Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.494
Filtrar
1.
Biol Sex Differ ; 15(1): 42, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750598

RESUMEN

BACKGROUND: Sex differences exist in the prevalence and clinical manifestation of several mental disorders, suggesting that sex-specific brain phenotypes may play key roles. Previous research used machine learning models to classify sex from imaging data of the whole brain and studied the association of class probabilities with mental health, potentially overlooking regional specific characteristics. METHODS: We here investigated if a regionally constrained model of brain volumetric imaging data may provide estimates that are more sensitive to mental health than whole brain-based estimates. Given its known role in emotional processing and mood disorders, we focused on the limbic system. Using two different cohorts of healthy subjects, the Human Connectome Project and the Queensland Twin IMaging, we investigated sex differences and heritability of brain volumes of limbic structures compared to non-limbic structures, and subsequently applied regionally constrained machine learning models trained solely on limbic or non-limbic features. To investigate the biological underpinnings of such models, we assessed the heritability of the obtained sex class probability estimates, and we investigated the association with major depression diagnosis in an independent clinical sample. All analyses were performed both with and without controlling for estimated total intracranial volume (eTIV). RESULTS: Limbic structures show greater sex differences and are more heritable compared to non-limbic structures in both analyses, with and without eTIV control. Consequently, machine learning models performed well at classifying sex based solely on limbic structures and achieved performance as high as those on non-limbic or whole brain data, despite the much smaller number of features in the limbic system. The resulting class probabilities were heritable, suggesting potentially meaningful underlying biological information. Applied to an independent population with major depressive disorder, we found that depression is associated with male-female class probabilities, with largest effects obtained using the limbic model. This association was significant for models not controlling for eTIV whereas in those controlling for eTIV the associations did not pass significance correction. CONCLUSIONS: Overall, our results highlight the potential utility of regionally constrained models of brain sex to better understand the link between sex differences in the brain and mental disorders.


Psychiatric disorders have different prevalence between sexes, with women being twice as likely to develop depression and anxiety across the lifespan. Previous studies have investigated sex differences in brain structure that might contribute to this prevalence but have mostly focused on a single-structure level, potentially overlooking the interplay between brain regions. Sex differences in structures responsible for emotional regulation (limbic system), affected in many psychiatric disorders, have been previously reported. Here, we apply a machine learning model to obtain an estimate of brain sex for each participant based on the volumes of multiple brain regions. Particularly, we compared the estimates obtained with a model based solely on limbic structures with those obtained with a non-limbic model (entire brain except limbic structures) and a whole brain model. To investigate the genetic determinants of the models, we assessed the heritability of the estimates between identical twins and fraternal twins. The estimates of all our models were heritable, suggesting a genetic component contributing to brain sex. Finally, to investigate the association with mental health, we compared brain sex estimates in healthy subjects and in a depressed population. We found an association between depression and brain sex in females for the limbic model, but not for the non-limbic model. No effect was found in males. Overall, our results highlight the potential utility of machine learning models of brain sex based on relevant structures to better understand the link between sex differences in the brain and mental disorders.


Asunto(s)
Sistema Límbico , Trastornos Mentales , Fenotipo , Caracteres Sexuales , Humanos , Sistema Límbico/diagnóstico por imagen , Femenino , Masculino , Trastornos Mentales/genética , Trastornos Mentales/diagnóstico por imagen , Adulto , Aprendizaje Automático , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/diagnóstico por imagen , Adulto Joven , Persona de Mediana Edad
2.
PLoS One ; 19(5): e0247212, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753848

RESUMEN

We investigated the functional classes of genomic regions containing SNPS contributing most to the SNP-heritability of important psychiatric and neurological disorders and behavioral traits, as determined from recent genome-wide association studies. We employed linkage-disequilibrium score regression with several brain-specific genomic annotations not previously utilized. The classes of genomic annotations conferring substantial SNP-heritability for the psychiatric disorders and behavioral traits differed systematically from the classes associated with neurological disorders, and both differed from the classes enriched for height, a biometric trait used here as a control outgroup. The SNPs implicated in these psychiatric disorders and behavioral traits were highly enriched in CTCF binding sites, in conserved regions likely to be enhancers, and in brain-specific promoters, regulatory sites likely to affect responses to experience. The SNPs relevant for neurological disorders were highly enriched in constitutive coding regions and splice regulatory sites.


Asunto(s)
Estudio de Asociación del Genoma Completo , Trastornos Mentales , Enfermedades del Sistema Nervioso , Polimorfismo de Nucleótido Simple , Humanos , Trastornos Mentales/genética , Enfermedades del Sistema Nervioso/genética , Desequilibrio de Ligamiento , Predisposición Genética a la Enfermedad , Regiones Promotoras Genéticas
3.
Biochem J ; 481(10): 615-642, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38722301

RESUMEN

Early-life adversities, whether prenatal or postnatal exposure, have been linked to adverse mental health outcomes later in life increasing the risk of several psychiatric disorders. Research on its neurobiological consequences demonstrated an association between exposure to adversities and persistent alterations in the structure, function, and connectivity of the brain. Consistent evidence supports the idea that regulation of gene expression through epigenetic mechanisms are involved in embedding the impact of early-life experiences in the genome and mediate between social environments and later behavioral phenotypes. In addition, studies from rodent models and humans suggest that these experiences and the acquired risk factors can be transmitted through epigenetic mechanisms to offspring and the following generations potentially contributing to a cycle of disease or disease risk. However, one of the important aspects of epigenetic mechanisms, unlike genetic sequences that are fixed and unchangeable, is that although the epigenetic markings are long-lasting, they are nevertheless potentially reversible. In this review, we summarize our current understanding of the epigenetic mechanisms involved in the mental health consequences derived from early-life exposure to malnutrition, maltreatment and poverty, adversities with huge and pervasive impact on mental health. We also discuss the evidence about transgenerational epigenetic inheritance in mammals and experimental data suggesting that suitable social and pharmacological interventions could reverse adverse epigenetic modifications induced by early-life negative social experiences. In this regard, these studies must be accompanied by efforts to determine the causes that promote these adversities and that result in health inequity in the population.


Asunto(s)
Epigénesis Genética , Trastornos Mentales , Humanos , Animales , Trastornos Mentales/genética , Trastornos Mentales/etiología , Salud Mental , Efectos Tardíos de la Exposición Prenatal/genética , Embarazo , Femenino , Experiencias Adversas de la Infancia , Metilación de ADN
4.
Heart Lung ; 66: 86-93, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593678

RESUMEN

BACKGROUND: Previous observational studies have suggested associations between Coronary Heart Disease (CHD) and Mental Health Disorders (MHD). However, the causal nature of these relationships has remained elusive. OBJECTIVE: The purpose of this study is to elucidate the causal relationships between eight distinct types of CHD and six types of MHD using Mendelian randomization (MR) analysis. METHODS: The MR analysis employed a suite of methods including inverse variance-weighted (IVW), MR-Egger, weighted mode, weighted median, and simple mode techniques. To assess heterogeneity, IVW and MR-Egger tests were utilized. MR-Egger regression also served to investigate potential pleiotropy. The stability of IVW results was verified by leave-one-out sensitivity analysis. RESULTS: We analyzed data from over 2,473,005 CHD and 803,801 MHD patients, informed by instrumental variables from large-scale genomic studies on European populations. The analysis revealed a causal increase in the risk of Major Depressive Disorder and Mania associated with Coronary Artery Disease and Myocardial Infarction. Heart Failure was found to causally increase the risk for Bipolar Disorder and Schizophrenia. Atrial Fibrillation and Ischemic Heart Diseases were positively linked to Generalized Anxiety Disorder and Mania, respectively. There was no significant evidence of an association between Hypertensive Heart Disease, Hypertrophic Cardiomyopathy, Pulmonary Heart Disease, and MHD. Reverse MR analysis indicated that MHD do not serve as risk factors for CHD. CONCLUSIONS: The findings suggest that specific types of CHD may act as risk factors for certain MHDs. Consequently, incorporating psychological assessments into the management of patients with CHD could be advantageous.


Asunto(s)
Enfermedad Coronaria , Análisis de la Aleatorización Mendeliana , Trastornos Mentales , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Enfermedad Coronaria/psicología , Enfermedad Coronaria/epidemiología , Enfermedad Coronaria/genética , Enfermedad Coronaria/complicaciones , Factores de Riesgo , Trastornos Mentales/epidemiología , Trastornos Mentales/genética , Masculino , Femenino
5.
Genes (Basel) ; 15(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38674405

RESUMEN

The sheer number of gene variants and the extent of the observed clinical and molecular heterogeneity recorded in neuropsychiatric disorders (NPDs) could be due to the magnified downstream effects initiated by a smaller group of genomic higher-order alterations in response to endogenous or environmental stress. Chromosomal common fragile sites (CFS) are functionally linked with microRNAs, gene copy number variants (CNVs), sub-microscopic deletions and duplications of DNA, rare single-nucleotide variants (SNVs/SNPs), and small insertions/deletions (indels), as well as chromosomal translocations, gene duplications, altered methylation, microRNA and L1 transposon activity, and 3-D chromosomal topology characteristics. These genomic structural features have been linked with various NPDs in mostly isolated reports and have usually only been viewed as areas harboring potential candidate genes of interest. The suggestion to use a higher level entry point (the 'fragilome' and associated features) activated by a central mechanism ('stress') for studying NPD genetics has the potential to unify the existing vast number of different observations in this field. This approach may explain the continuum of gene findings distributed between affected and unaffected individuals, the clustering of NPD phenotypes and overlapping comorbidities, the extensive clinical and molecular heterogeneity, and the association with certain other medical disorders.


Asunto(s)
Variaciones en el Número de Copia de ADN , Trastornos Mentales , Fenotipo , Humanos , Trastornos Mentales/genética , Variaciones en el Número de Copia de ADN/genética , Genoma Humano , Sitios Frágiles del Cromosoma/genética
6.
J Transl Med ; 22(1): 387, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664746

RESUMEN

BACKGROUND: Integrating quantitative trait loci (QTL) data related to molecular phenotypes with genome-wide association study (GWAS) data is an important post-GWAS strategic approach employed to identify disease-associated molecular features. Various types of molecular phenotypes have been investigated in neuropsychiatric disorders. However, these findings pertaining to distinct molecular features are often independent of each other, posing challenges for having an overview of the mapped genes. METHODS: In this study, we comprehensively summarized published analyses focusing on four types of risk-related molecular features (gene expression, splicing transcriptome, protein abundance, and DNA methylation) across five common neuropsychiatric disorders. Subsequently, we conducted supplementary analyses with the latest GWAS dataset and corresponding deficient molecular phenotypes using Functional Summary-based Imputation (FUSION) and summary data-based Mendelian randomization (SMR). Based on the curated and supplemented results, novel reliable genes and their functions were explored. RESULTS: Our findings revealed that eQTL exhibited superior ability in prioritizing risk genes compared to the other QTL, followed by sQTL. Approximately half of the genes associated with splicing transcriptome, protein abundance, and DNA methylation were successfully replicated by eQTL-associated genes across all five disorders. Furthermore, we identified 436 novel reliable genes, which enriched in pathways related with neurotransmitter transportation such as synaptic, dendrite, vesicles, axon along with correlations with other neuropsychiatric disorders. Finally, we identified ten multiple molecular involved regulation patterns (MMRP), which may provide valuable insights into understanding the contribution of molecular regulation network targeting these disease-associated genes. CONCLUSIONS: The analyses prioritized novel and reliable gene sets related with five molecular features based on published and supplementary results for five common neuropsychiatric disorders, which were missed in the original GWAS analysis. Besides, the involved MMRP behind these genes could be given priority for further investigation to elucidate the pathogenic molecular mechanisms underlying neuropsychiatric disorders in future studies.


Asunto(s)
Metilación de ADN , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Trastornos Mentales , Fenotipo , Sitios de Carácter Cuantitativo , Humanos , Sitios de Carácter Cuantitativo/genética , Trastornos Mentales/genética , Metilación de ADN/genética , Análisis de la Aleatorización Mendeliana , Transcriptoma/genética
7.
J Affect Disord ; 356: 647-656, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657774

RESUMEN

BACKGROUND: Patients with certain psychiatric disorders have increased lung cancer incidence. However, establishing a causal relationship through traditional epidemiological methods poses challenges. METHODS: Available summary statistics of genome-wide association studies of cigarette smoking, lung cancer, and eight psychiatric disorders, including attention deficit/hyperactivity disorder (ADHD), autism, depression, major depressive disorder, bipolar disorder, insomnia, neuroticism, and schizophrenia (range N: 46,350-1,331,010) were leveraged to estimate genetic correlations using Linkage Disequilibrium Score Regression and assess causal effect of each psychiatric disorder on lung cancer using two-sample Mendelian randomization (MR) models, comprising inverse-variance weighted (IVW), weighted median, MR-Egger, pleiotropy residual sum and outlier testing (MR-PRESSO), and a constrained maximum likelihood approach (cML-MR). RESULTS: Significant positive correlations were observed between each psychiatric disorder and both smoking and lung cancer (all FDR < 0.05), except for the correlation between autism and lung cancer. Both univariable and the cML-MA MR analyses demonstrated that liability to schizophrenia, depression, ADHD, or insomnia was associated with an increased risk of overall lung cancer. Genetic liability to insomnia was linked specifically to squamous cell carcinoma (SCC), while genetic liability to ADHD was associated with an elevated risk of both SCC and small cell lung cancer (all P < 0.05). The later was further supported by multivariable MR analyses, which accounted for smoking. LIMITATIONS: Participants were constrained to European ancestry populations. Causal estimates from binary psychiatric disorders may be biased. CONCLUSION: Our findings suggest appropriate management of several psychiatric disorders, particularly ADHD, may potentially reduce the risk of developing lung cancer.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Estudio de Asociación del Genoma Completo , Neoplasias Pulmonares , Análisis de la Aleatorización Mendeliana , Trastornos Mentales , Esquizofrenia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/epidemiología , Trastornos Mentales/genética , Trastornos Mentales/epidemiología , Esquizofrenia/genética , Esquizofrenia/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Predisposición Genética a la Enfermedad/genética , Trastorno Autístico/genética , Trastorno Autístico/epidemiología , Trastorno Bipolar/genética , Trastorno Bipolar/epidemiología , Factores de Riesgo , Trastornos del Inicio y del Mantenimiento del Sueño/genética , Trastornos del Inicio y del Mantenimiento del Sueño/epidemiología , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/epidemiología , Neuroticismo , Causalidad , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/epidemiología , Fumar Cigarrillos/epidemiología , Fumar Cigarrillos/genética , Desequilibrio de Ligamiento
8.
J Affect Disord ; 356: 346-355, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38626809

RESUMEN

BACKGROUND: The association between frailty and psychiatric disorders has been reported in observational studies. However, it is unclear whether frailty facilitates the appearance of psychiatric disorders or vice versa. Therefore, we conducted a bidirectional Mendelian randomization (MR) study to evaluate the causality. METHODS: Independent genetic variants associated with frailty index (FI) and psychiatric disorders were obtained from large genome-wide association studies (GWAS). The inverse variance weighted method was utilized as the primary method to estimate causal effects, followed by various sensitivity analyses. Multivariable analyses were performed to further adjust for potential confounders. RESULTS: The present MR study revealed that genetically predicted FI was significantly and positively associated with the risk of major depressive disorder (MDD) (odds ratio [OR] 1.79, 95 % confidence interval [CI] 1.48-2.15, P = 1.06 × 10-9), anxiety disorder (OR 1.61, 95 % CI 1.19-2.18, P = 0.002) and neuroticism (OR 1.38, 95 % CI 1.18-1.61, P = 3.73 × 10-5). In the reverse MR test, genetic liability to MDD (beta 0.232, 95 % CI 0.189-0.274, P = 1.00 × 10-26) and neuroticism (beta 0.128, 95 % CI 0.081-0.175, P = 8.61 × 10-8) were significantly associated with higher FI. Multivariable analyses results supported the causal association between FI and MDD and neuroticism. LIMITATIONS: Restriction to European populations, and sample selection bias. CONCLUSIONS: Our study suggested a bidirectional causal association between frailty and MDD neuroticism, and a positive correlation of genetically predicted frailty on the risk of anxiety disorder. Developing a deeper understanding of these associations is essential to effectively manage frailty and optimize mental health in older adults.


Asunto(s)
Trastornos de Ansiedad , Trastorno Depresivo Mayor , Fragilidad , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Neuroticismo , Humanos , Fragilidad/genética , Fragilidad/epidemiología , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/epidemiología , Trastornos de Ansiedad/genética , Trastornos de Ansiedad/epidemiología , Trastornos Mentales/genética , Trastornos Mentales/epidemiología , Masculino , Anciano , Femenino , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple
10.
BMC Psychiatry ; 24(1): 304, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654235

RESUMEN

BACKGROUND: Previous studies have reported associations between obstructive sleep apnea (OSA) and several mental disorders. However, further research is required to determine whether these associations are causal. Therefore, we evaluated the bidirectional causality between the genetic liability for OSA and nine mental disorders by using Mendelian randomization (MR). METHOD: We performed two-sample bidirectional MR of genetic variants for OSA and nine mental disorders. Summary statistics on OSA and the nine mental disorders were extracted from the FinnGen study and the Psychiatric Genomics Consortium. The primary analytical approach for estimating causal effects was the inverse-variance weighted (IVW), with the weighted median and MR Egger as complementary methods. The MR Egger intercept test, Cochran's Q test, Rucker's Q test, and the MR pleiotropy residual sum and outlier (MR-PRESSO) test were used for sensitivity analyses. RESULT: MR analyses showed that genetic liability for major depressive disorder (MDD) was associated with an increased risk of OSA (odds ratio [OR] per unit increase in the risk of MDD, 1.29; 95% CI, 1.11-1.49; P < 0.001). In addition, genetic liability for OSA may be associated with an increased risk of attention-deficit/hyperactivity disorder (ADHD) (OR = 1.26; 95% CI, 1.02-1.56; p = 0.032). There was no evidence that OSA is associated with other mental disorders. CONCLUSION: Our study indicated that genetic liability for MDD is associated with an increased risk of OSA without a bidirectional relationship. Additionally, there was suggestive evidence that genetic liability for OSA may have a causal effect on ADHD. These findings have implications for prevention and intervention strategies targeting OSA and ADHD. Further research is needed to investigate the biological mechanisms underlying our findings and the relationship between OSA and other mental disorders.


Asunto(s)
Trastorno Depresivo Mayor , Análisis de la Aleatorización Mendeliana , Apnea Obstructiva del Sueño , Humanos , Apnea Obstructiva del Sueño/genética , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastornos Mentales/genética , Trastornos Mentales/epidemiología , Predisposición Genética a la Enfermedad/genética
11.
Transl Psychiatry ; 14(1): 171, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555309

RESUMEN

There is widespread overlap across major psychiatric disorders, and this is the case at different levels of observations, from genetic variants to brain structures and function and to symptoms. However, it remains unknown to what extent these commonalities at different levels of observation map onto each other. Here, we systematically review and compare the degree of similarity between psychiatric disorders at all available levels of observation. We searched PubMed and EMBASE between January 1, 2009 and September 8, 2022. We included original studies comparing at least four of the following five diagnostic groups: Schizophrenia, Bipolar Disorder, Major Depressive Disorder, Autism Spectrum Disorder, and Attention Deficit Hyperactivity Disorder, with measures of similarities between all disorder pairs. Data extraction and synthesis were performed by two independent researchers, following the PRISMA guidelines. As main outcome measure, we assessed the Pearson correlation measuring the degree of similarity across disorders pairs between studies and biological levels of observation. We identified 2975 studies, of which 28 were eligible for analysis, featuring similarity measures based on single-nucleotide polymorphisms, gene-based analyses, gene expression, structural and functional connectivity neuroimaging measures. The majority of correlations (88.6%) across disorders between studies, within and between levels of observation, were positive. To identify a consensus ranking of similarities between disorders, we performed a principal component analysis. Its first dimension explained 51.4% (95% CI: 43.2, 65.4) of the variance in disorder similarities across studies and levels of observation. Based on levels of genetic correlation, we estimated the probability of another psychiatric diagnosis in first-degree relatives and showed that they were systematically lower than those observed in population studies. Our findings highlight that genetic and brain factors may underlie a large proportion, but not all of the diagnostic overlaps observed in the clinic.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastorno Bipolar , Trastorno Depresivo Mayor , Trastornos Mentales , Esquizofrenia , Humanos , Trastorno Depresivo Mayor/genética , Trastorno del Espectro Autista/genética , Trastornos Mentales/genética , Trastornos Mentales/psicología , Trastorno Bipolar/genética , Trastorno Bipolar/epidemiología , Esquizofrenia/genética , Esquizofrenia/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/epidemiología
12.
Nature ; 628(8006): 145-153, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538785

RESUMEN

As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3-5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits.


Asunto(s)
Región CA1 Hipocampal , Roturas del ADN de Doble Cadena , Reparación del ADN , Inflamación , Memoria , Receptor Toll-Like 9 , Animales , Femenino , Masculino , Ratones , Envejecimiento/genética , Envejecimiento/patología , Región CA1 Hipocampal/fisiología , Centrosoma/metabolismo , Disfunción Cognitiva/genética , Condicionamiento Clásico , Matriz Extracelular/metabolismo , Miedo , Inestabilidad Genómica/genética , Histonas/metabolismo , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Memoria/fisiología , Trastornos Mentales/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neuroinflamatorias/genética , Neuronas/metabolismo , Neuronas/patología , Membrana Nuclear/patología , Receptor Toll-Like 9/deficiencia , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/inmunología , Receptor Toll-Like 9/metabolismo
13.
Patient Educ Couns ; 123: 108229, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38461792

RESUMEN

INTRODUCTION: The etiology of psychiatric disorders is multifactorial including genomic and environmental risk factors. Psychiatric genetic counseling is an emerging field that may promote processes of adaptation to, and the management of, psychiatric disorders. Many countries lack dedicated services leading to a gap in care. This scoping review will inform the development of psychiatric genetics-based educational resources. OBJECTIVES: To explore individuals with a psychiatric disorder and their relatives' attitudes and beliefs toward psychiatric genetics, genetic counseling, and genetics-based education. To evaluate how best to convey education to consumers. METHOD: Database literature searches occurred on May 2nd, 2023, using PubMed, Medline, and PsycINFO. Reviews, letters to the editor, case reports, and publications before 2003 were excluded. RESULTS: Twenty-four papers met the inclusion criteria. Results suggest individuals with a psychiatric disorder and their relatives tended to overestimate risk, and express concern about reproductive decision- making. Genetic counseling and educational resources were perceived to be useful and empowering. CONCLUSION: Affected individuals and relatives are interested in gaining greater insight into their own and/or their relative's psychiatric disorder, management strategies, and understanding familial risks. PRACTICE IMPLICATIONS: The evidence from this review may inform the development of genetics-based educational resources or guide future research.


Asunto(s)
Asesoramiento Genético , Trastornos Mentales , Humanos , Asesoramiento Genético/psicología , Trastornos Mentales/genética , Actitud , Terapia Conductista
14.
Cell Stem Cell ; 31(3): 283-284, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38458174

RESUMEN

Dissecting the role of the thalamus in neuropsychiatric disorders requires new models to analyze complex genetic interactions. In this issue of Cell Stem Cell, Shin et al. use patient-derived thalamocortical organoids to investigate 22q11.2 microdeletion impact on thalamic development, revealing significant transcriptional dysregulation linked to psychiatric disorders.


Asunto(s)
Corteza Cerebral , Trastornos Mentales , Humanos , Vías Nerviosas , Trastornos Mentales/genética , Tálamo , Organoides
15.
Artículo en Ruso | MEDLINE | ID: mdl-38529860

RESUMEN

Schizophrenia, depression, bipolar disorder and autism spectrum disorders are common mental disorders that are among the leading causes of disability worldwide. The major complication to effective therapies for mental disorders is the poor understanding of their pathogenic mechanisms. Currently, an increasing number of research groups are focusing on uncovering the molecular mechanisms of mental disorders and developing novel therapies using the CRISPR/Cas9 (Clustered, Regularly Interspaced, Short Palindromic Repeats (CRISPR) - CRISPR-associated system 9 (Cas9)) system to determine the molecular mechanisms of developing mental disorders and novel therapy. The CRISPR/Cas9 system is the most promising among genome editing tools. Numerous advantages of the CRISPR/Cas9 system and its successful application in some studies provide wide opportunities for genome therapy and regeneration medicine. In this review we shortly describe structure and function of the CRISPR/Cas9 system and its application to study the molecular-genetic basis of mental disorders in human.


Asunto(s)
Edición Génica , Trastornos Mentales , Humanos , Sistemas CRISPR-Cas , Trastornos Mentales/genética , Trastornos Mentales/terapia
16.
Psychiatr Genet ; 34(2): 31-36, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38441147

RESUMEN

Recent advancements in psychiatric genetics have sparked a lively debate on the opportunities and pitfalls of incorporating polygenic scores into clinical practice. Yet, several ethical concerns have been raised, casting doubt on whether further development and implementation of polygenic scores would be compatible with providing ethically responsible care. While these ethical issues warrant thoughtful consideration, it is equally important to recognize the unresolved need for guidance on heritability among patients and their families. Increasing the availability of genetic counseling services in psychiatry should be regarded as a first step toward meeting these needs. As a next step, future integration of novel genetic tools such as polygenic scores into genetic counseling may be a promising way to improve psychiatric counseling practice. By embedding the exploration of polygenic psychiatry into the supporting environment of genetic counseling, some of the previously identified ethical pitfalls may be prevented, and opportunities to bolster patient empowerment can be seized upon. To ensure an ethically responsible approach to psychiatric genetics, active collaboration with patients and their relatives is essential, accompanied by educational efforts to facilitate informed discussions between psychiatrists and patients.


Asunto(s)
Trastornos Mentales , Psiquiatría , Humanos , Trastornos Mentales/genética , Psiquiatras , Herencia Multifactorial/genética , Atención Dirigida al Paciente
17.
Neuropsychopharmacology ; 49(6): 1033-1041, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38402365

RESUMEN

Patients with severe mental disorders such as bipolar disorder (BD), schizophrenia (SCZ) and major depressive disorder (MDD) show a substantial reduction in life expectancy, increased incidence of comorbid medical conditions commonly observed with advanced age and alterations of aging hallmarks. While severe mental disorders are heritable, the extent to which genetic predisposition might contribute to accelerated cellular aging is not known. We used bivariate causal mixture models to quantify the trait-specific and shared architecture of mental disorders and 2 aging hallmarks (leukocyte telomere length [LTL] and mitochondrial DNA copy number), and the conjunctional false discovery rate method to detect shared genetic loci. We integrated gene expression data from brain regions from GTEx and used different tools to functionally annotate identified loci and investigate their druggability. Aging hallmarks showed low polygenicity compared with severe mental disorders. We observed a significant negative global genetic correlation between MDD and LTL (rg = -0.14, p = 6.5E-10), and no significant results for other severe mental disorders or for mtDNA-cn. However, conditional QQ plots and bivariate causal mixture models pointed to significant pleiotropy among all severe mental disorders and aging hallmarks. We identified genetic variants significantly shared between LTL and BD (n = 17), SCZ (n = 55) or MDD (n = 19), or mtDNA-cn and BD (n = 4), SCZ (n = 12) or MDD (n = 1), with mixed direction of effects. The exonic rs7909129 variant in the SORCS3 gene, encoding a member of the retromer complex involved in protein trafficking and intracellular/intercellular signaling, was associated with shorter LTL and increased predisposition to all severe mental disorders. Genetic variants underlying risk of SCZ or MDD and shorter LTL modulate expression of several druggable genes in different brain regions. Genistein, a phytoestrogen with anti-inflammatory and antioxidant effects, was an upstream regulator of 2 genes modulated by variants associated with risk of MDD and shorter LTL. While our results suggest that shared heritability might play a limited role in contributing to accelerated cellular aging in severe mental disorders, we identified shared genetic determinants and prioritized different druggable targets and compounds.


Asunto(s)
Senescencia Celular , Trastorno Depresivo Mayor , Pleiotropía Genética , Humanos , Senescencia Celular/genética , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Bipolar/genética , Trastornos Mentales/genética , Esquizofrenia/genética , ADN Mitocondrial/genética , Predisposición Genética a la Enfermedad/genética , Variaciones en el Número de Copia de ADN/genética
18.
J Psychiatr Res ; 172: 244-253, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412787

RESUMEN

The comorbidities between gastroesophageal reflux disease (GERD) and various neurodegenerative and psychiatric disorders have been widely reported. However, the genetic correlations, causal relationships, and underlying mechanisms linking GERD to these disorders remain largely unknown. Here, we conducted a bidirectional Mendelian randomization (MR) analysis to determine the causality between GERD and 6 neurodegenerative and psychiatric disorders. Sensitivity analyses and multivariable MR were performed to test the robustness of our findings. Linkage disequilibrium score regression was used to assess the genetic correlation between these diseases as affected by heredity. Multiple bioinformatics tools combining two machine learning algorithms were applied to further investigate the potential mechanisms underlying these diseases. We found that genetically predicted GERD significantly increased the risk of Alzheimer's disease, major depressive disorder, and anxiety disorders. There might be a bidirectional relationship between GERD and insomnia. GERD has varying degrees of genetic correlations with AD, ALS, anxiety disorders, insomnia, and depressive disorder. Bioinformatics analyses revealed the hub shared genes and the common pathways between GERD and 6 neurodegenerative and psychiatric disorders. Our findings demonstrated the complex nature of the genetic architecture across these diseases and clarified their causality, highlighting that treatments for the cure or remission of GERD may serve as potential strategies for preventing and managing neurodegenerative and psychiatric disorders.


Asunto(s)
Trastorno Depresivo Mayor , Reflujo Gastroesofágico , Trastornos Mentales , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Trastorno Depresivo Mayor/epidemiología , Trastorno Depresivo Mayor/genética , Trastornos Mentales/epidemiología , Trastornos Mentales/genética , Trastornos de Ansiedad/epidemiología , Trastornos de Ansiedad/genética , Reflujo Gastroesofágico/epidemiología , Reflujo Gastroesofágico/genética , Estudio de Asociación del Genoma Completo
19.
Transl Psychiatry ; 14(1): 99, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374212

RESUMEN

RBFOX1 is a highly pleiotropic gene that contributes to several psychiatric and neurodevelopmental disorders. Both rare and common variants in RBFOX1 have been associated with several psychiatric conditions, but the mechanisms underlying the pleiotropic effects of RBFOX1 are not yet understood. Here we found that, in zebrafish, rbfox1 is expressed in spinal cord, mid- and hindbrain during developmental stages. In adults, expression is restricted to specific areas of the brain, including telencephalic and diencephalic regions with an important role in receiving and processing sensory information and in directing behaviour. To investigate the contribution of rbfox1 to behaviour, we used rbfox1sa15940, a zebrafish mutant line with TL background. We found that rbfox1sa15940 mutants present hyperactivity, thigmotaxis, decreased freezing behaviour and altered social behaviour. We repeated these behavioural tests in a second rbfox1 mutant line with a different genetic background (TU), rbfox1del19, and found that rbfox1 deficiency affects behaviour similarly in this line, although there were some differences. rbfox1del19 mutants present similar thigmotaxis, but stronger alterations in social behaviour and lower levels of hyperactivity than rbfox1sa15940 fish. Taken together, these results suggest that mutations in rbfox1 lead to multiple behavioural changes in zebrafish that might be modulated by environmental, epigenetic and genetic background effects, and that resemble phenotypic alterations present in Rbfox1-deficient mice and in patients with different psychiatric conditions. Our study, thus, highlights the evolutionary conservation of rbfox1 function in behaviour and paves the way to further investigate the mechanisms underlying rbfox1 pleiotropy on the onset of neurodevelopmental and psychiatric disorders.


Asunto(s)
Discapacidades del Desarrollo , Trastornos Mentales , Proteínas de Unión al ARN , Pez Cebra , Animales , Encéfalo/metabolismo , Fenotipo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Trastornos Mentales/genética , Discapacidades del Desarrollo/genética
20.
Brain Behav ; 14(2): e3426, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38361316

RESUMEN

BACKGROUND: Food insecurity is a persistent concern in the United States and has been shown to affect child mental health and behavior. The SLC6A4 gene has been indicated as a moderator of the effects of chronic stress on anxiety in adolescents aged 14-21. However, it is unclear if SLC6A4 may also play a role in the effects of childhood food insecurity, a form of chronic stress, on adolescent mental health. This study aimed to identify effects of food insecurity on adolescents' mental health and delinquent behavior when both mom and child go hungry in the child's early years, and the potential interaction with SLC6A4 variants (SS/LL). METHODS: The data and sample for this research are from the Future of Families and Child Wellbeing Study. The cohort consists of 4898 children (age 1-15 years, male = 47%, African American = 50%) and their respective caregivers sampled from large cities in the United States from 1998 to 2000. RESULTS: The SLC6A4 serotonin transporter short/short allele emerged statistically significant as a moderator of childhood food insecurity and adolescent mental health. Specifically, the presence of the short/short allele increased anxiety symptoms in adolescents with exposure to food insecurity in childhood. CONCLUSION: The SLC6A4 short/short allele amplifies risk of anxiety-related mental illness when children experience food insecurity. The gene-environment interaction provides insight into the mechanistic pathway of the effects of poverty-related adversity, such as food insecurity, on developmental trajectories of mental health.


Asunto(s)
Inseguridad Alimentaria , Trastornos Mentales , Salud Mental , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Adolescente , Niño , Humanos , Masculino , Trastornos Mentales/epidemiología , Trastornos Mentales/genética , Pobreza/psicología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA