Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Mol Autism ; 15(1): 21, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760865

RESUMEN

BACKGROUND: Identifying modifiable risk factors of autism spectrum disorders (ASDs) may inform interventions to reduce financial burden. The infant/toddler gut microbiome is one such feature that has been associated with social behaviors, but results vary between cohorts. We aimed to identify consistent overall and sex-specific associations between the early-life gut microbiome and autism-related behaviors. METHODS: Utilizing the Environmental influences on Children Health Outcomes (ECHO) consortium of United States (U.S.) pediatric cohorts, we gathered data on 304 participants with fecal metagenomic sequencing between 6-weeks to 2-years postpartum (481 samples). ASD-related social development was assessed with the Social Responsiveness Scale (SRS-2). Linear regression, PERMANOVA, and Microbiome Multivariable Association with Linear Models (MaAsLin2) were adjusted for sociodemographic factors. Stratified models estimated sex-specific effects. RESULTS: Genes encoding pathways for synthesis of short-chain fatty acids were associated with higher SRS-2 scores, indicative of ASDs. Fecal concentrations of butyrate were also positively associated with ASD-related SRS-2 scores, some of which may be explained by formula use. LIMITATIONS: The distribution of age at outcome assessment differed in the cohorts included, potentially limiting comparability between cohorts. Stool sample collection methods also differed between cohorts. Our study population reflects the general U.S. population, and thus includes few participants who met the criteria for being at high risk of developing ASD. CONCLUSIONS: Our study is among the first multicenter studies in the U.S. to describe prospective microbiome development from infancy in relation to neurodevelopment associated with ASDs. Our work contributes to clarifying which microbial features associate with subsequent diagnosis of neuropsychiatric outcomes. This will allow for future interventional research targeting the microbiome to change neurodevelopmental trajectories.


Asunto(s)
Heces , Microbioma Gastrointestinal , Conducta Social , Humanos , Femenino , Masculino , Lactante , Heces/microbiología , Estudios Prospectivos , Preescolar , Trastorno del Espectro Autista/microbiología
2.
Cell Rep Methods ; 4(5): 100775, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38744286

RESUMEN

To address the limitation of overlooking crucial ecological interactions due to relying on single time point samples, we developed a computational approach that analyzes individual samples based on the interspecific microbial relationships. We verify, using both numerical simulations as well as real and shuffled microbial profiles from the human oral cavity, that the method can classify single samples based on their interspecific interactions. By analyzing the gut microbiome of people with autistic spectrum disorder, we found that our interaction-based method can improve the classification of individual subjects based on a single microbial sample. These results demonstrate that the underlying ecological interactions can be practically utilized to facilitate microbiome-based diagnosis and precision medicine.


Asunto(s)
Trastorno del Espectro Autista , Microbioma Gastrointestinal , Humanos , Trastorno del Espectro Autista/microbiología , Trastorno del Espectro Autista/diagnóstico , Boca/microbiología , Microbiota , Interacciones Microbianas , Simulación por Computador
3.
Food Res Int ; 186: 114404, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729686

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an unknown etiology. It is associated with various factors and causes great inconvenience to the patient's life. The gut-brain axis (GBA), which serves as a bidirectional information channel for exchanging information between the gut microbiota and the brain, is vital in studying many neurodegenerative diseases. Dietary flavonoids provide anti-inflammatory and antioxidant benefits, as well as regulating the structure and function of the gut microbiota. The occurrence and development of ASD are associated with dysbiosis of the gut microbiota. Modulation of gut microbiota can effectively improve the severity of ASD. This paper reviews the links between gut microbiota, flavonoids, and ASD, focusing on the mechanism of dietary flavonoids in regulating ASD through the GBA.


Asunto(s)
Trastorno del Espectro Autista , Eje Cerebro-Intestino , Flavonoides , Microbioma Gastrointestinal , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Trastorno del Espectro Autista/microbiología , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/dietoterapia , Flavonoides/farmacología , Dieta , Disbiosis , Encéfalo/metabolismo , Animales , Antioxidantes/farmacología
4.
Cell ; 187(8): 1853-1873.e15, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38574728

RESUMEN

This study has followed a birth cohort for over 20 years to find factors associated with neurodevelopmental disorder (ND) diagnosis. Detailed, early-life longitudinal questionnaires captured infection and antibiotic events, stress, prenatal factors, family history, and more. Biomarkers including cord serum metabolome and lipidome, human leukocyte antigen (HLA) genotype, infant microbiota, and stool metabolome were assessed. Among the 16,440 Swedish children followed across time, 1,197 developed an ND. Significant associations emerged for future ND diagnosis in general and for specific ND subtypes, spanning intellectual disability, speech disorder, attention-deficit/hyperactivity disorder, and autism. This investigation revealed microbiome connections to future diagnosis as well as early emerging mood and gastrointestinal problems. The findings suggest links to immunodysregulation and metabolism, compounded by stress, early-life infection, and antibiotics. The convergence of infant biomarkers and risk factors in this prospective, longitudinal study on a large-scale population establishes a foundation for early-life prediction and intervention in neurodevelopment.


Asunto(s)
Biomarcadores , Microbioma Gastrointestinal , Trastornos del Neurodesarrollo , Niño , Femenino , Humanos , Lactante , Embarazo , Trastorno del Espectro Autista/microbiología , Estudios Longitudinales , Estudios Prospectivos , Heces/microbiología , Trastornos del Humor/microbiología
5.
mSystems ; 9(5): e0050324, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38661344

RESUMEN

The efficacy of prebiotics and probiotics (synbiotics when combined) to improve symptoms associated with autism spectrum disorder (ASD) has shown considerable inter-study variation, likely due to the complex, heterogeneous nature of the disorder and its associated behavioral, developmental, and gastrointestinal symptoms. Here, we present a precision synbiotic supplementation study in 296 children and adults diagnosed with ASD versus 123 age-matched neurotypical controls. One hundred seventy ASD participants completed the study. Baseline and post-synbiotic assessment of ASD and gastrointestinal (GI) symptoms and deep metagenomic sequencing were performed. Within the ASD cohort, there were significant differences in microbes between subpopulations based on the social responsiveness scale (SRS2) survey (Prevotella spp., Bacteroides, Fusicatenibacter, and others) and gluten and dairy-free diets (Bifidobacterium spp., Lactococcus, Streptococcus spp., and others). At the baseline, the ASD cohort maintained a lower taxonomic alpha diversity and significant differences in taxonomic composition, metabolic pathways, and gene families, with a greater proportion of potential pathogens, including Shigella, Klebsiella, and Clostridium, and lower proportions of beneficial microbes, including Faecalibacterium compared to controls. Following the 3-month synbiotic supplementation, the ASD cohort showed increased taxonomic alpha diversity, shifts in taxonomy and metabolic pathway potential, and improvements in some ASD-related symptoms, including a significant reduction in GI discomfort and overall improved language, comprehension, cognition, thinking, and speech. However, the open-label study design may include some placebo effects. In summary, we found that precision synbiotics modulated the gut microbiome and could be used as supplementation to improve gastrointestinal and ASD-related symptoms. IMPORTANCE: Autism spectrum disorder (ASD) is prevalent in 1 out of 36 children in the United States and contributes to health, financial, and psychological burdens. Attempts to identify a gut microbiome signature of ASD have produced varied results. The limited pre-clinical and clinical population sizes have hampered the success of these trials. To understand the microbiome associated with ASD, we employed whole metagenomic shotgun sequencing to classify microbial composition and genetic functional potential. Despite being one of the most extensive ASD post-synbiotic assessment studies, the results highlight the complexity of performing such a case-control supplementation study in this population and the potential for a future therapeutic approach in ASD.


Asunto(s)
Trastorno del Espectro Autista , Microbioma Gastrointestinal , Simbióticos , Humanos , Trastorno del Espectro Autista/microbiología , Trastorno del Espectro Autista/dietoterapia , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Femenino , Proyectos Piloto , Niño , Simbióticos/administración & dosificación , Adulto , Adolescente , Preescolar , Adulto Joven , Probióticos/administración & dosificación , Probióticos/uso terapéutico , Probióticos/farmacología
6.
Food Funct ; 15(8): 4338-4353, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38533674

RESUMEN

Vitamin D deficiency (VDD) during early life emerges as a potential risk factor for autism spectrum disorder (ASD). Individuals with autism commonly exhibit lower vitamin D (VD) levels compared to the general population, and VD deficiency is prevalent during pregnancy and lactation. Moreover, gastrointestinal comorbidity, prevalent in ASD patients, correlates closely with disruptions in the gut microbiota and altered intestinal permeability. Therefore, it is fascinating and significant to explore the effects of maternal VD deficiency during pregnancy and lactation on the maturation of the gut microbiota of the offspring and its relevance to autism spectrum disorders. In this study, we established maternal pregnancy and lactation VD-deficient mouse models, employed shotgun macrogenomic sequencing to unveil alterations in the gut microbiome of offspring mice, and observed autism-related behaviours. Furthermore, fecal microbial transplantation (FMT) reversed repetitive and anxious behaviours and alleviated social deficits in offspring mice by modulating the gut microbiota and increasing short-chain fatty acid levels in the cecum, along with influencing the concentrations of claudin-1 and occludin in the colon. Our findings confirm that VDD during pregnancy and lactation is a risk factor for autism in the offspring, with disturbances in the structure and function of the offspring's gut microbiota contributing at least part of the effect. The study emphasises the importance of nutrition and gut health early in life. Simultaneously, this study further demonstrates the effect of VDD on ASD and provides potential ideas for early prevention and intervention of ASD.


Asunto(s)
Trastorno del Espectro Autista , Microbioma Gastrointestinal , Deficiencia de Vitamina D , Animales , Deficiencia de Vitamina D/complicaciones , Ratones , Femenino , Masculino , Embarazo , Trastorno del Espectro Autista/microbiología , Trastorno del Espectro Autista/metabolismo , Homeostasis , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Trastorno Autístico/metabolismo , Trastorno Autístico/microbiología , Trasplante de Microbiota Fecal , Conducta Animal , Lactancia , Vitamina D/metabolismo , Efectos Tardíos de la Exposición Prenatal
7.
Cell Rep Med ; 5(2): 101409, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38307030

RESUMEN

Emerging evidence suggests autism spectrum disorder (ASD) is associated with altered gut bacteria. However, less is known about the gut viral community and its role in shaping microbiota in neurodevelopmental disorders. Herein, we perform a metagenomic analysis of gut-DNA viruses in 60 children with ASD and 64 age- and gender-matched typically developing children to investigate the effect of the gut virome on host bacteria in children with ASD. ASD is associated with altered gut virome composition accompanied by the enrichment of Clostridium phage, Bacillus phage, and Enterobacteria phage. These ASD-enriched phages are largely associated with disrupted viral ecology in ASD. Importantly, changes in the interplay between the gut bacteriome and virome seen in ASD may influence the encoding capacity of microbial pathways for neuroactive metabolite biosynthesis. These findings suggest an impaired bacteriome-virome ecology in ASD, which sheds light on the importance of bacteriophages in pathogenesis and the development of microbial therapeutics in ASD.


Asunto(s)
Trastorno del Espectro Autista , Bacteriófagos , Microbioma Gastrointestinal , Microbiota , Niño , Humanos , Trastorno del Espectro Autista/terapia , Trastorno del Espectro Autista/microbiología , Viroma , Microbioma Gastrointestinal/genética , Heces/microbiología , Bacteriófagos/genética , Bacterias/genética
8.
Ecotoxicol Environ Saf ; 269: 115797, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070418

RESUMEN

Prenatal caffeine exposure (PCE) is a significant contributor to intrauterine growth retardation (IUGR) in offspring, which has been linked to an increased susceptibility to autism spectrum disorder (ASD) later in life. Additionally, a high-fat diet (HFD) has been shown to exacerbate ASD-like behaviors, but the underlying mechanisms remain unclear. In this study, we first noted in the rat model of IUGR induced by PCE that male PCE offspring exhibited typical ASD-like behaviors post-birth, in contrast to their female counterparts. The female PCE offspring demonstrated only reduced abilities in free exploration and spatial memory. Importantly, both male and female PCE offspring displayed ASD-like behaviors when exposed to HFD. We further observed that PCE + HFD offspring exhibited damaged intestinal mucus barriers and disturbed gut microbiota, resulting in an increased abundance of Escherichia coli (E. coli). The induced differentiation of colonic Th17 cells by E. coli led to an increased secretion of IL-17A, which entered the hippocampus through peripheral circulation and caused synaptic damage in hippocampal neurons, ultimately resulting in ASD development. Our strain transplantation experiment suggested that E. coli-mediated increase of IL-17A may be the core mechanism of ASD with a fetal origin. In conclusion, PCE and HFD are potential risk factors for ASD, and E. coli-mediated IL-17A may play a crucial role in fetal-originated ASD through the gut-brain axis.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Cafeína , Microbioma Gastrointestinal , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Humanos , Masculino , Embarazo , Ratas , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/microbiología , Trastorno Autístico/inducido químicamente , Trastorno Autístico/microbiología , Encéfalo , Eje Cerebro-Intestino , Cafeína/efectos adversos , Cafeína/toxicidad , Dieta Alta en Grasa/efectos adversos , Escherichia coli , Retardo del Crecimiento Fetal/inducido químicamente , Microbioma Gastrointestinal/efectos de los fármacos , Interleucina-17/genética , Efectos Tardíos de la Exposición Prenatal/inducido químicamente
9.
Future Microbiol ; 19: 213-226, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37934065

RESUMEN

Aim: To evaluate the effects of whey protein (WP) supplementation (1.24 mg/g, 24 days) in rats with autism spectrum disorder (ASD) induced by valproic acid (400 mg/kg, single dose). Materials & methods: Wistar rats (14 days old) were divided into four groups: control, ASD, ASD plus WP and WP. Results: WP increased bacterial diversity and the number of colonies. Bacteria from the Firmicutes phylum were predominantly found in the supplemented groups (p < 0.05). WP also improved the animals' memory in the Y-maze test and decreased the time that male animals spent in the 'solitary chamber' (p < 0.05). Conclusion: WP supplementation positively influenced gut microbiota, along with memory.


Thousands of bacteria live in the human intestine. These bacteria help with many functions in the body and are so important that they can communicate with the brain. When the types and abundance of these bacteria change, brain activity can also change. This may be the case in some children with autism spectrum disorder (ASD), who may have an increase in harmful types of bacteria and a decrease in beneficial types of bacteria in the gut. Whey protein is a commonly used protein supplement for muscle growth. However, many studies have shown its benefits for gut bacteria. The authors investigated the effects of whey protein in animals with symptoms of ASD and showed that supplementation with whey protein increased the number of beneficial bacteria. In addition, the rats given whey protein had better memory. ASD-induced rats were less sociable, spending more time by themselves. However, male animals treated with whey protein spent less time alone. Supplementation with whey protein was beneficial for gut bacteria and memory in rats.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Microbioma Gastrointestinal , Masculino , Ratas , Animales , Trastorno Autístico/inducido químicamente , Trastorno Autístico/tratamiento farmacológico , Proteína de Suero de Leche , Ácido Valproico/farmacología , Ratas Wistar , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/microbiología , Bacterias , Suplementos Dietéticos
10.
Artículo en Alemán | MEDLINE | ID: mdl-38098430

RESUMEN

Gut Microbiota and Autism Spectrum Disorders: An Overview of Correlations and Potential Implications for Therapeutic Interventions Abstract: At the beginning of research on microbiota, researchers focused mainly on the role of microbiota dysbiosis in the development of gastrointestinal diseases. However, over the last years, researchers have also identified correlations with other physical processes and neuropsychiatric diseases such as autism spectrum disorder. These correlations are believed to be at least partly mediated through the brain-gut-microbiome axis. An altered composition of microbiota in patients with autism spectrum disorder was detected compared to healthy controls. Today, the discussion centers around a possible systemic impact of the metabolites of some microbiota or microbiota-induced chronic inflammatory processes on the brain (mediated through the brain-gut-microbiome axis) as an underlying mechanism. Still, the specific underlying mechanisms remain largely unknown, so conclusions on therapeutic implications are difficult to determine. Here, we describe some promising approaches to improving autistic behavior through dietary changes, the use of prebiotics and probiotics, stool transplantation from healthy controls, and restricted absorbance of certain metabolites. We need further clinical studies of high quality to fully understand the pathophysiology of autism spectrum disorder and to improve diagnostic and therapeutic strategies.


Asunto(s)
Trastorno del Espectro Autista , Eje Cerebro-Intestino , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Prebióticos , Probióticos , Trastorno del Espectro Autista/terapia , Trastorno del Espectro Autista/microbiología , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/psicología , Humanos , Niño , Probióticos/uso terapéutico , Disbiosis , Correlación de Datos
11.
Nutrients ; 15(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37513683

RESUMEN

Autism Spectrum Disorder (ASD) is characterized by varying degrees of difficulty in social interaction and communication. These deficits are often associated with gastrointestinal symptoms, indicating alterations in both intestinal microbiota composition and metabolic activities. The intestinal microbiota influences the function and development of the nervous system. In individuals with ASD, there is an increase in bacterial genera such as Clostridium, as well as species involved in the synthesis of branched-chain amino acids (BCAA) like Prevotella copri. Conversely, decreased amounts of Akkermansia muciniphila and Bifidobacterium spp. are observed. Epigallocatechin-3-gallate (EGCG) is one of the polyphenols with the greatest beneficial activity on microbial growth, and its consumption is associated with reduced psychological distress. Therefore, the objective of this review is to analyze how EGCG and its metabolites can improve the microbial dysbiosis present in ASD and its impact on the pathology. The analysis reveals that EGCG inhibits the growth of pathogenic bacteria like Clostridium perfringens and Clostridium difficile. Moreover, it increases the abundance of Bifidobacterium spp. and Akkermansia spp. As a result, EGCG demonstrates efficacy in increasing the production of metabolites involved in maintaining epithelial integrity and improving brain function. This identifies EGCG as highly promising for complementary treatment in ASD.


Asunto(s)
Trastorno del Espectro Autista , Microbioma Gastrointestinal , Humanos , Niño , Trastorno del Espectro Autista/microbiología , Disbiosis/microbiología , Bacterias
12.
Transl Psychiatry ; 13(1): 257, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443359

RESUMEN

Evidence from cross-sectional human studies, and preliminary microbial-based intervention studies, have implicated the microbiota-gut-brain axis in the neurobiology of autism spectrum disorder (ASD). Using a prospective longitudinal study design, we investigated the developmental profile of the fecal microbiota and metabolome in infants with (n = 16) and without (n = 19) a family history of ASD across the first 36 months of life. In addition, the general developmental levels of infants were evaluated using the Mullen Scales of Early Learning (MSEL) test at 5 and 36 months of age, and with ADOS-2 at 36 months of age. At 5 months of age, infants at elevated-likelihood of ASD (EL) harbored less Bifidobacterium and more Clostridium and Klebsiella species compared to the low-likelihood infants (LL). Untargeted metabolic profiling highlighted that LL infants excreted a greater amount of fecal γ-aminobutyric acid (GABA) at 5 months, which progressively declined with age. Similar age-dependent patterns were not observed in the EL group, with GABA being consistently low across all timepoints. Integrated microbiome-metabolome analysis showed a positive correlation between GABA and Bifidobacterium species and negative associations with Clostridium species. In vitro experiments supported these observations demonstrating that bifidobacteria can produce GABA while clostridia can consume it. At the behavioral level, there were no significant differences between the EL and LL groups at 5 months. However, at 36 months of age, the EL group had significantly lower MSEL and ADOS-2 scores compared to the LL group. Taken together, the present results reveal early life alterations in gut microbiota composition and functionality in infants at elevated-likelihood of ASD. These changes occur before any behavioral impairments can be detected, supporting a possible role for the gut microbiota in emerging behavioral variability later in life.


Asunto(s)
Trastorno del Espectro Autista , Microbioma Gastrointestinal , Humanos , Lactante , Trastorno del Espectro Autista/microbiología , Estudios Longitudinales , Estudios Prospectivos , Estudios Transversales
13.
Mediators Inflamm ; 2023: 5127157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816743

RESUMEN

Methods: We searched PubMed, Cochrane Library, and Epistemonikos to identify systematic reviews and meta-analysis (SRs). We searched for neurological diseases and psychiatric disorders, including Alzheimer's disease (AD), attention deficit hyperactivity disorder (ADHD), amyotrophic lateral sclerosis (ALS), autism spectrum disorder (ASD), anorexia nervosa (AN), bipolar disorder (BD), eating disorder (ED), generalized anxiety disorder (GAD), major depressive disorder (MDD), multiple sclerosis (MS), obsessive compulsive disorder (OCD), Parkinson's disease (PD), posttraumatic stress disorder (PTSD), spinal cord injury (SCI), schizophrenia, and stroke. We used A Measurement Tool to Assess Systematic Reviews (AMSTAR-2) to evaluate the quality of included SRs. We also created an evidence map showing the role of gut microbiota in neurological diseases and the certainty of the evidence. Results: In total, 42 studies were included in this evidence mapping. Most findings were obtained from observational studies. According to the AMSTAR-2 assessment, 21 SRs scored "critically low" in terms of methodological quality, 16 SR scored "low," and 5 SR scored "moderate." A total of 15 diseases have been investigated for the potential association between gut microbiome alpha diversity and disease, with the Shannon index and Simpson index being the most widely studied. A total of 12 diseases were investigated for potential link between beta diversity and disease. At the phylum level, Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia were more researched. At the genus level, Prevotella, Coprococcus, Parabacteroides, Phascolarctobacterium, Escherichia Shigella, Alistipes, Sutteralla, Veillonella, Odoribacter, Faecalibacterium, Bacteroides, Bifidobacterium, Dialister, and Blautia were more researched. Some diseases have been found to have specific flora changes, and some diseases have been found to have common intestinal microbiological changes. Conclusion: We found varied levels of evidence for the associations between gut microbiota and neurological diseases; some gut microbiota increased the risk of neurological diseases, whereas others showed evidence of benefit that gut microbiota might be promising therapeutic targets for such diseases.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Depresivo Mayor , Microbioma Gastrointestinal , Humanos , Trastorno del Espectro Autista/microbiología , Bacterias , Firmicutes , Bacteroidetes , Clostridiales
14.
Int J Sports Med ; 44(7): 473-483, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36690029

RESUMEN

The effect of exercise interventions on autism spectrum disorder (ASD) has been demonstrated in many studies, and the discovery of a bidirectional relationship between the gut microbiome (GM) and the central nervous system (CNS) has led to the concept of the microbial gut-brain axis (MGBA) and has linked the abnormal GM to a variety of neuropsychiatric disorders, autism being one of them. Research on improving the GM through exercise is also starting to come into focus. However, there are currently few studies on exercise intervention in the GM of autism. The purpose of this review was to find evidence to explore the possible potential effects of exercise to improve the behavior of individuals with autism in the MGBA in this treatment, as well as the potential of GM as an exercise treatment for autism. We will explore (1) changes in GM components of ASD and their relationship to the pathophysiology of ASD; (2) the relationship between exercise and changes in GM components, and (3) the effect of exercise on GM in CNS disorders. Ultimately, we concluded that Streptococcus, Bifidobacterium, Clostridium, Bacteroides, and Blautia may be potential effectors through the MGBA network during exercise to ameliorate ASD targeting microbiotas. They deserve high attention in the follow-up studies.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/fisiología , Trastorno Autístico/terapia , Trastorno del Espectro Autista/terapia , Trastorno del Espectro Autista/microbiología
15.
J Autism Dev Disord ; 53(7): 2703-2716, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35441922

RESUMEN

Leaky gut hypothesis is one of the well-known theory which tries to explain etiology of Autism Spectrum Disorder (ASD). Unfortunately there is still a gap of evidence to investigate the corner points of the hypothesis. The aim of this study was to investigate the determinants of leaky gut in children with ASD, their siblings and healthy controls. Intestinal microbiota was found to be similar between ASD and sibling groups. Biological markers of bacterial translocation showed a significant difference in the sibling group, whereas the marker indicating local inflammation was not different between the groups. The findings from this study did not support the role of Gut microbiota or leaky gut on the etiology of autism.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Microbioma Gastrointestinal , Humanos , Niño , Trastorno del Espectro Autista/microbiología , Hermanos , Biomarcadores
16.
J Alzheimers Dis ; 94(s1): S241-S252, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36093695

RESUMEN

BACKGROUND: Aureobasidium pullulans (black yeast) AFO-202 strain-produced beta glucan, Nichi Glucan, has been shown to improve the behavior and sleep pattern along with an increase in α-synuclein and melatonin in children with autism spectrum disorder (ASD). OBJECTIVE: In this randomized pilot clinical study, we have evaluated the gut microbiota of subjects with ASD after consumption of Nichi Glucan. METHODS: Eighteen subjects with ASD were randomly allocated: six subjects in the control group (Group 1): conventional treatment comprising remedial behavioral therapies and L-carnosine 500 mg per day, and 12 subjects (Group 2) underwent supplementation with Nichi Glucan 0.5 g twice daily along with the conventional treatment for 90 days. RESULTS: Whole genome metagenome (WGM) sequencing of the stool samples at baseline and after intervention showed that among genera of relevance, the abundance of Enterobacteriaceae was decreased almost to zero in Group 2 after intervention, whereas it increased from 0.36% to 0.85% in Group 1. The abundance of Bacteroides increased in Group 1, whereas it decreased in Group 2. The abundance of Prevotella increased while the abundance of Lactobacillus decreased in both Group 1 and Group 2. Among species, a decrease was seen in Escherichia coli, Akkermansia muciniphila CAG:154, Blautia spp., Coprobacillus sp., and Clostridium bolteae CAG:59, with an increase of Faecalibacterium prausnitzii and Prevotella copri, which are both beneficial. CONCLUSION: AFO-202 beta 1,3-1,6 glucan, in addition to balancing the gut microbiome in children with ASD and its role in effective control of curli-producing Enterobacteriaceae that leads to α-synuclein misfolding and accumulation, may have a prophylactic role in Parkinson's and Alzheimer's diseases as well.


Asunto(s)
Trastorno del Espectro Autista , Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Humanos , alfa-Sinucleína , Glucanos , Trastorno del Espectro Autista/terapia , Trastorno del Espectro Autista/microbiología , Enfermedades Neurodegenerativas/terapia
17.
EBioMedicine ; 86: 104323, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36395738

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is a common neurodevelopmental disease, characterized by deficits in social communication, restricted and repetitive behaviours, and impaired fear memory processing. Severe gastrointestinal dysfunction and altered gut microbiome have been reported in ASD patients and animal models. Contactin associated protein-like 4 (CNTNAP4) has been suggested to be a novel risk gene, though its role in ASD remains unelucidated. METHODS: Cntnap4-/- mice were generated to explore its role in ASD-related behavioural abnormalities. Electrophysiological recording was employed to examine GABAergic transmission in the basolateral amygdala (BLA) and prefrontal cortex. RNA-sequencing was performed to assess underlying mechanisms. 16S rDNA analysis was performed to explore changes in faecal microbial composition. Male Cntnap4-/- mice were fed with Lactobacillus reuteri (L. reuteri) or faecal microbiota to evaluate the effects of microbiota supplementation on the impaired fear conditioning mediated by Cntnap4 deficiency. FINDINGS: Male Cntnap4-/- mice manifested deficiency in social behaviours and tone-cue fear conditioning. Notably, reduced GABAergic transmission and GABA receptor expression were found in the BLA but not the prefrontal cortex. In addition, gut Lactobacillus were less abundant in male Cntnap4-/- mice, and L. reuteri treatment or faecal microbiota transplantation rescued abnormal tone-cued fear memory and improved local GABAergic transmission in the BLA of male Cntnap4-/- mice. INTERPRETATION: Cntnap4 shapes GABAergic transmission of amygdala and fear conditioning, and microbial intervention represents a promising therapy in ASD intervention. FUNDING: National Natural Science Foundation of China, Science and Technology Planning Project of Guangzhou, Guangzhou Medical University, and China Postdoctoral Science Foundation.


Asunto(s)
Trastorno del Espectro Autista , Limosilactobacillus reuteri , Animales , Masculino , Ratones , Amígdala del Cerebelo/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/microbiología , Miedo/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Modelos Animales de Enfermedad , Trasplante de Microbiota Fecal , Memoria/fisiología
18.
NPJ Biofilms Microbiomes ; 8(1): 91, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400799

RESUMEN

Growing evidence suggests altered oral and gut microbiota in autism spectrum disorder (ASD), but little is known about the alterations and roles of phages, especially within the oral microbiota in ASD subjects. We enrolled ASD (n = 26) and neurotypical subjects (n = 26) with their oral hygiene controlled, and the metagenomes of both oral and fecal samples (n = 104) are shotgun-sequenced and compared. We observe extensive and diverse oral phageome comparable to that of the gut, and clear signals of mouth-to-gut phage strain transfer within individuals. However, the overall phageomes of the two sites are widely different and show even less similarity in the oral communities between ASD and control subjects. The ASD oral phageome exhibits significantly reduced abundance and alpha diversity, but the Streptococcal phages there are atypically enriched, often dominating the community. The over-representation of Streptococcal phages is accompanied by enriched oral Streptococcal virulence factors and Streptococcus bacteria, all exhibiting a positive correlation with the severity of ASD clinical manifestations. These changes are not observed in the parallel sampling of the gut flora, suggesting a previously unknown oral-specific association between the excessive Streptococcal phage enrichment and ASD pathogenesis. The findings provide new evidence for the independent microbiome-mouth-brain connection, deepen our understanding of how the growth dynamics of bacteriophages and oral microbiota contribute to ASD, and point to novel effective therapeutics.


Asunto(s)
Trastorno del Espectro Autista , Bacteriófagos , Microbioma Gastrointestinal , Fagos de Streptococcus , Humanos , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/microbiología , Boca/microbiología , Bacteriófagos/genética
19.
Nutrients ; 14(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36296908

RESUMEN

As the largest "immune organ" of human beings, the gut microbiota is symbiotic and mutually beneficial with the human host, playing multiple physiological functions. Studies have long shown that dysbiosis of gut microbiota is associated with almost all human diseases, mainly including type II diabetes, cancers, neurodegenerative diseases, autism spectrum disorder, and kidney diseases. As a novel and potential biological medicine for disease prevention, intervention and drug sensitization, the gut microbiota has attracted more and more attention recently. Although the gut microbiota is a comprehensive microbial community, several star bacteria have emerged as possible tools to fight against various diseases. This review aims to elucidate the relevance of gut microbiota dysbiosis with disease occurrence and progression, and mainly summarizes four well-known genera with therapeutic and sensitizing potential, Akkermansia, Bifidobacterium, Lactobacillus and Parabacteroides, thoroughly elucidate their potential value as biological drugs to treat diverse disease.


Asunto(s)
Trastorno del Espectro Autista , Productos Biológicos , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiología , Disbiosis/microbiología , Trastorno del Espectro Autista/microbiología
20.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35955962

RESUMEN

Autism spectrum disorder (ASD) is often associated with several intestinal and/or metabolic disorders as well as neurological manifestations such as epilepsy (ASD-E). Those presenting these neuropathological conditions share common aspects in terms of gut microbiota composition. The use of microbiota intervention strategies may be an approach to consider in the management of these cases. We describe the case of a 17-year-old girl affected by ASD, reduced growth, neurological development delay, mutations in the PGM1 and EEF1A2 genes (in the absence of clinically manifested disease) and, intestinal disorders such as abdominal pain and diarrhea associated with weight loss. As she demonstrated poor responsiveness to the therapies provided, we attempted two specific dietary patterns: a ketogenic diet, followed by a low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet, with the aim of improving her neurological, metabolic, and intestinal symptoms through modulation of the gut microbiota's composition. The ketogenic diet (KD) provided a reduction in Firmicutes, Bacteroidetes, and Proteobacteria. Although her intestinal symptoms improved, KD was poorly tolerated. On the other hand, the passage to a low FODMAPs diet produced a significant improvement in all neurological, intestinal, and metabolic symptoms and was well-tolerated. The following gut microbiota analysis showed reductions in Actinobacteria, Firmicutes, Lactobacilli, and Bifidobacteria. The alpha biodiversity was consistently increased and the Firmicutes/Bacteroidetes ratio decreased, reducing the extent of fermentative dysbiosis. Gut microbiota could be a therapeutic target to improve ASD-related symptoms. Further studies are needed to better understand the correlation between gut microbiota composition and ASD, and its possible involvement in the physiopathology of ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Epilepsia , Microbioma Gastrointestinal , Síndrome del Colon Irritable , Adolescente , Trastorno del Espectro Autista/microbiología , Dieta Baja en Carbohidratos , Disacáridos/farmacología , Epilepsia/terapia , Femenino , Humanos , Síndrome del Colon Irritable/microbiología , Monosacáridos/farmacología , Oligosacáridos/farmacología , Factor 1 de Elongación Peptídica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA