Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(9): 1960-1974, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38989576

RESUMEN

BACKGROUND: Patients with JAK2V617F-positive myeloproliferative neoplasms (MPNs) and clonal hematopoiesis of indeterminate potential face a significantly elevated risk of cardiovascular diseases. Endothelial cells carrying the JAK2V617F mutation have been detected in many patients with MPN. In this study, we investigated the molecular basis for the high incidence of cardiovascular complications in patients with MPN. METHODS: We investigated the impact of endothelial JAK2V617F mutation on cardiovascular disease development using both transgenic murine models and MPN patient-derived induced pluripotent stem cell lines. RESULTS: Our investigations revealed that JAK2V617F mutant endothelial cells promote cardiovascular diseases under stress, which is associated with endothelial-to-mesenchymal transition and endothelial dysfunction. Importantly, we discovered that inhibiting the endothelial TPO (thrombopoietin) receptor MPL (myeloproliferative leukemia virus oncogene) suppressed JAK2V617F-induced endothelial-to-mesenchymal transition and prevented cardiovascular dysfunction caused by mutant endothelial cells. Notably, the endothelial MPL receptor is not essential for the normal physiological regulation of blood cell counts and cardiac function. CONCLUSIONS: JAK2V617F mutant endothelial cells play a critical role in the development of cardiovascular diseases in JAK2V617F-positive MPNs, and endothelial MPL could be a promising therapeutic target for preventing or ameliorating cardiovascular complications in these patients.


Asunto(s)
Enfermedades Cardiovasculares , Células Endoteliales , Células Madre Pluripotentes Inducidas , Janus Quinasa 2 , Mutación , Trastornos Mieloproliferativos , Receptores de Trombopoyetina , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Receptores de Trombopoyetina/genética , Animales , Humanos , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/enzimología , Trastornos Mieloproliferativos/complicaciones , Trastornos Mieloproliferativos/metabolismo , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/enzimología , Enfermedades Cardiovasculares/etiología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/enzimología , Ratones Transgénicos , Transducción de Señal , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones
2.
Science ; 376(6589): 163-169, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35271300

RESUMEN

Cytokines signal through cell surface receptor dimers to initiate activation of intracellular Janus kinases (JAKs). We report the 3.6-angstrom-resolution cryo-electron microscopy structure of full-length JAK1 complexed with a cytokine receptor intracellular domain Box1 and Box2 regions captured as an activated homodimer bearing the valine→phenylalanine (VF) mutation prevalent in myeloproliferative neoplasms. The seven domains of JAK1 form an extended structural unit, the dimerization of which is mediated by close-packing of the pseudokinase (PK) domains from the monomeric subunits. The oncogenic VF mutation lies within the core of the JAK1 PK interdimer interface, enhancing packing complementarity to facilitate ligand-independent activation. The carboxy-terminal tyrosine kinase domains are poised for transactivation and to phosphorylate the receptor STAT (signal transducer and activator of transcription)-recruiting motifs projecting from the overhanging FERM (four-point-one, ezrin, radixin, moesin)-SH2 (Src homology 2)-domains. Mapping of constitutively active JAK mutants supports a two-step allosteric activation mechanism and reveals opportunities for selective therapeutic targeting of oncogenic JAK signaling.


Asunto(s)
Janus Quinasa 1 , Receptores de Citocinas , Dominios Homologos src , Regulación Alostérica , Microscopía por Crioelectrón , Activación Enzimática , Humanos , Janus Quinasa 1/química , Janus Quinasa 1/metabolismo , Mutación , Trastornos Mieloproliferativos/enzimología , Trastornos Mieloproliferativos/genética , Fosforilación , Multimerización de Proteína , Receptores de Citocinas/química , Factores de Transcripción STAT/metabolismo
3.
Leukemia ; 36(1): 210-220, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34326465

RESUMEN

Mutations in the Janus Kinase 2 (JAK2) gene resulting in constitutive kinase activation represent the most common genetic event in myeloproliferative neoplasms (MPN), a group of diseases involving overproduction of one or more kinds of blood cells, including red cells, white cells, and platelets. JAK2 kinase inhibitors, such as ruxolitinib, provide clinical benefit, but inhibition of wild-type (wt) JAK2 limits their clinical utility due to toxicity to normal cells, and small molecule inhibition of mutated JAK2 kinase activity can lead to drug resistance. Here, we present a strategy to target mutated JAK2 for degradation, using the cell's intracellular degradation machinery, while sparing non-mutated JAK2. We employed a chemical genetics screen, followed by extensive selectivity profiling and genetic studies, to identify the deubiquitinase (DUB), JOSD1, as a novel regulator of mutant JAK2. JOSD1 interacts with and stabilizes JAK2-V617F, and inactivation of the DUB leads to JAK2-V617F protein degradation by increasing its ubiquitination levels, thereby shortening its protein half-life. Moreover, targeting of JOSD1 leads to the death of JAK2-V617F-positive primary acute myeloid leukemia (AML) cells. These studies provide a novel therapeutic approach to achieving selective targeting of mutated JAK2 signaling in MPN.


Asunto(s)
Enzimas Desubicuitinizantes/antagonistas & inhibidores , Janus Quinasa 2/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutación , Trastornos Mieloproliferativos/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Anciano , Anciano de 80 o más Años , Apoptosis , Proliferación Celular , Humanos , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Persona de Mediana Edad , Trastornos Mieloproliferativos/enzimología , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Fosforilación , Pronóstico , Células Tumorales Cultivadas
6.
Blood Cells Mol Dis ; 90: 102585, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34139651

RESUMEN

The chronic myeloproliferative neoplasms (MPNs) are clonal stem cell disorders. The hematopoietic stem/progenitor cell (HSPC) compartment in patients with MPNs is heterogeneous with the presence of both wild-type and JAK2V617F mutant cells. Mechanisms responsible for mutant stem cell expansion in MPNs are not fully understood. Vascular endothelial cells (ECs) are an essential component of the hematopoietic microenvironment. ECs carrying the JAK2V617F mutation can be detected in patients with MPNs. Utilizing an ex vivo EC-HSPC co-culture system with mixed wild-type and JAK2V617F mutant ECs, we show that even small numbers of JAK2V617F mutant ECs can promote the expansion of JAK2V617F mutant HSPCs in preference to wild-type HSPCs during irradiation or cytotoxic chemotherapy, the two treatments commonly used in the conditioning regimen for stem cell transplantation, the only curative treatment for patients with MPNs. Mechanistically, we found that both cell-cell interactions and secreted factors are important for JAK2V617F mutant EC-mediated neoplastic hematopoiesis. Further understanding of how the JAK2V617F mutation alters vascular niche function will help identify new strategies to not only control neoplastic cell expansion but also prevent disease relapse in patients with MPNs.


Asunto(s)
Células Endoteliales/enzimología , Neoplasias Hematológicas , Hematopoyesis , Células Madre Hematopoyéticas/enzimología , Janus Quinasa 2 , Mutación Missense , Trastornos Mieloproliferativos , Células Madre Neoplásicas/enzimología , Microambiente Tumoral , Sustitución de Aminoácidos , Animales , Neoplasias Hematológicas/enzimología , Neoplasias Hematológicas/genética , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Ratones , Ratones Transgénicos , Trastornos Mieloproliferativos/enzimología , Trastornos Mieloproliferativos/genética
7.
Blood ; 137(26): 3591-3594, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33971000

RESUMEN

VEXAS syndrome (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) is a monogenic disease of adulthood caused by somatic mutations in UBA1 in hematopoietic progenitor cells. Patients develop inflammatory and hematologic symptoms. Myeloid-driven autoinflammation and progressive bone marrow failure lead to substantial morbidity and mortality. Effective medical treatments need to be identified. Reports in the current issue of Blood describe novel UBA1 genetic variants, treatment options, and insight into disease pathophysiology. VEXAS syndrome represents a prototype for a new class of diseases.


Asunto(s)
Genes Ligados a X , Enfermedades Genéticas Congénitas , Mutación , Trastornos Mieloproliferativos , Enzimas Activadoras de Ubiquitina/genética , Células Eritroides/enzimología , Enfermedades Genéticas Congénitas/diagnóstico por imagen , Enfermedades Genéticas Congénitas/enzimología , Enfermedades Genéticas Congénitas/genética , Humanos , Masculino , Células Mieloides/enzimología , Trastornos Mieloproliferativos/diagnóstico por imagen , Trastornos Mieloproliferativos/enzimología , Trastornos Mieloproliferativos/genética , Síndrome
10.
J Biol Chem ; 296: 100285, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33450231

RESUMEN

DNA methylation regulates gene transcription and is involved in various physiological processes in mammals, including development and hematopoiesis. It is catalyzed by DNA methyltransferases including Dnmt1, Dnmt3a, and Dnmt3b. For Dnmt3b, its effects on transcription can result from its own DNA methylase activity, the recruitment of other Dnmts to mediate methylation, or transcription repression in a methylation-independent manner. Low-frequency mutations in human DNMT3B are found in hematologic malignancies including cutaneous T-cell lymphomas, hairy cell leukemia, and diffuse large B-cell lymphomas. Moreover, Dnmt3b is a tumor suppressor in oncogene-driven lymphoid and myeloid malignancies in mice. However, it is poorly understood how the different Dnmt3b activities contribute to these outcomes. We modulated Dnmt3b activity in vivo by generating Dnmt3b+/- mice expressing one wild-type allele as well as Dnmt3b+/CI and Dnmt3bCI/CI mice where one or both alleles express catalytically inactive Dnmt3bCI. We show that 43% of Dnmt3b+/- mice developed T-cell lymphomas, chronic lymphocytic leukemia, and myeloproliferation over 18 months, thus resembling phenotypes previously observed in Dnmt3a+/- mice, possibly through regulation of shared target genes. Interestingly, Dnmt3b+/CI and Dnmt3bCI/CI mice survived postnatal development and were affected by B-cell rather than T-cell malignancies with decreased penetrance. Genome-wide hypomethylation, increased expression of oncogenes such as Jdp2, STAT1, and Trip13, and p53 downregulation were major events contributing to Dnmt3b+/- lymphoma development. We conclude that Dnmt3b catalytic activity is critical to prevent B-cell transformation in vivo, whereas accessory and methylation-independent repressive functions are important to prevent T-cell transformation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Leucemia Linfocítica Crónica de Células B/genética , Linfoma de Células B/genética , Linfoma de Células T/genética , Trastornos Mieloproliferativos/genética , Neoplasias Experimentales/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN (Citosina-5-)-Metiltransferasas/deficiencia , Metilación de ADN , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Heterocigoto , Homocigoto , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Leucemia Linfocítica Crónica de Células B/enzimología , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células B/enzimología , Linfoma de Células B/patología , Linfoma de Células T/enzimología , Linfoma de Células T/patología , Masculino , Ratones , Ratones Noqueados , Trastornos Mieloproliferativos/enzimología , Trastornos Mieloproliferativos/patología , Neoplasias Experimentales/enzimología , Neoplasias Experimentales/patología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , ADN Metiltransferasa 3B
12.
Am J Hematol ; 95(7): 824-833, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32279331

RESUMEN

We report on 18 patients with myeloid neoplasms and associated tyrosine kinase (TK) fusion genes on treatment with the TK inhibitors (TKI) ruxolitinib (PCM1-JAK2, n = 8; BCR-JAK2, n = 1) and imatinib, nilotinib or dasatinib (ETV6-ABL1, n = 9). On ruxolitinib (median 24 months, range 2-36 months), a complete hematologic response (CHR) and complete cytogenetic response (CCR) was achieved by five of nine and two of nine patients, respectively. However, ruxolitinib was stopped in eight of nine patients because of primary resistance (n = 3), progression (n = 3) or planned allogeneic stem cell transplantation (allo SCT, n = 2). At a median of 36 months (range 4-78 months) from diagnosis, five of nine patients are alive: four of six patients after allo SCT and one patient who remains on ruxolitinib. In ETV6-ABL1 positive patients, a durable CHR was achieved by four of nine patients (imatinib with one of five, nilotinib with two of three, dasatinib with one of one). Because of inadequate efficacy (lack of hematological and/or cytogenetic/molecular response), six of nine patients (imatinib, n = 5; nilotinib, n = 1) were switched to nilotinib or dasatinib. At a median of 23 months (range 3-60 months) from diagnosis, five of nine patients are in CCR or complete molecular response (nilotinib, n = 2; dasatinib, n = 2; allo SCT, n = 1) while two of nine patients have died. We conclude that (a) responses on ruxolitinib may only be transient in the majority of JAK2 fusion gene positive patients with allo SCT being an important early treatment option, and (b) nilotinib or dasatinib may be more effective than imatinib to induce durable complete remissions in ETV6-ABL1 positive patients.


Asunto(s)
Neoplasias Hematológicas , Trastornos Mieloproliferativos , Proteínas de Fusión Oncogénica , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Tirosina Quinasas , Adulto , Anciano , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/enzimología , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/mortalidad , Humanos , Masculino , Persona de Mediana Edad , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/enzimología , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/mortalidad , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Inhibidores de Proteínas Quinasas/efectos adversos , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Tasa de Supervivencia
14.
J Clin Invest ; 129(4): 1596-1611, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30730307

RESUMEN

Constitutive JAK2 signaling is central to myeloproliferative neoplasm (MPN) pathogenesis and results in activation of STAT, PI3K/AKT, and MEK/ERK signaling. However, the therapeutic efficacy of current JAK2 inhibitors is limited. We investigated the role of MEK/ERK signaling in MPN cell survival in the setting of JAK inhibition. Type I and II JAK2 inhibition suppressed MEK/ERK activation in MPN cell lines in vitro, but not in Jak2V617F and MPLW515L mouse models in vivo. JAK2 inhibition ex vivo inhibited MEK/ERK signaling, suggesting that cell-extrinsic factors maintain ERK activation in vivo. We identified PDGFRα as an activated kinase that remains activated upon JAK2 inhibition in vivo, and PDGF-AA/PDGF-BB production persisted in the setting of JAK inhibition. PDGF-BB maintained ERK activation in the presence of ruxolitinib, consistent with its function as a ligand-induced bypass for ERK activation. Combined JAK/MEK inhibition suppressed MEK/ERK activation in Jak2V617F and MPLW515L mice with increased efficacy and reversal of fibrosis to an extent not seen with JAK inhibitors. This demonstrates that compensatory ERK activation limits the efficacy of JAK2 inhibition and dual JAK/MEK inhibition provides an opportunity for improved therapeutic efficacy in MPNs and in other malignancies driven by aberrant JAK-STAT signaling.


Asunto(s)
Neoplasias Hematológicas/tratamiento farmacológico , Janus Quinasa 2/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mutación Missense , Trastornos Mieloproliferativos/tratamiento farmacológico , Proteínas de Neoplasias/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Sustitución de Aminoácidos , Animales , Becaplermina/genética , Becaplermina/metabolismo , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Neoplasias Hematológicas/enzimología , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Humanos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Ratones , Trastornos Mieloproliferativos/enzimología , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores de Trombopoyetina/genética , Receptores de Trombopoyetina/metabolismo
18.
Stem Cells ; 36(11): 1676-1684, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30005133

RESUMEN

The myeloproliferative neoplasms (MPNs) are stem cell disorders characterized by hematopoietic stem/progenitor cell (HSPC) expansion and overproduction of mature blood cells. The acquired kinase mutation JAK2V617F plays a central role in these disorders. The mechanisms responsible for HSPC expansion in MPNs are not fully understood, limiting the effectiveness of current treatments. One hallmark feature of the marrow in patients with MPNs is megakaryocyte (MK) hyperplasia. Previously, we reported that JAK2V617F-bearing MKs cause a murine myeloproliferative syndrome with HSPC expansion. Here we show that JAK2V617F MKs promote MPN stem cell function by inducing HSPC quiescence with increased repopulating capacity. In addition, we demonstrate that thrombopoietin and its receptor MPL are critical for the JAK2V617F-bearing MK-induced myeloproliferation, both by directly affecting the quantity and quality of MKs and by altering the MK-endothelial interaction and vascular niche function. Therefore, targeting HSPC niche-forming MKs and/or their interactions within the vascular niche could provide novel, more effective therapeutic strategies in patients with MPNs. Stem Cells 2018;36:1676-1684.


Asunto(s)
Células Madre Hematopoyéticas/enzimología , Janus Quinasa 2/metabolismo , Megacariocitos/metabolismo , Trastornos Mieloproliferativos/metabolismo , Receptores de Trombopoyetina/metabolismo , Trombopoyetina/metabolismo , Animales , Proliferación Celular/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Janus Quinasa 2/genética , Megacariocitos/enzimología , Megacariocitos/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación , Trastornos Mieloproliferativos/enzimología , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Transducción de Señal , Trombopoyetina/genética
19.
Blood ; 132(11): 1095-1105, 2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-29954749

RESUMEN

Truncating mutations in the terminal exon of protein phosphatase Mg2+/Mn2+ 1D (PPM1D) have been identified in clonal hematopoiesis and myeloid neoplasms, with a striking enrichment in patients previously exposed to chemotherapy. In this study, we demonstrate that truncating PPM1D mutations confer a chemoresistance phenotype, resulting in the selective expansion of PPM1D-mutant hematopoietic cells in the presence of chemotherapy in vitro and in vivo. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease mutational profiling of PPM1D in the presence of chemotherapy selected for the same exon 6 mutations identified in patient samples. These exon 6 mutations encode for a truncated protein that displays elevated expression and activity due to loss of a C-terminal degradation domain. Global phosphoproteomic profiling revealed altered phosphorylation of target proteins in the presence of the mutation, highlighting multiple pathways including the DNA damage response (DDR). In the presence of chemotherapy, PPM1D-mutant cells have an abrogated DDR resulting in altered cell cycle progression, decreased apoptosis, and reduced mitochondrial priming. We demonstrate that treatment with an allosteric, small molecule inhibitor of PPM1D reverts the phosphoproteomic, DDR, apoptotic, and mitochondrial priming changes observed in PPM1D-mutant cells. Finally, we show that the inhibitor preferentially kills PPM1D-mutant cells, sensitizes the cells to chemotherapy, and reverses the chemoresistance phenotype. These results provide an explanation for the enrichment of truncating PPM1D mutations in the blood of patients exposed to chemotherapy and in therapy-related myeloid neoplasms, and demonstrate that PPM1D can be a targeted in the prevention of clonal expansion of PPM1D-mutant cells and the treatment of PPM1D-mutant disease.


Asunto(s)
Secuencia de Bases , Resistencia a Antineoplásicos , Inhibidores Enzimáticos/farmacología , Neoplasias Hematológicas , Células Madre Hematopoyéticas/enzimología , Trastornos Mieloproliferativos , Proteínas de Neoplasias , Células Madre Neoplásicas/enzimología , Proteína Fosfatasa 2C , Eliminación de Secuencia , Sistemas CRISPR-Cas , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/enzimología , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Células Madre Hematopoyéticas/patología , Humanos , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/enzimología , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/patología , Proteína Fosfatasa 2C/antagonistas & inhibidores , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo
20.
Int J Biol Macromol ; 116: 1064-1073, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29782975

RESUMEN

Janus tyrosine kinase 2 (JAK2) mediates downstream signaling of cytokine receptors in all hematological lineages, constitutively active somatic JAK2 mutations play key roles in the pathology of myeloproliferative neoplasms (MPNs). Recently, germline JAK2 mutations are also associated with triple-negative MPNs. A novel germline mutation JAK2 V625F is reported to be involved in a subset of MPNs patients. However, the pathogenesis of this mutation caused MPN is still unclear. In this study, the homology models of JAK2 V625F showed that the newly formed interaction between F625 and Y613 disrupted the JAK2 JH1-JH2 domain interactions was responsible for its activation, when F625 and Y613 interaction was disrupted, its activity significantly decreased. While, when this interaction was repaired whether by forming hydrogen bond or salt bond, it would cause JAK2 activation. Biochemical studies also demonstrated that JAK2 V625F mutation led to JAK2-STAT5 pathway activation and promoted the proliferation of BaF3 cells. Thus, our results herein provide clues to understand the mechanism JAK2 V625F mutation caused MPNs and give information for the development of JAK2 mutation specific inhibitors.


Asunto(s)
Mutación de Línea Germinal , Neoplasias Hematológicas , Janus Quinasa 2 , Mutación Missense , Trastornos Mieloproliferativos , Proteínas de Neoplasias , Transducción de Señal , Sustitución de Aminoácidos , Línea Celular Tumoral , Neoplasias Hematológicas/enzimología , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Humanos , Enlace de Hidrógeno , Janus Quinasa 2/química , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Trastornos Mieloproliferativos/enzimología , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...