Asunto(s)
Trastorno Autístico , Señalización del Calcio , Síndrome de QT Prolongado , Sindactilia , Humanos , Sindactilia/genética , Síndrome de QT Prolongado/genética , Señalización del Calcio/genética , Trastorno Autístico/genética , Trastorno Autístico/patología , Trastorno Autístico/terapia , MutaciónRESUMEN
The contribution of progenitor subtypes to generating the billions of neurons produced during human cortical neurogenesis is not well understood. We developed the cortical organoid lineage-tracing (COR-LT) system for human cortical organoids. Differential fluorescent reporter activation in distinct progenitor cells leads to permanent reporter expression, enabling the progenitor cell lineage of neurons to be determined. Surprisingly, nearly all excitatory neurons produced in cortical organoids were generated indirectly from intermediate progenitor cells. Additionally, neurons of different progenitor lineages were transcriptionally distinct. Isogenic lines made from an autistic individual with and without a likely pathogenic CTNNB1 variant demonstrated that the variant substantially altered the proportion of neurons derived from specific progenitor cell lineages, as well as the lineage-specific transcriptional profiles of these neurons, suggesting a pathogenic mechanism for this mutation. These results suggest individual progenitor subtypes play roles in generating the diverse neurons of the human cerebral cortex.
Asunto(s)
Linaje de la Célula , Corteza Cerebral , Neurogénesis , Neuronas , Organoides , Humanos , Organoides/metabolismo , Neuronas/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , beta Catenina/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Trastorno Autístico/genética , Diferenciación CelularRESUMEN
Timothy syndrome, an extremely rare disease, is closely associated with a mutation in CACNA1C gene, which encodes the cardiac L-type voltage-gated calcium channel (Cav1.2). In this study, we generated a human induced pluripotent stem cell (iPSC) line from a Timothy syndrome infant carrying heterozygous CACNA1C mutation (transcript variant NM_000719.7c.1216G>A: p.G406R). The generated iPSC line showed typical stem cell morphology, positively expressed pluripotency and proliferation markers, normal karyotype, and trilineage differentiation potential. Therefore, this patient-specific iPSC can be of great significance in investigating the mechanisms underlying Timothy syndrome, and hence establishing effective intervention strategies.
Asunto(s)
Trastorno Autístico , Canales de Calcio Tipo L , Heterocigoto , Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Sindactilia , Humanos , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Sindactilia/genética , Sindactilia/patología , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/patología , Síndrome de QT Prolongado/metabolismo , Trastorno Autístico/genética , Trastorno Autístico/patología , Mutación , Línea Celular , Diferenciación Celular , LactanteRESUMEN
Excessive inflammatory reactions and oxidative stress are well-recognized molecular findings in autism and these processes can affect or be affected by the epigenetic landscape. Nonetheless, adequate therapeutics are unavailable, as patient-specific brain molecular markers for individualized therapies remain challenging. METHODS: We used iPSC-derived neurons and astrocytes of patients with autism vs. controls (5/group) to examine whether they replicate the postmortem brain expression/epigenetic alterations of autism. Additionally, DNA methylation of 10 postmortem brain samples (5/group) was analyzed for genes affected in PSC-derived cells. RESULTS: We found hyperexpression of TGFB1, TGFB2, IL6 and IFI16 and decreased expression of HAP1, SIRT1, NURR1, RELN, GPX1, EN2, SLC1A2 and SLC1A3 in the astrocytes of patients with autism, along with DNA hypomethylation of TGFB2, IL6, TNFA and EN2 gene promoters and a decrease in HAP1 promoter 5-hydroxymethylation in the astrocytes of patients with autism. In neurons, HAP1 and IL6 expression trended alike. While HAP1 promoter was hypermethylated in neurons, IFI16 and SLC1A3 promoters were hypomethylated and TGFB2 exhibited increased promoter 5-hydroxymethlation. We also found a reduction in neuronal arborization, spine size, growth rate, and migration, but increased astrocyte size and a reduced growth rate in autism. In postmortem brain samples, we found DNA hypomethylation of TGFB2 and IFI16 promoter regions, but DNA hypermethylation of HAP1 and SLC1A2 promoters in autism. CONCLUSION: Autism-associated expression/epigenetic alterations in iPSC-derived cells replicated those reported in the literature, making them appropriate surrogates to study disease pathogenesis or patient-specific therapeutics.
Asunto(s)
Astrocitos , Trastorno Autístico , Encéfalo , Metilación de ADN , Epigénesis Genética , Células Madre Pluripotentes Inducidas , Neuronas , Humanos , Astrocitos/metabolismo , Astrocitos/patología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Trastorno Autístico/genética , Trastorno Autístico/patología , Trastorno Autístico/metabolismo , Neuronas/metabolismo , Neuronas/patología , Metilación de ADN/genética , Encéfalo/patología , Encéfalo/metabolismo , Masculino , Femenino , Regiones Promotoras Genéticas/genética , Forma de la Célula , Niño , Regulación de la Expresión Génica , Proteína ReelinaRESUMEN
Many autism spectrum disorder (ASD)-associated genes act as transcriptional regulators (TRs). Chromatin immunoprecipitation sequencing (ChIP-seq) was used to identify the regulatory targets of ARID1B, BCL11A, FOXP1, TBR1, and TCF7L2, ASD-associated TRs in the developing human and mouse cortex. These TRs shared substantial overlap in the binding sites, especially within open chromatin. The overlap within a promoter region, 1-2,000 bp upstream of the transcription start site, was highly predictive of brain-expressed genes. This signature was observed in 96 out of 102 ASD-associated genes. In vitro CRISPRi against ARID1B and TBR1 delineated downstream convergent biology in mouse cortical cultures. After 8 days, NeuN+ and CALB+ cells were decreased, GFAP+ cells were increased, and transcriptomic signatures correlated with the postmortem brain samples from individuals with ASD. We suggest that functional convergence across five ASD-associated TRs leads to shared neurodevelopmental outcomes of haploinsufficient disruption.
Asunto(s)
Encéfalo , Humanos , Animales , Ratones , Encéfalo/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Sitios GenéticosRESUMEN
In a recent issue of Nature, Chen and colleagues1 reveal the potential for antisense oligonucleotides (ASOs) to rescue the neuropathological mechanisms underlying Timothy syndrome (TS) using three-dimensional neuronal models. Combining in vitro and in vivo approaches, the authors present a strategy to translate disease biology findings into potential therapeutics.
Asunto(s)
Trastorno Autístico , Síndrome de QT Prolongado , Neuronas , Sindactilia , Humanos , Trastorno Autístico/genética , Trastorno Autístico/patología , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Sindactilia/genética , Oligonucleótidos Antisentido/farmacología , AnimalesRESUMEN
The contribution of the thalamus to the development and behavioural changes in autism spectrum disorders (ASD), a neurodevelopmental syndrome, remains unclear. The aim of this study was to determine the changes in thalamic volume and cell number in the valproic acid (VPA)-induced ASD model using stereological methods and to clarify the relationship between thalamus and ASD-like behaviour. Ten pregnant rats were administered a single dose (600 mg/kg) of VPA intraperitoneally on G12.5 (VPA group), while five pregnant rats were injected with 5 ml saline (control group). Behavioural tests were performed to determine appropriate subjects and ASD-like behaviours. At P55, the brains of the subjects were removed. The sagittal sections were stained with cresyl violet and toluidine blue. The thalamic and hemispheric volumes with their ratios, the total number of thalamic cells, neurons and non-neuronal cells were calculated using stereological methods. Data were compared using a t-test and a Pearson correlation analysis was performed to examine the relationship between behaviour and stereological outcomes. VPA-treated rats had lower sociability and sociability indexes. There was no difference in social novelty preference and anxiety. The VPA group had larger hemispheric volume, lower thalamic volume, and fewer neurons. The highest percentage decrease was in non-neuronal cells. There was a moderate positive correlation between the number of non-neuronal cells and sociability, thalamic volume and the number of neurons as well as the time spent in the light box. The correlation between behaviour and stereological data suggests that the thalamus is associated with ASD-like behaviour.
Asunto(s)
Modelos Animales de Enfermedad , Tálamo , Ácido Valproico , Animales , Ácido Valproico/farmacología , Tálamo/efectos de los fármacos , Tálamo/patología , Femenino , Embarazo , Recuento de Células , Ratas , Conducta Animal/efectos de los fármacos , Trastorno Autístico/inducido químicamente , Trastorno Autístico/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Ratas Sprague-Dawley , Conducta Social , Masculino , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/patologíaRESUMEN
Language and social symptoms improve with age in some autistic toddlers, but not in others, and such outcome differences are not clearly predictable from clinical scores alone. Here we aim to identify early-age brain alterations in autism that are prognostic of future language ability. Leveraging 372 longitudinal structural MRI scans from 166 autistic toddlers and 109 typical toddlers and controlling for brain size, we find that, compared to typical toddlers, autistic toddlers show differentially larger or thicker temporal and fusiform regions; smaller or thinner inferior frontal lobe and midline structures; larger callosal subregion volume; and smaller cerebellum. Most differences are replicated in an independent cohort of 75 toddlers. These brain alterations improve accuracy for predicting language outcome at 6-month follow-up beyond intake clinical and demographic variables. Temporal, fusiform, and inferior frontal alterations are related to autism symptom severity and cognitive impairments at early intake ages. Among autistic toddlers, brain alterations in social, language and face processing areas enhance the prediction of the child's future language ability.
Asunto(s)
Trastorno Autístico , Encéfalo , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Preescolar , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Trastorno Autístico/patología , Trastorno Autístico/diagnóstico por imagen , Lactante , Lenguaje , Desarrollo del LenguajeRESUMEN
Autism (or autism spectrum disorder) was initially defined as a psychiatric disorder, with the likely cause maternal behavior (the very destructive "refrigerator mother" theory). It took several decades for research into brain mechanisms to become established. Both neuropathological and imaging studies found differences in the cerebellum in autism spectrum disorder, the most widely documented being a decreased density of Purkinje cells in the cerebellar cortex. The popular interpretation of these results is that cerebellar neuropathology is a critical cause of autism spectrum disorder. We challenge that view by arguing that if fewer Purkinje cells are critical for autism spectrum disorder, then any condition that causes the loss of Purkinje cells should also cause autism spectrum disorder. We will review data on damage to the cerebellum from cerebellar lesions, tumors, and several syndromes (Joubert syndrome, Fragile X, and tuberous sclerosis). Collectively, these studies raise the question of whether the cerebellum really has a role in autism spectrum disorder. Autism spectrum disorder is now recognized as a genetically caused developmental disorder. A better understanding of the genes that underlie the differences in brain development that result in autism spectrum disorder is likely to show that these genes affect the development of the cerebellum in parallel with the development of the structures that do underlie autism spectrum disorder.
Asunto(s)
Cerebelo , Humanos , Cerebelo/patología , Trastorno del Espectro Autista/patología , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/diagnóstico por imagen , Animales , Trastorno Autístico/patología , Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Células de Purkinje/patologíaRESUMEN
Autism is a neurodevelopmental disorder, the prevalence of which has increased dramatically in the United States over the past two decades. It is characterized by stereotyped behaviors and impairments in social interaction and communication. In this paper, we present evidence that autism can be viewed as a PIN1 deficiency syndrome. Peptidyl-prolyl cis/trans isomerase, NIMA-Interacting 1 (PIN1) is a peptidyl-prolyl cis/trans isomerase, and it has widespread influences in biological organisms. Broadly speaking, PIN1 deficiency is linked to many neurodegenerative diseases, whereas PIN1 over-expression is linked to cancer. Death-associated protein kinase 1 (DAPK1) strongly inhibits PIN1, and the hormone melatonin inhibits DAPK1. Melatonin deficiency is strongly linked to autism. It has recently been shown that glyphosate exposure to rats inhibits melatonin synthesis as a result of increased glutamate release from glial cells and increased expression of metabotropic glutamate receptors. Glyphosate's inhibition of melatonin leads to a reduction in PIN1 availability in neurons. In this paper, we show that PIN1 deficiency can explain many of the unique morphological features of autism, including increased dendritic spine density, missing or thin corpus callosum, and reduced bone density. We show how PIN1 deficiency disrupts the functioning of powerful high-level signaling molecules, such as nuclear factor erythroid 2-related factor 2 (NRF2) and p53. Dysregulation of both of these proteins has been linked to autism. Severe depletion of glutathione in the brain resulting from chronic exposure to oxidative stressors and extracellular glutamate leads to oxidation of the cysteine residue in PIN1, inactivating the protein and further contributing to PIN1 deficiency. Impaired autophagy leads to increased sensitivity of neurons to ferroptosis. It is imperative that further research be conducted to experimentally validate whether the mechanisms described here take place in response to chronic glyphosate exposure and whether this ultimately leads to autism.
Asunto(s)
Trastorno Autístico , Glicina , Glifosato , Peptidilprolil Isomerasa de Interacción con NIMA , Animales , Humanos , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Trastorno Autístico/inducido químicamente , Glicina/análogos & derivados , Glicina/metabolismo , Melatonina/farmacología , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/genética , RatasRESUMEN
Few neuropsychiatric disorders have replicable biomarkers, prompting high-resolution and large-scale molecular studies. However, we still lack consensus on a more foundational question: whether quantitative shifts in cell types-the functional unit of life-contribute to neuropsychiatric disorders. Leveraging advances in human brain single-cell methylomics, we deconvolve seven major cell types using bulk DNA methylation profiling across 1270 postmortem brains, including from individuals diagnosed with Alzheimer's disease, schizophrenia, and autism. We observe and replicate cell-type compositional shifts for Alzheimer's disease (endothelial cell loss), autism (increased microglia), and schizophrenia (decreased oligodendrocytes), and find age- and sex-related changes. Multiple layers of evidence indicate that endothelial cell loss contributes to Alzheimer's disease, with comparable effect size to APOE genotype among older people. Genome-wide association identified five genetic loci related to cell-type composition, involving plausible genes for the neurovascular unit (P2RX5 and TRPV3) and excitatory neurons (DPY30 and MEMO1). These results implicate specific cell-type shifts in the pathophysiology of neuropsychiatric disorders.
Asunto(s)
Enfermedad de Alzheimer , Trastorno Autístico , Encéfalo , Metilación de ADN , Esquizofrenia , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Esquizofrenia/genética , Esquizofrenia/patología , Encéfalo/metabolismo , Encéfalo/patología , Trastorno Autístico/genética , Trastorno Autístico/patología , Masculino , Femenino , Estudio de Asociación del Genoma Completo , Anciano , Células Endoteliales/metabolismo , Células Endoteliales/patología , Epigenómica/métodos , Persona de Mediana Edad , Anciano de 80 o más AñosRESUMEN
Previous studies in autism spectrum disorder demonstrated an increased number of excitatory pyramidal cells and a decreased number of inhibitory parvalbumin+ chandelier interneurons in the prefrontal cortex of postmortem brains. How these changes in cellular composition affect the overall abundance of excitatory and inhibitory synapses in the cortex is not known. Herein, we quantified the number of excitatory and inhibitory synapses in the prefrontal cortex of 10 postmortem autism spectrum disorder brains and 10 control cases. To identify excitatory synapses, we used VGlut1 as a marker of the presynaptic component and postsynaptic density protein-95 as marker of the postsynaptic component. To identify inhibitory synapses, we used the vesicular gamma-aminobutyric acid transporter as a marker of the presynaptic component and gephyrin as a marker of the postsynaptic component. We used Puncta Analyzer to quantify the number of co-localized pre- and postsynaptic synaptic components in each area of interest. We found an increase in the number of excitatory synapses in upper cortical layers and a decrease in inhibitory synapses in all cortical layers in autism spectrum disorder brains compared with control cases. The alteration in the number of excitatory and inhibitory synapses could lead to neuronal dysfunction and disturbed network connectivity in the prefrontal cortex in autism spectrum disorder.
Asunto(s)
Proteínas de la Membrana , Corteza Prefrontal , Sinapsis , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Humanos , Masculino , Femenino , Sinapsis/patología , Sinapsis/metabolismo , Adulto , Persona de Mediana Edad , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Adulto Joven , Adolescente , Niño , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Inhibición Neural/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismoRESUMEN
Autism spectrum disorder has been emerging as a growing public health threat. Early diagnosis of autism spectrum disorder is crucial for timely, effective intervention and treatment. However, conventional diagnosis methods based on communications and behavioral patterns are unreliable for children younger than 2 years of age. Given evidences of neurodevelopmental abnormalities in autism spectrum disorder infants, we resort to a novel deep learning-based method to extract key features from the inherently scarce, class-imbalanced, and heterogeneous structural MR images for early autism diagnosis. Specifically, we propose a Siamese verification framework to extend the scarce data, and an unsupervised compressor to alleviate data imbalance by extracting key features. We also proposed weight constraints to cope with sample heterogeneity by giving different samples different voting weights during validation, and used Path Signature to unravel meaningful developmental features from the two-time point data longitudinally. We further extracted machine learning focused brain regions for autism diagnosis. Extensive experiments have shown that our method performed well under practical scenarios, transcending existing machine learning methods and providing anatomical insights for autism early diagnosis.
Asunto(s)
Trastorno del Espectro Autista , Encéfalo , Aprendizaje Profundo , Diagnóstico Precoz , Humanos , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/diagnóstico , Lactante , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Preescolar , Masculino , Femenino , Trastorno Autístico/diagnóstico , Trastorno Autístico/diagnóstico por imagen , Trastorno Autístico/patología , Aprendizaje Automático no SupervisadoRESUMEN
Alterations in the experience-dependent and autonomous elaboration of neural circuits are assumed to underlie autism spectrum disorder (ASD), though it is unclear what synaptic traits are responsible. Here, utilizing a valproic acid-induced ASD marmoset model, which shares common molecular features with idiopathic ASD, we investigate changes in the structural dynamics of tuft dendrites of upper-layer pyramidal neurons and adjacent axons in the dorsomedial prefrontal cortex through two-photon microscopy. In model marmosets, dendritic spine turnover is upregulated, and spines are generated in clusters and survived more often than in control marmosets. Presynaptic boutons in local axons, but not in commissural long-range axons, demonstrate hyperdynamic turnover in model marmosets, suggesting alterations in projection-specific plasticity. Intriguingly, nasal oxytocin administration attenuates clustered spine emergence in model marmosets. Enhanced clustered spine generation, possibly unique to certain presynaptic partners, may be associated with ASD and be a potential therapeutic target.
Asunto(s)
Callithrix , Modelos Animales de Enfermedad , Plasticidad Neuronal , Oxitocina , Animales , Oxitocina/metabolismo , Masculino , Sinapsis/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Espinas Dendríticas/efectos de los fármacos , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Corteza Prefrontal/efectos de los fármacos , Células Piramidales/metabolismo , Células Piramidales/patología , Ácido Valproico/farmacología , Terminales Presinápticos/metabolismo , Femenino , Axones/metabolismoRESUMEN
The neuroprotective effects of choline chloride, an essential nutrient, a precursor for the acetylcholine and synthesis of membrane phospholipids, have been associated with neurological and neurodegenerative diseases. Its contribution to autism spectrum disorder, a neurodevelopmental disorder, remains unknown. Thus, we aimed to evaluate the effects of choline chloride on social behaviours, and histopathological and biochemical changes in a rat autism model. The autism model was induced by administration of 100 µg/kg lipopolysaccharide (LPS) on the 10th day of gestation. Choline chloride treatment (100 mg/kg/day) was commenced on PN5 and maintained until PN50. Social deficits were assessed by three-chamber sociability, open field, and passive avoidance learning tests. Tumour necrosis factor alpha (TNF-α), interleukin-2 (IL) and IL-17, nerve growth factor (NGF), and glutamate decarboxylase 67 (GAD67) levels were measured to assess neuroinflammatory responses. In addition, the number of hippocampal and cerebellar neurons and glial fibrillary acidic protein (GFAP) expression were evaluated. Social novelty and passive avoidance learning tests revealed significant differences in choline chloride-treated male rats compared with saline-treated groups. TNF-α, IL-2, and IL-17 were significantly decreased after choline chloride treatment in both males and females. NGF and GAD67 levels were unchanged in females, while there were significant differences in males. Histologically, significant changes in terms of gliosis were detected in hippocampal CA1 and CA3 regions and cerebellum in choline chloride-treated groups. The presence of ameliorative effects of choline chloride treatment on social behaviour and neuroinflammation through neuroinflammatory, neurotrophic, and neurotransmission pathways in a sex-dependent rat model of LPS-induced autism was demonstrated.
Asunto(s)
Trastorno Autístico , Colina , Modelos Animales de Enfermedad , Lipopolisacáridos , Neuronas , Animales , Ratas , Masculino , Colina/farmacología , Femenino , Lipopolisacáridos/toxicidad , Trastorno Autístico/inducido químicamente , Trastorno Autístico/patología , Trastorno Autístico/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/metabolismo , Conducta Social , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/patología , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/patología , Caracteres Sexuales , Embarazo , Ratas Wistar , Reacción de Prevención/efectos de los fármacos , Discapacidades para el Aprendizaje/inducido químicamente , Discapacidades para el Aprendizaje/patologíaRESUMEN
Autism spectrum disorder (ASD) is a fast-growing neurodevelopmental disorder throughout the world. Experiencing early life stresses (ELS) like maternal separation (MS) is associated with autistic-like behaviors. It has been proposed that disturbance in the gut-brain axis-mediated psychiatric disorders following MS. The role of disruption in the integrity of gut-brain barrier in ASD remains unclear. Addressing this knowledge gap, in this study we aimed to investigate role of the gut-brain barrier integrity in mediating autistic-like behaviors in mouse models of MS stress. To do this, mice neonates are separated daily from their mothers from postnatal day (PND) 2 to PND 14 for 3 hours. During PND58-60, behavioral tests related to autistic-like behaviors including three-chamber sociability, shuttle box, and resident-intruder tests were performed. Then, prefrontal cortex (PFC), hippocampus, and colon samples were dissected out for histopathological and molecular evaluations. Results showed that MS is associated with impaired sociability and social preference indexes, aggressive behaviors, and impaired passive avoidance memory. The gene expression of CLDN1 decreased in the colon, and the gene expression of CLDN5, CLDN12, and MMP9 increased in the PFC of the MS mice. MS is associated with decrease in the diameter of CA1 and CA3 areas of the hippocampus. In addition, MS led to histopathological changes in the colon. We concluded that, probably, disturbance in the gut-brain barrier integrities mediated the autistic-like behavior in MS stress in mice.
Asunto(s)
Modelos Animales de Enfermedad , Privación Materna , Estrés Psicológico , Animales , Ratones , Estrés Psicológico/patología , Eje Cerebro-Intestino/fisiología , Femenino , Conducta Animal/fisiología , Masculino , Hipocampo/patología , Hipocampo/metabolismo , Corteza Prefrontal/patología , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Trastorno del Espectro Autista/fisiopatología , Conducta Social , Trastorno Autístico/patología , Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Barrera Hematoencefálica/patología , Animales Recién Nacidos , Colon/patologíaRESUMEN
Temporal order memory is impaired in autism spectrum disorder (ASD) and schizophrenia (SCZ). These disorders, more prevalent in males, result in abnormal dendritic spine pruning during adolescence in layer 3 (L3) medial prefrontal cortex (mPFC), yielding either too many (ASD) or too few (SCZ) spines. Here we tested whether altering spine density in neural circuits including the mPFC could be associated with impaired temporal order memory in male mice. We have shown that α4ßδ GABAA receptors (GABARs) emerge at puberty on spines of L5 prelimbic mPFC (PL) where they trigger pruning. We show here that α4ßδ receptors also increase at puberty in L3 PL (P < 0.0001) and used these receptors as a target to manipulate spine density here. Pubertal injection (14 d) of the GABA agonist gaboxadol, at a dose (3 mg/kg) selective for α4ßδ, reduced L3 spine density by half (P < 0.0001), while α4 knock-out increased spine density â¼ 40 % (P < 0.0001), mimicking spine densities in SCZ and ASD, respectively. In both cases, performance on the mPFC-dependent temporal order recognition task was impaired, resulting in decreases in the discrimination ratio which assesses preference for the novel object: -0.39 ± 0.15, gaboxadol versus 0.52 ± 0.09, vehicle; P = 0.0002; -0.048 ± 0.10, α4 KO versus 0.49 ± 0.04, wild-type; P < 0.0001. In contrast, the number of approaches was unaltered, reflecting unchanged locomotion. These data suggest that altering α4ßδ GABAR expression/activity alters spine density in L3 mPFC and impairs temporal order memory to mimic changes in ASD and SCZ. These findings may provide insight into these disorders.
Asunto(s)
Espinas Dendríticas , Corteza Prefrontal , Receptores de GABA-A , Esquizofrenia , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Animales , Receptores de GABA-A/metabolismo , Masculino , Esquizofrenia/metabolismo , Ratones , Espinas Dendríticas/metabolismo , Espinas Dendríticas/efectos de los fármacos , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Ratones Endogámicos C57BL , Isoxazoles/farmacología , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Agonistas de Receptores de GABA-A/farmacología , Trastorno del Espectro Autista/metabolismo , Reconocimiento en Psicología/fisiología , Reconocimiento en Psicología/efectos de los fármacosRESUMEN
Little is known of the brain mechanisms that mediate sex-specific autism symptoms. Here, we demonstrate that deletion of the autism spectrum disorder (ASD)-risk gene, Pten, in neocortical pyramidal neurons (NSEPten knockout [KO]) results in robust cortical circuit hyperexcitability selectively in female mice observed as prolonged spontaneous persistent activity states. Circuit hyperexcitability in females is mediated by metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) signaling to mitogen-activated protein kinases (Erk1/2) and de novo protein synthesis. Pten KO layer 5 neurons have a female-specific increase in mGluR5 and mGluR5-dependent protein synthesis. Furthermore, mGluR5-ERα complexes are generally elevated in female cortices, and genetic reduction of ERα rescues enhanced circuit excitability, protein synthesis, and neuron size selectively in NSEPten KO females. Female NSEPten KO mice display deficits in sensory processing and social behaviors as well as mGluR5-dependent seizures. These results reveal mechanisms by which sex and a high-confidence ASD-risk gene interact to affect brain function and behavior.
Asunto(s)
Trastorno Autístico , Modelos Animales de Enfermedad , Receptor alfa de Estrógeno , Ratones Noqueados , Neocórtex , Fosfohidrolasa PTEN , Receptor del Glutamato Metabotropico 5 , Animales , Femenino , Masculino , Ratones , Trastorno Autístico/metabolismo , Trastorno Autístico/fisiopatología , Trastorno Autístico/genética , Trastorno Autístico/patología , Receptor alfa de Estrógeno/metabolismo , Ratones Endogámicos C57BL , Neocórtex/metabolismo , Neocórtex/patología , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Células Piramidales/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Conducta SocialRESUMEN
Human brain organization involves the coordinated expression of thousands of genes. For example, the first principal component (C1) of cortical transcription identifies a hierarchy from sensorimotor to association regions. In this study, optimized processing of the Allen Human Brain Atlas revealed two new components of cortical gene expression architecture, C2 and C3, which are distinctively enriched for neuronal, metabolic and immune processes, specific cell types and cytoarchitectonics, and genetic variants associated with intelligence. Using additional datasets (PsychENCODE, Allen Cell Atlas and BrainSpan), we found that C1-C3 represent generalizable transcriptional programs that are coordinated within cells and differentially phased during fetal and postnatal development. Autism spectrum disorder and schizophrenia were specifically associated with C1/C2 and C3, respectively, across neuroimaging, differential expression and genome-wide association studies. Evidence converged especially in support of C3 as a normative transcriptional program for adolescent brain development, which can lead to atypical supragranular cortical connectivity in people at high genetic risk for schizophrenia.
Asunto(s)
Corteza Cerebral , Esquizofrenia , Transcriptoma , Humanos , Esquizofrenia/genética , Esquizofrenia/patología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/patología , Corteza Cerebral/metabolismo , Femenino , Masculino , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Adolescente , Trastorno Autístico/genética , Trastorno Autístico/patología , Estudio de Asociación del Genoma Completo , Niño , Adulto , Neuroimagen/métodosRESUMEN
Childhood conditions that feature developmental regression are poorly understood. Phenotype-genotype characterization and diagnostic yield data are needed to inform clinical decision-making. The aim of this study was to report the conditions featuring developmental regression and assess diagnostic yields of investigations. A retrospective chart review of children presenting with developmental regression to a tertiary pediatric genetic clinic between 2018 and 2021 was performed. Of 99 children, 30% (n = 30) had intellectual disability (ID), 21% (n = 21) were autistic, 39% (n = 39) were autistic with ID, and 9% (n = 9) did not have ID or autism. Thirty-two percent (n = 32) of children received a new diagnosis, including eight molecular findings not previously reported to feature developmental regression. Of the children investigated, exome sequencing (ES) provided the highest diagnostic yield (51.1%, n = 24/47), highest (63.6%, n = 14/22) for children with ID, 50% for autistic children with ID (n = 6/12) and children without autism or ID (n = 3/6), and 14.3% (n = 1/7) for autistic children without ID. We highlight the conditions that feature developmental regression and report on novel phenotypic expansions. The high diagnostic yield of ES, regardless of autism or ID diagnosis, indicates the presence of developmental regression as an opportunity to identify the cause, including for genetic differences not previously reported to include regression.