetermined endpoint size of 10 mm within 3 weeks, whereas the NEPC tumors grew at a slower rate over 7 weeks. The tumors were readily detected by MR and confidently identified when they were approximately 2-3 mm in size. The tumors were less well-defined on CT. The TRAMP-C2 tumors were characterized by amorphous sheets of poorly differentiated cells similar to a high-grade prostatic adenocarcinoma and frequent macroscopic peritoneal and lymph node metastases. In contrast, the NEPC's displayed a neuroendocrine morphology with polygonal cells arranged in nests and solid sheets and high count. There was a local invasion of the bladder and other adjacent tissues but no identifiable metastases. The TRAMP-C2 tumors were more hypoxic than the NEPC tumors. CONCLUSIONS: This novel preclinical orthotopic prostate cancer mouse model is suitable for either syngeneic or patient derived tumors and will be effective in developing and advancing the current selection of treatments for patients with prostate cancer.


Asunto(s)
Adenocarcinoma , Modelos Animales de Enfermedad , Neoplasias de la Próstata , Animales , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/diagnóstico por imagen , Ratones , Humanos , Adenocarcinoma/patología , Adenocarcinoma/terapia , Línea Celular Tumoral , Ratones Transgénicos , Trasplante de Neoplasias/métodos , Imagen por Resonancia Magnética , Carcinoma Neuroendocrino/patología , Carcinoma Neuroendocrino/diagnóstico por imagen , Carcinoma Neuroendocrino/terapia
2.
Nature ; 626(7998): 401-410, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297129

RESUMEN

Ferroptosis is a form of cell death that has received considerable attention not only as a means to eradicate defined tumour entities but also because it provides unforeseen insights into the metabolic adaptation that tumours exploit to counteract phospholipid oxidation1,2. Here, we identify proferroptotic activity of 7-dehydrocholesterol reductase (DHCR7) and an unexpected prosurvival function of its substrate, 7-dehydrocholesterol (7-DHC). Although previous studies suggested that high concentrations of 7-DHC are cytotoxic to developing neurons by favouring lipid peroxidation3, we now show that 7-DHC accumulation confers a robust prosurvival function in cancer cells. Because of its far superior reactivity towards peroxyl radicals, 7-DHC effectively shields (phospho)lipids from autoxidation and subsequent fragmentation. We provide validation in neuroblastoma and Burkitt's lymphoma xenografts where we demonstrate that the accumulation of 7-DHC is capable of inducing a shift towards a ferroptosis-resistant state in these tumours ultimately resulting in a more aggressive phenotype. Conclusively, our findings provide compelling evidence of a yet-unrecognized antiferroptotic activity of 7-DHC as a cell-intrinsic mechanism that could be exploited by cancer cells to escape ferroptosis.


Asunto(s)
Linfoma de Burkitt , Deshidrocolesteroles , Ferroptosis , Neuroblastoma , Animales , Humanos , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Supervivencia Celular , Deshidrocolesteroles/metabolismo , Peroxidación de Lípido , Trasplante de Neoplasias , Neuroblastoma/metabolismo , Neuroblastoma/patología , Oxidación-Reducción , Fenotipo , Reproducibilidad de los Resultados
3.
Biochem Pharmacol ; 219: 115939, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000560

RESUMEN

Carfilzomib, a second-generation proteasome inhibitor, has been approved as a treatment for relapsed and/or refractory multiple myeloma. Nevertheless, the molecular mechanism by which Carfilzomib inhibits esophageal squamous cell carcinoma (ESCC) progression largely remains to be determined. In the present study, we found that Carfilzomib demonstrated potent anti-tumor activity against esophageal squamous cell carcinoma both in vitro and in vivo. Mechanistically, carfilzomib triggers mitochondrial apoptosis and reprograms cellular metabolism in ESCC cells. Moreover, it has been identified that activating transcription factor 3 (ATF3) plays a crucial cellular target role in ESCC cells treated with Carfilzomib. Overexpression of ATF3 effectively antagonized the effects of carfilzomib on ESCC cell proliferation, apoptosis, and metabolic reprogramming. Furthermore, the ATF3 protein is specifically bound to lactate dehydrogenase A (LDHA) to effectively suppress LDHA-mediated metabolic reprogramming in response to carfilzomib treatment. Research conducted in xenograft models demonstrates that ATF3 mediates the anti-tumor activity of Carfilzomib. The examination of human esophageal squamous cell carcinoma indicated that ATF3 and LDHA have the potential to function as innovative targets for therapeutic intervention in the treatment of ESCC. Our findings demonstrate the novel function of Carfilzomib in modulating ESCC metabolism and progression, highlighting the potential of Carfilzomib as a promising therapeutic agent for the treatment of ESCC.


Asunto(s)
Factor de Transcripción Activador 3 , Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias Esofágicas , Oligopéptidos , Neoplasias Esofágicas/tratamiento farmacológico , Carcinoma de Células Escamosas/tratamiento farmacológico , Oligopéptidos/farmacología , Línea Celular Tumoral , Antineoplásicos/farmacología , Xenoinjertos , Trasplante de Neoplasias , Humanos , Animales , Ratones , Ratones Endogámicos BALB C , Proliferación Celular/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Apoptosis , Reprogramación Metabólica/efectos de los fármacos , Factor de Transcripción Activador 3/metabolismo
4.
Nat Rev Cancer ; 24(3): 165, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37968378
5.
Theranostics ; 13(12): 4288-4302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554285

RESUMEN

Rationale: As a key endogenous negative regulator of ferroptosis, glutathione peroxidase 4 (GPX4) can regulate its antioxidant function through multiple post-translational modification pathways. However, the effects of the phosphorylation/dephosphorylation status of GPX4 on the regulation of inducible ferroptosis in hepatocellular carcinoma (HCC) remain unclear. Methods: To investigate the effects and molecular mechanism of GPX4 phosphorylation/dephosphorylation modification on ferroptosis in HCC cells. Sorafenib (Sora) was used to establish the ferroptosis model in HCC cells in vitro. Using the site-directed mutagenesis method, we generated the mimic GPX4 phosphorylation or dephosphorylation HCC cell lines at specific serine sites of GPX4. The effects of GPX4 phosphorylation/dephosphorylation modification on ferroptosis in HCC cells were examined. The interrelationships among GPX4, p53, and protein phosphatase 2A-B55ß subunit (PP2A-B55ß) were also explored. To explore the synergistic anti-tumor effects of PP2A activation on Sora-administered HCC, we established PP2A-B55ß overexpression xenograft tumors in a nude mice model in vivo. Results: In the Sora-induced ferroptosis model of HCC in vitro, decreased levels of cytoplasmic and mitochondrial GPX4, mitochondrial dysfunction, and enhanced p53 retrograde signaling occurred under Sora treatment. Further, we found that mitochondrial p53 retrograded remarkably into the nucleus and aggravated Sora-induced ferroptosis. The phosphorylation status of GPX4 at the serine 2 site (GPX4Ser2) revealed that mitochondrial p-GPX4Ser2 dephosphorylation was positively associated with ferroptosis, and the mechanism might be related to mitochondrial p53 retrograding into the nucleus. In HCC cells overexpressing PP2A-B55ß, it was found that PP2A-B55ß directly interacted with mitochondrial GPX4 and promoted Sora-induced ferroptosis in HCC. Further, PP2A-B55ß reduced the interaction between mitochondrial GPX4 and p53, leading to mitochondrial p53 retrograding into the nucleus. Moreover, it was confirmed that PP2A-B55ß enhanced the ferroptosis-mediated tumor growth inhibition and mitochondrial p53 retrograde signaling in the Sora-treated HCC xenograft tumors. Conclusion: Our data uncovered that the PP2A-B55ß/p-GPX4Ser2/p53 axis was a novel regulatory pathway of Sora-induced ferroptosis. Mitochondrial p-GPX4Ser2 dephosphorylation triggered ferroptosis via inducing mitochondrial p53 retrograding into the nucleus, and PP2A-B55ß was an upstream signal modulator responsible for mitochondrial p-GPX4Ser2 dephosphorylation. Our findings might serve as a potential theranostic strategy to enhance the efficacy of Sora in HCC treatment through the targeted intervention of p-GPX4 dephosphorylation via PP2A-B55ß activation.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Proteína Fosfatasa 2 , Sorafenib , Animales , Humanos , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Núcleo Celular , Regulación hacia Abajo , Resistencia a Antineoplásicos , Xenoinjertos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/patología , Trasplante de Neoplasias , Fosfolípido Hidroperóxido Glutatión Peroxidasa/química , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosforilación , Transducción de Señal/efectos de los fármacos , Sorafenib/uso terapéutico , Proteína Fosfatasa 2/metabolismo
6.
PLoS One ; 18(6): e0286422, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37285335

RESUMEN

Long noncoding RNAs (lncRNAs) encompass short open reading frames (sORFs) that can be translated into small peptides. Here, we investigated the encoding potential of lncRNA LINC00665 in osteosarcoma (OS) cells. Bioinformatic analyses were utilized to predict the lncRNAs with encoding potential in human U2OS cells. Protein expression was assessed by an immunoblotting or immunofluorescence method. Cell viability was assessed by cell counting Kit-8 (CCK-8). Cell proliferation was detected by 5-ethynyl-2'-deoxyuridine (EdU) assay. Cell migration was gauged by transwell assay. The downstream effectors of the short peptide were verified using qualitative proteome analysis after immunoprecipitation (IP) experiments. The effect of the short peptide on protein interactions were confirmed by Co-Immunoprecipitation (CoIP) assays. We found that lncRNA LINC00665 encoded an 18-amino acid (aa)-long short peptide (named LINC00665_18aa). LINC00665_18aa suppressed the viability, proliferation, and migration of human MNNG-HOS and U2OS OS cells in vitro and diminished tumor growth in vivo. Mechanistically, LINC00665_18aa impaired the transcriptional activity, nuclear localization, and phosphorylation of cAMP response element-binding protein 1 (CREB1). Moreover, LINC00665_18aa weakened the interaction between CREB1 and ribosomal protein S6 kinase A3 (RPS6KA3, RSK2). Additionally, increased expression of CREB1 reversed the inhibitory effects of LINC00665_18aa on OS cell proliferation and migration. Our findings show that the short peptide LINC00665_18aa exerts a tumor-inhibitory function in OS, providing a new basis for cancer therapeutics through the functions of the short peptides encoded by lncRNAs.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Osteosarcoma , Péptidos , ARN Largo no Codificante , Proteínas Quinasas S6 Ribosómicas 90-kDa , Humanos , Línea Celular , Animales , Ratones , Xenoinjertos , Osteosarcoma/metabolismo , Osteosarcoma/patología , Trasplante de Neoplasias , Proliferación Celular , Movimiento Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Péptidos/metabolismo , Línea Celular Tumoral , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología
7.
Stem Cells ; 41(8): 762-774, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37280108

RESUMEN

Glioblastoma stem cells (GSCs) have unique properties of self-renewal and tumor initiation that make them potential therapeutic targets. Development of effective therapeutic strategies against GSCs requires both specificity of targeting and intracranial penetration through the blood-brain barrier. We have previously demonstrated the use of in vitro and in vivo phage display biopanning strategies to isolate glioblastoma targeting peptides. Here we selected a 7-amino acid peptide, AWEFYFP, which was independently isolated in both the in vitro and in vivo screens and demonstrated that it was able to target GSCs over differentiated glioma cells and non-neoplastic brain cells. When conjugated to Cyanine 5.5 and intravenously injected into mice with intracranially xenografted glioblastoma, the peptide localized to the site of the tumor, demonstrating intracranial tumor targeting specificity. Immunoprecipitation of the peptide with GSC proteins revealed Cadherin 2 as the glioblastoma cell surface receptor targeted by the peptides. Peptide targeting of Cadherin 2 on GSCs was confirmed through ELISA and in vitro binding analysis. Interrogation of glioblastoma databases demonstrated that Cadherin 2 expression correlated with tumor grade and survival. These results confirm that phage display can be used to isolate unique tumor-targeting peptides specific for glioblastoma. Furthermore, analysis of these cell specific peptides can lead to the discovery of cell specific receptor targets that may serve as the focus of future theragnostic tumor-homing modalities for the development of precision strategies for the treatment and diagnosis of glioblastomas.


Asunto(s)
Cadherinas , Técnicas de Visualización de Superficie Celular , Glioblastoma , Péptidos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Células Madre Neoplásicas , Humanos , Animales , Ratones , Trasplante de Neoplasias , Péptidos/uso terapéutico , Cadherinas/antagonistas & inhibidores , Terapia Molecular Dirigida , Modelos Animales de Enfermedad
8.
Cell Cycle ; 22(12): 1463-1477, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37272203

RESUMEN

BACKGROUND: The incidence of gastric cancer (GC) ranks fourth among all malignant tumors worldwide, and the fatality rate ranks second among all malignant tumors. Several Chinese traditional medicines have been used in the treatment of advanced gastric cancer. This study aims to investigate the effect of combinational use of natural product cryptotanshinone (CTS) with anti-cancer drug trifluorothymidine (FTD) in GC. METHODS: Cell Counting Kit-8 assay was used to detect the inhibitory effect of the combinational or separate use of FTD and CTS on the growth of HGC-27 and AGS GC cells. The combined index of FTD and CTS was calculated using CompuSyn software. To understand the mechanism, we applied flow cytometry to study the cell cycle and cell apoptosis after treatment. We also investigated the amount of FTD incorporated into the DNA by immunofluorescence assay. The expression of relevant proteins was monitored using western blot. Furthermore, the effect of using TAS-102 in combination with CTS was studied in xenograft tumor nude mice model. RESULTS: FTD and CTS inhibited the growth of GC cells in a dose-dependent manner, respectively. They both exhibited low to sub-micromolar potency in HGC-27 and AGS cells. The combination of FTD and CTS showed synergistic anticancer effect in HGC-27 cells and AGS cells. Our mechanism studies indicate that FTD could block HGC-27 cells at G2/M phase, while CTS could block HGC-27 cells at G1/G0 phase, while FTD combined with CTS could mainly block HGC-27 cells at G2 phase. FTD in combination with CTS significantly increased the apoptosis of HGC-27 cells. We observed that CTS treatment increased the incorporation of FTD into the DNA HGC-27 cell. FTD treatment activated STAT3 phosphorylation in HGC-27 cells, while CTS treatment down-regulated the concentration of p-STAT3. Interestingly, the combination of CTS and FTD reduced STAT3 phosphorylation induced by FTD. In the in vivo experiments, we observed that the combination of TAS-102 with CTS was significantly more potent than TAS-102 on tumor growth inhibition. CONCLUSIONS: FTD combined with CTS has a synergistic anti-gastric cancer effect as shown by in vitro and in vivo experiments, and the combined treatment of FTD and CTS will be a promising treatment option for advanced gastric cancer.


Asunto(s)
Fenantrenos , Neoplasias Gástricas , Trifluridina , Humanos , Línea Celular Tumoral , Animales , Ratones , Xenoinjertos , Trasplante de Neoplasias , Trifluridina/administración & dosificación , Trifluridina/farmacología , Fenantrenos/administración & dosificación , Fenantrenos/farmacología , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Sinergismo Farmacológico , Apoptosis/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/tratamiento farmacológico
9.
STAR Protoc ; 4(3): 102349, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37314923

RESUMEN

Metastasis, a complex process, is responsible for most deaths in patients with cancer. Clinically relevant research models are indispensable to advancing our understanding of metastatic mechanisms and developing new treatments. We here describe detailed protocols to establish mouse models for melanoma metastasis using the single-cell imaging system and orthotropic footpad injection. The single-cell imaging system permits the tracking and quantification of early metastatic cell survival, while the orthotropic footpad transplantation mimics aspects of the complex metastatic process. For complete details on the use and execution of this protocol, please refer to Yu et al.1,2.


Asunto(s)
Melanoma , Ratones , Animales , Humanos , Melanoma/diagnóstico por imagen , Melanoma/patología , Trasplante de Neoplasias , Modelos Animales de Enfermedad
10.
Methods Mol Biol ; 2691: 31-41, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37355535

RESUMEN

The development of in vivo lung cancer models that faithfully mimic the human disease is a crucial research tool for understanding the molecular mechanisms driving tumorigenesis. Subcutaneous transplantation assays are commonly employed, likely due to their amenability to easily monitor tumor growth and the simplistic nature of the technique to deliver tumor cells. Importantly however, subcutaneous tumors grow in a microenvironment that differs from that resident within the lung. To circumvent this limitation, here we describe the development of an intrapulmonary (iPUL) orthotopic transplantation method that enables the delivery of lung cancer cells, with precision, to the left lung lobe of recipient mice. Critically, this allows for the growth of lung cancer cells within their native microenvironment. The coupling of iPUL transplantation with position emission tomography (PET) imaging permits the serial detection of tumors in vivo and serves as a powerful tool to trace lung tumor growth and dissemination over time in mouse disease models.


Asunto(s)
Neoplasias Pulmonares , Humanos , Ratones , Animales , Línea Celular Tumoral , Neoplasias Pulmonares/patología , Pulmón/patología , Trasplante de Neoplasias , Carcinogénesis , Modelos Animales de Enfermedad , Microambiente Tumoral
11.
Front Immunol ; 14: 1165602, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077909

RESUMEN

Introduction: The interaction between endometrial cancer (EMC) cells and intratumoral macrophages plays a significant role in the development of the disease. PYD domains-containing protein 3 (NLRP3) inflammasome formation triggers caspase-1/IL-1ß signaling pathways and produces reactive oxygen species (ROS) in macrophages. However, the role of NLRP3-regulated ROS production in macrophage polarization and the subsequent growth and metastasis of EMC remains unknown. Methods: We conducted bioinformatic analysis to compare NLRP3 levels in intratumoral macrophages from EMC and normal endometrium. In vitro experiments involved knocking out NLRP3 in macrophages to shift the polarization from an anti-inflammatory M1-like phenotype to a proinflammatory M2-like phenotype and reduce ROS production. The impact of NLRP3 depletion on the growth, invasion, and metastasis of co-cultured EMC cells was assessed. We also evaluated the effect of NLRP3 depletion in macrophages on the growth and metastasis of implanted EMC cells in mice. Results: Our bioinformatic analysis showed significantly lower NLRP3 levels in intratumoral macrophages from EMC than those from normal endometrium. Knocking out NLRP3 in macrophages shifted their polarization to a proinflammatory M2-like phenotype and significantly reduced ROS production. NLRP3 depletion in M2-polarized macrophages increased the growth, invasion, and metastasis of co-cultured EMC cells. NLRP3 depletion in M1-polarized macrophages reduced phagocytic potential, which resulted in weakened immune defense against EMC. Additionally, NLRP3 depletion in macrophages significantly increased the growth and metastasis of implanted EMC cells in mice, likely due to compromised phagocytosis by macrophages and a reduction in cytotoxic CD8+ T cells. Discussion: Our results suggest that NLRP3 plays a significant role in regulating macrophage polarization, oxidative stress, and immune response against EMC. NLRP3 depletion alters the polarization of intratumoral macrophages, leading to weakened immune defense against EMC cells. The reduction in ROS production by the loss of NLRP3 may have implications for the development of novel treatment strategies for EMC.


Asunto(s)
Neoplasias Endometriales , Proteína con Dominio Pirina 3 de la Familia NLR , Macrófagos Asociados a Tumores , Neoplasias Endometriales/inmunología , Trasplante de Neoplasias , Xenoinjertos , Humanos , Animales , Ratones , Estrés Oxidativo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fagocitosis , Metástasis de la Neoplasia
12.
J Immunother Cancer ; 11(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37072346

RESUMEN

BACKGROUND: The wider application of T cells targeting viral tumor-antigens via their native receptors is hampered by the failure to expand potent tumor-specific T cells from patients. Here, we examine reasons for and solutions to this failure, taking as our model the preparation of Epstein-Barr virus (EBV)-specific T cells (EBVSTs) for the treatment of EBV-positive lymphoma. EBVSTs could not be manufactured from almost one-third of patients, either because they failed to expand, or they expanded, but lacked EBV specificity. We identified an underlying cause of this problem and established a clinically feasible approach to overcome it. METHODS: CD45RO+CD45RA- memory compartment residing antigen-specific T cells were enriched by depleting CD45RA positive (+) peripheral blood mononuclear cells (PBMCs) that include naïve T cells, among other subsets, prior to EBV antigen stimulation. We then compared the phenotype, specificity, function and T-cell receptor (TCR) Vß repertoire of EBVSTs expanded from unfractionated whole (W)-PBMCs and CD45RA-depleted (RAD)-PBMCs on day 16. To identify the CD45RA component that inhibited EBVST outgrowth, isolated CD45RA+ subsets were added back to RAD-PBMCs followed by expansion and characterization. The in vivo potency of W-EBVSTs and RAD-EBVSTs was compared in a murine xenograft model of autologous EBV+ lymphoma. RESULTS: Depletion of CD45RA+ PBMCs before antigen stimulation increased EBVST expansion, antigen-specificity and potency in vitro and in vivo. TCR sequencing revealed a selective outgrowth in RAD-EBVSTs of clonotypes that expanded poorly in W-EBVSTs. Inhibition of antigen-stimulated T cells by CD45RA+ PBMCs could be reproduced only by the naïve T-cell fraction, while CD45RA+ regulatory T cells, natural killer cells, stem cell memory and effector memory subsets lacked inhibitory activity. Crucially, CD45RA depletion of PBMCs from patients with lymphoma enabled the outgrowth of EBVSTs that failed to expand from W-PBMCs. This enhanced specificity extended to T cells specific for other viruses. CONCLUSION: Our findings suggest that naïve T cells inhibit the outgrowth of antigen-stimulated memory T cells, highlighting the profound effects of intra-T-cell subset interactions. Having overcome our inability to generate EBVSTs from many patients with lymphoma, we have introduced CD45RA depletion into three clinical trials: NCT01555892 and NCT04288726 using autologous and allogeneic EBVSTs to treat lymphoma and NCT04013802 using multivirus-specific T cells to treat viral infections after hematopoietic stem cell transplantation.


Asunto(s)
Herpesvirus Humano 4 , Células de Memoria Inmunológica , Inmunoterapia , Linfoma , Linfocitos T , Linfocitos T/inmunología , Humanos , Linfoma/inmunología , Linfoma/terapia , Antígenos Comunes de Leucocito , Células de Memoria Inmunológica/inmunología , Leucocitos Mononucleares/inmunología , Células Asesinas Naturales/inmunología , Inmunoterapia/métodos , Inmunofenotipificación , Femenino , Animales , Ratones , Xenoinjertos , Trasplante de Neoplasias
13.
Immunol Invest ; 52(3): 343-363, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36762677

RESUMEN

BACKGROUND: Programmed death ligand 1 (PD-L1) is expressed in hepatocellular carcinoma (HCC) cells. PD-L1 function and structure are regulated through glycosylation and various signaling pathways. However, the relationship between Pseudomonas aeruginosa mannose sensitive hemagglutinin (PA-MSHA), glycosylation and PD-L1 warrants further study. In this study, we investigated the effects of PA-MSHA on the regulation of mannosyl and N-glycosylation to identify the mechanisms underlying its function. METHODS: PD-L1, ß-catenin, c-Myc, mannosyl, MGAT1 and mannosidase II in HCC were identified by postoperative specimens from the HCC cohort with immunohistochemistry and immunofluorescence. PA-MSHA was used to suppress tumor progression. Alterations to the expression of PD-L1, ß-catenin, c-Myc, MGAT1, and mannosidase II at the gene and protein levels were detected by qRT-PCR and Western blot analysis. Soluble PD-L1 (sPD-L1) were detected using enzyme-linked immunosorbent assay. RESULTS: Mannosyl and mannosidase II expression levels increased, whereas those of MGAT1 decreased in the HCC cells. The glycosylation-related pathway proteins, namely, ß-catenin, c-Myc and PD-L1, had increased expression levels. Moreover, proliferation in the HCC cells was inhibited after PA-MSHA treatment, PD-L1 function was significantly inhibited. Transmission electron microscopy showed that PA-MSHA penetrated into the HCC cytoplasm through the cytomembrane, resulting in apoptosis. Here, PA-MSHA significantly reduced sPD-L1 expression levels in the tumor cells. CONCLUSIONS: PA-MSHA plays the role of a lectin, affecting receptors on the cytomembrane. This strain inhibits mannosyl by suppressing ß-catenin signaling. We hypothesized that PA-MSHA suppresses PD-L1 by: 1. Inhibiting the glycosylation process; and 2. Suppressing ß-catenin and c-Myc, thereby reducing the transcription of this protein.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Pseudomonas aeruginosa , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Anciano , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Animales , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Xenoinjertos , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Pseudomonas aeruginosa/clasificación , Pseudomonas aeruginosa/fisiología , Trasplante de Neoplasias , Glicosilación , Transducción de Señal , Inmunoterapia , Lectinas/metabolismo
14.
Sci Rep ; 13(1): 2802, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797324

RESUMEN

This study aimed to compare the feasibility, success rate, and safety of establishing a rabbit VX2 liver metastasis model by percutaneous splenic implantation under CT guidance and open splenic implantation of the VX2 tumor strain. Fifty-two New Zealand white rabbits were randomly divided into group A (the percutaneous puncture group) (n = 26) and group B (the laparotomy group) (n = 26). In group A, 26 New Zealand white rabbits were implanted with tumor strains by percutaneous splenic puncture under CT guidance. In group B, 26 New Zealand white rabbits were implanted with tumor strains in the spleen by laparotomy. After 2-3 weeks of implantation, both group A and group B underwent MRI to confirm tumor growth in the spleen and metastasis to the liver. Two experimental rabbits randomly selected from groups A and B were killed for pathological examination. The success rate, complication rate, and operation time in groups A and B were compared and analyzed. A total of 23 rabbits in group A were successfully induced, and the success rate was 88.5% (23/26). The average time of operation was 14.42 ± 3.26 min. A total of 22 rabbits in group B were successfully induced, and the success rate was 84.6% (22/26). The average time of operation in group B was 23.69 ± 5.27 min. There was no significant difference in the success rate of induction between the two groups (P > 0.05). The MRI manifestations of liver metastases were multiple nodular and punctate abnormal signal shadows in the liver. Hematoxylin-eosin (HE) staining showed a large number of tumor cells in the tumor area. CT-guided percutaneous splenic implantation of the VX2 tumor strain to establish a rabbit liver metastasis model is a minimally invasive and feasible inducing method. The success rate of this technique is not lower than that of open splenic implantation, with low incidence of complications, and short operation time.


Asunto(s)
Neoplasias Hepáticas , Bazo , Animales , Conejos , Modelos Animales de Enfermedad , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Trasplante de Neoplasias , Punciones , Bazo/patología , Tomografía Computarizada por Rayos X/métodos
15.
Biochem Biophys Res Commun ; 648: 36-43, 2023 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-36724558

RESUMEN

It is considered that sensory neurons extend into the tumor microenvironment (TME), which could be associated with tumor growth. However, little is known about how sensory signaling could promote tumor progression. In this study, chemogenetic activation of transient receptor potential vanilloid 1 (Trpv1)-positive sensory neurons (C-fibers) by the microinjection of AAV-hSyn-FLEX-hM3Dq-mCherry into the sciatic nerve dramatically increased tumor volume in tumor-bearing Trpv1-Cre mice. This activation in Trpv1::hM3Dq mice that had undergone tumor transplantation significantly reduced the population of tumor-infiltrating CD4+ T cells and increased the mRNA level of the M2-macrophage marker, CX3C motif chemokine receptor 1 (Cx3cr1) in immunosuppressive cells, such as tumor-associated macrophages (TAMs) and tumor-infiltrating monocytic myeloid-derived suppressor cells (M-MDSCs). Under these conditions, we found a significant correlation between the decreased expression of the M1-macrophage marker Tnf and tumor volume. These findings suggest that repeated activation of Trpv1-positive sensory neurons may facilitate tumor growth along with changes in tumor-infiltrating immune cells.


Asunto(s)
Antineoplásicos , Ratones , Animales , Antineoplásicos/metabolismo , Macrófagos/metabolismo , Células Receptoras Sensoriales/metabolismo , Línea Celular Tumoral , Trasplante de Neoplasias , Microambiente Tumoral , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
16.
STAR Protoc ; 4(1): 102021, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36638017

RESUMEN

Here, we provide a protocol for an intrasplenic injection model to establish pancreatic tumors in the mouse liver. We describe the steps to inject tumor cells into mouse spleen and to perform a splenectomy, followed by animal recovery and end point analysis of tumors in the liver. This model allows rapid and reproducible tumor growth in a clinically relevant metastatic site, providing a platform to evaluate the efficacy of anti-cancer drugs. This technique can be expanded to other cancer cell lines. For complete details on the use and execution of this protocol, please refer to Poh et al. (2022).1.


Asunto(s)
Neoplasias Hepáticas , Neoplasias Pancreáticas , Ratones , Animales , Trasplante de Neoplasias , Neoplasias Pancreáticas/patología , Neoplasias Hepáticas/patología , Neoplasias Pancreáticas
17.
J Transl Med ; 20(1): 381, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038939

RESUMEN

BACKGROUND: The traditional prostate cancer (PCa) model is established by injecting cell suspension and is associated with a low tumor formation rate. Cell sheet technology is one of the advancements in tissue engineering for 3D cell-based therapy. In this study, we established ectopic and orthotopic PCa models by cell sheet technology, and then compared the efficiency of tumor formation with cell suspension injection. METHODS: DU145 cells were seeded on 35 mm temperature-sensitive dishes to form PCa cell sheets, while the cell suspension with the same cell density was prepared. After transplanting into the nude mice, the tumor volumes were measured every 3 days and the tumor growth curves were conducted. At the time points of 2 weeks and 4 weeks after the transplantation, magnetic resonance imaging (MRI) was used to evaluate the transplanting site and distant metastasis. Finally, the mice were sacrificed, and the related tissues were harvested for the further histological evaluation. RESULTS: The orthotopic tumor formation rate of the cell sheet injection group was obviously better than that in cell suspension injection group (100% vs 67%). Compared with cell suspension injection, the tumors of DU145 cell sheet fragments injection had the higher density of micro-vessels, more collagen deposition, and lower apoptosis rate. There was no evidence of metastasis in forelimb, lung and liver was found by MRI and histological tests. CONCLUSION: We successfully cultured the DU145 cell sheet and can be used to establish ectopic and orthotopic PCa tumor-bearing models, which provide an application potential for preclinical drug development, drug-resistance mechanisms and patient individualized therapy.


Asunto(s)
Neoplasias de la Próstata , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias de la Próstata/patología , Tecnología , Carga Tumoral
18.
Am J Transplant ; 22(9): 2127-2128, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36039543
19.
Clin Exp Metastasis ; 39(5): 771-781, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35918622

RESUMEN

The ability to noninvasively detect and monitor the growth of orthotopic liver transplantation tumors is critical for replicating advanced colorectal cancer liver metastases (CRLMs) in animal models. We assessed the use of high-resolution ultrasound (HRU) to monitor CRLMs transplanted using various cell concentrations. Sixty BALB/c female mice were randomly divided into 3 groups, and murine colonic CT26 cells were injected into the left liver lobe at concentrations of 1 × 102 (group 1), 1 × 103 (group 2), or 1 × 104 (group 3). Tumor presentation, location, number, size, shape, and echogenicity were assessed daily with 24-MHz center frequency HRU starting 6 days after injection. Animals were sacrificed when the largest tumor was ≥ 1 cm in diameter. Sensitivity, specificity, and area under curve (AUC) of CRLMs diagnosed with HRU were calculated using receiver operating characteristic curve analysis. In group 1, 94% of mice formed < 5 tumors, and 41% formed a single tumor. Tumors were first detected with HRU on day 12 in group 1, day 10 in group 2, and day 7 in group 3; tumor volume doubling times were 14-15 days, 11-12 days, and 7-8 days, respectively. With a long diameter threshold of 2.4 mm, diagnostic sensitivity and specificity of HRU were 94.1% and 88.7%, respectively, and the AUC was 0.962. These findings suggest that HRU can be used to accurately detect and monitor the growth of CRLMs in an orthotopic transplantation mouse model, especially when a lower concentration of cells is used.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Neoplasias Hepáticas , Animales , Neoplasias del Colon/patología , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Femenino , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/secundario , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Ultrasonografía
20.
Calcif Tissue Int ; 111(5): 535-545, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35896728

RESUMEN

We evaluated whether whole-body vibration (WBV) prevented bone loss induced by breast cancer (BC) metastasis and the involvement of bone marrow vasculature. One day after orthotopic transplantation of mammary 4T1 tumor cells, 8-week-old BALB/c mice were subjected to 0.3 g/90 Hz vertical vibration for 20 min/day for 5 days/week (BC-WBV) or sham-handled (BC-Sham) over 3 weeks. Age-matched intact mice (Intact) were also sham-handled. Both tibiae were harvested from BC-WBV (n = 7), BC-Sham (n = 9), and Intact (n = 5) mice for bone structure imaging by synchrotron radiation-based computed tomography (SRCT) and hematoxylin and eosin staining, whereas right tibiae were harvested from other BC-WBV and BC-Sham (n = 6 each) mice for vascular imaging by SRCT. Tumor cells were similarly widespread in the marrow in BC-WBV and BC-Sham mice. In BC-Sham mice, cortical bone volume, trabecular volume fraction, trabecular thickness, trabecular number density, and bone mineral density were smaller, and marrow volume and trabecular separation were larger than in Intact mice. However, although trabecular thickness was smaller in BC-WBV than Intact mice, the others did not differ between the two groups. Serum osteocalcin tended to be higher in BC-WBV than BC-Sham mice. Compared with BC-Sham mice, BC-WBV mice had a smaller vessel diameter, a trend of a larger vessel number density, and smaller vessel diameter heterogeneity. In conclusion, WBV mitigates bone loss in BC bone metastasis, which may be partly due to increased bone anabolism. The alteration of marrow vasculature appears to be favorable for anti-tumor drug delivery. Further studies are needed to clarify the multiple actions of WBV on bone, tumor, and marrow vasculature and how they contribute to bone protection in BC metastasis.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Vibración , Animales , Ratones , Densidad Ósea , Ratones Endogámicos BALB C , Osteocalcina/sangre , Neoplasias Óseas/secundario , Trasplante de Neoplasias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA