Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.589
Filtrar
1.
Neuromolecular Med ; 26(1): 19, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703217

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder associated with mitochondrial dysfunctions and oxidative stress. However, to date, therapeutics targeting these pathological events have not managed to translate from bench to bedside for clinical use. One of the major reasons for the lack of translational success has been the use of classical model systems that do not replicate the disease pathology and progression with the same degree of robustness. Therefore, we employed a more physiologically relevant model involving alpha-synuclein-preformed fibrils (PFF) exposure to SH-SY5Y cells and Sprague Dawley rats. We further explored the possible involvement of transient receptor potential canonical 5 (TRPC5) channels in PD-like pathology induced by these alpha-synuclein-preformed fibrils with emphasis on amelioration of oxidative stress and mitochondrial health. We observed that alpha-synuclein PFF exposure produced neurobehavioural deficits that were positively ameliorated after treatment with the TRPC5 inhibitor clemizole. Furthermore, Clemizole also reduced p-alpha-synuclein and diminished oxidative stress levels which resulted in overall improvements in mitochondrial biogenesis and functions. Finally, the results of the pharmacological modulation were further validated using siRNA-mediated knockdown of TRPC5 channels, which also decreased p-alpha-synuclein expression. Together, the results of this study could be superimposed in the future for exploring the beneficial effects of TRPC5 channel modulation for other neurodegenerative disorders and synucleopathies.


Asunto(s)
Mitocondrias , Estrés Oxidativo , Ratas Sprague-Dawley , Canales Catiónicos TRPC , alfa-Sinucleína , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animales , Ratas , Estrés Oxidativo/efectos de los fármacos , Humanos , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Línea Celular Tumoral , Masculino , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/inducido químicamente , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/uso terapéutico , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/tratamiento farmacológico
2.
Age Ageing ; 53(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38783753

RESUMEN

BACKGROUND AND OBJECTIVES: People with parkinsonism who are older, living in a care home, with frailty, multimorbidity or impaired capacity to consent are under-represented in research, limiting its generalisability. We aimed to evaluate more inclusive recruitment strategies. METHODS: From one UK centre, we invited people with parkinsonism to participate in a cross-sectional study. Postal invitations were followed by telephone reminders and additional support to facilitate participation. Personal consultees provided information on the views regarding research participation of adults with impaired capacity. These approaches were evaluated: (i) using external data from the Parkinson's Real World Impact assesSMent (PRISM) study and Clinical Practice Research Datalink (CPRD), a sample of all cases in UK primary care, and (ii) comparing those recruited with or without intensive engagement. RESULTS: We approached 1,032 eligible patients, of whom 542 (53%) consented and 477 (46%) returned questionnaires. The gender ratio in PRIME-UK (65% male) closely matched CPRD (61% male), unlike in the PRISM sample (46%). Mean age of PRIME participants was 75.9 (SD 8.5) years, compared to 75.3 (9.5) and 65.4 (8.9) years for CPRD and PRISM, respectively. More intensive engagement enhanced recruitment of women (13.3%; 95% CI 3.8, 22.9%; P = 0.005), care home residents (6.2%; 1.1, 11.2%; P = 0.004), patients diagnosed with atypical parkinsonism (13.7%; 5.4, 19.9%; P < 0.001), and those with a higher frailty score (mean score 0.2, 0.1, 0.2; P < 0.001). CONCLUSIONS: These recruitment strategies resulted in a less biased and more representative sample, with greater inclusion of older people with more complex parkinsonism.


Asunto(s)
Disfunción Cognitiva , Fragilidad , Multimorbilidad , Enfermedad de Parkinson , Selección de Paciente , Humanos , Masculino , Femenino , Anciano , Estudios Transversales , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/psicología , Disfunción Cognitiva/diagnóstico , Reino Unido/epidemiología , Fragilidad/epidemiología , Fragilidad/psicología , Fragilidad/diagnóstico , Anciano de 80 o más Años , Enfermedad de Parkinson/psicología , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/diagnóstico , Anciano Frágil/psicología , Anciano Frágil/estadística & datos numéricos , Trastornos Parkinsonianos/epidemiología , Trastornos Parkinsonianos/psicología , Trastornos Parkinsonianos/diagnóstico
3.
Acta Neuropathol Commun ; 12(1): 79, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773545

RESUMEN

Neurodegenerative diseases have common underlying pathological mechanisms including progressive neuronal dysfunction, axonal and dendritic retraction, and mitochondrial dysfunction resulting in neuronal death. The retina is often affected in common neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Studies have demonstrated that the retina in patients with Parkinson's disease undergoes changes that parallel the dysfunction in the brain. These changes classically include decreased levels of dopamine, accumulation of alpha-synuclein in the brain and retina, and death of dopaminergic nigral neurons and retinal amacrine cells leading to gross neuronal loss. Exploring this disease's retinal phenotype and vision-related symptoms is an important window for elucidating its pathophysiology and progression, and identifying novel ways to diagnose and treat Parkinson's disease. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson's disease in animal models. MPTP is a neurotoxin converted to its toxic form by astrocytes, transported to neurons through the dopamine transporter, where it causes mitochondrial Complex I inhibition and neuron degeneration. Systemic administration of MPTP induces retinal changes in different animal models. In this study, we assessed the effects of MPTP on the retina directly via intravitreal injection in mice (5 mg/mL and 50 mg/mL to 7, 14 and 21 days post-injection). MPTP treatment induced the reduction of retinal ganglion cells-a sensitive neuron in the retina-at all time points investigated. This occurred without a concomitant loss of dopaminergic amacrine cells or neuroinflammation at any of the time points or concentrations tested. The observed neurodegeneration which initially affected retinal ganglion cells indicated that this method of MPTP administration could yield a fast and straightforward model of retinal ganglion cell neurodegeneration. To assess whether this model could be amenable to neuroprotection, mice were treated orally with nicotinamide (a nicotinamide adenine dinucleotide precursor) which has been demonstrated to be neuroprotective in several retinal ganglion cell injury models. Nicotinamide was strongly protective following intravitreal MPTP administration, further supporting intravitreal MPTP use as a model of retinal ganglion cell injury. As such, this model could be utilized for testing neuroprotective treatments in the context of Parkinson's disease and retinal ganglion cell injury.


Asunto(s)
Ratones Endogámicos C57BL , Fármacos Neuroprotectores , Niacinamida , Células Ganglionares de la Retina , Animales , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Niacinamida/farmacología , Niacinamida/administración & dosificación , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Masculino , Ratones , Administración Oral , Inyecciones Intravítreas , Modelos Animales de Enfermedad , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/tratamiento farmacológico , Intoxicación por MPTP/patología , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/tratamiento farmacológico
4.
BMJ Open ; 14(5): e081317, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692728

RESUMEN

INTRODUCTION: Gait and mobility impairment are pivotal signs of parkinsonism, and they are particularly severe in atypical parkinsonian disorders including multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). A pilot study demonstrated a significant improvement of gait in patients with MSA of parkinsonian type (MSA-P) after physiotherapy and matching home-based exercise, as reflected by sensor-based gait parameters. In this study, we aim to investigate whether a gait-focused physiotherapy (GPT) and matching home-based exercise lead to a greater improvement of gait performance compared with a standard physiotherapy/home-based exercise programme (standard physiotherapy, SPT). METHODS AND ANALYSIS: This protocol was deployed to evaluate the effects of a GPT versus an active control undergoing SPT and matching home-based exercise with regard to laboratory gait parameters, physical activity measures and clinical scales in patients with Parkinson's disease (PD), MSA-P and PSP. The primary outcomes of the trial are sensor-based laboratory gait parameters, while the secondary outcome measures comprise real-world derived parameters, clinical rating scales and patient questionnaires. We aim to enrol 48 patients per disease group into this double-blind, randomised-controlled trial. The study starts with a 1 week wearable sensor-based monitoring of physical activity. After randomisation, patients undergo a 2 week daily inpatient physiotherapy, followed by 5 week matching unsupervised home-based training. A 1 week physical activity monitoring is repeated during the last week of intervention. ETHICS AND DISSEMINATION: This study, registered as 'Mobility in Atypical Parkinsonism: a Trial of Physiotherapy (Mobility_APP)' at clinicaltrials.gov (NCT04608604), received ethics approval by local committees of the involved centres. The patient's recruitment takes place at the Movement Disorders Units of Innsbruck (Austria), Erlangen (Germany), Lausanne (Switzerland), Luxembourg (Luxembourg) and Bolzano (Italy). The data resulting from this project will be submitted to peer-reviewed journals, presented at international congresses and made publicly available at the end of the trial. TRIAL REGISTRATION NUMBER: NCT04608604.


Asunto(s)
Terapia por Ejercicio , Trastornos Parkinsonianos , Modalidades de Fisioterapia , Humanos , Terapia por Ejercicio/métodos , Trastornos Parkinsonianos/rehabilitación , Trastornos Parkinsonianos/terapia , Método Doble Ciego , Ensayos Clínicos Controlados Aleatorios como Asunto , Marcha , Enfermedad de Parkinson/rehabilitación , Enfermedad de Parkinson/terapia , Atrofia de Múltiples Sistemas/rehabilitación , Atrofia de Múltiples Sistemas/terapia , Parálisis Supranuclear Progresiva/terapia , Parálisis Supranuclear Progresiva/rehabilitación , Servicios de Atención de Salud a Domicilio , Anciano , Masculino , Femenino , Trastornos Neurológicos de la Marcha/rehabilitación , Trastornos Neurológicos de la Marcha/etiología
5.
Neurology ; 102(11): e209453, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38759132

RESUMEN

BACKGROUND AND OBJECTIVES: Degeneration of the presynaptic nigrostriatal dopaminergic system is one of the main biological features of Parkinson disease (PD), multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD), which can be measured using single-photon emission CT imaging for diagnostic purposes. Despite its widespread use in clinical practice and research, the diagnostic properties of presynaptic nigrostriatal dopaminergic (DAT) imaging in parkinsonism have never been evaluated against the diagnostic gold standard of neuropathology. The aim of this study was to evaluate the diagnostic parameters of DAT imaging compared with pathologic diagnosis in patients with parkinsonism. METHODS: Retrospective cohort study of patients with DAT imaging for the investigation of a clinically uncertain parkinsonism with brain donation between 2010 and 2021 to the Queen Square Brain Bank (London). Patients with DAT imaging for investigation of pure ataxia or dementia syndromes without parkinsonism were excluded. Those with a pathologic diagnosis of PD, MSA, PSP, or CBD were considered presynaptic dopaminergic parkinsonism, and other pathologies were considered postsynaptic for the analysis. DAT imaging was performed in routine clinical practice and visually classified by hospital nuclear medicine specialists as normal or abnormal. The results were correlated with neuropathologic diagnosis to calculate diagnostic accuracy parameters for the diagnosis of presynaptic dopaminergic parkinsonism. RESULTS: All of 47 patients with PD, 41 of 42 with MSA, 68 of 73 with PSP, and 6 of 10 with CBD (sensitivity 100%, 97.6%, 93.2%, and 60%, respectively) had abnormal presynaptic dopaminergic imaging. Eight of 17 patients with presumed postsynaptic parkinsonism had abnormal scans (specificity 52.9%). DISCUSSION: DAT imaging has very high sensitivity and negative predictive value for the diagnosis of presynaptic dopaminergic parkinsonism, particularly for PD. However, patients with CBD, and to a lesser extent PSP (of various phenotypes) and MSA (with predominant ataxia), can show normal DAT imaging. A range of other neurodegenerative disorders may have abnormal DAT scans with low specificity in the differential diagnosis of parkinsonism. DAT imaging is a useful diagnostic tool in the differential diagnosis of parkinsonism, although clinicians should be aware of its diagnostic properties and limitations. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that DAT imaging does not accurately distinguish between presynaptic dopaminergic parkinsonism and non-presynaptic dopaminergic parkinsonism.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Atrofia de Múltiples Sistemas , Trastornos Parkinsonianos , Tomografía Computarizada de Emisión de Fotón Único , Humanos , Femenino , Anciano , Masculino , Estudios Retrospectivos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/metabolismo , Tomografía Computarizada de Emisión de Fotón Único/métodos , Persona de Mediana Edad , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Atrofia de Múltiples Sistemas/patología , Atrofia de Múltiples Sistemas/metabolismo , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/patología , Parálisis Supranuclear Progresiva/metabolismo , Anciano de 80 o más Años , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Estudios de Cohortes , Degeneración Corticobasal/diagnóstico por imagen , Degeneración Corticobasal/metabolismo , Dopamina/metabolismo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/patología , Sensibilidad y Especificidad , Imágenes Dopaminérgicas
7.
Artículo en Inglés | MEDLINE | ID: mdl-38765932

RESUMEN

Background: Subacute Sclerosing Panencephalitis (SSPE) typically presents with periodic myoclonus; however, a spectrum of movement disorders including dystonia, chorea, tremor, and parkinsonism have also been described. This review aims to evaluate the array of movement disorders in SSPE, correlating them with neuroimaging findings, disease stages, and patient outcomes. Methods: A comprehensive review of published case reports and case series was conducted on patients with SSPE exhibiting movement disorders other than periodic myoclonus. PRISMA guidelines were followed, and the protocol was registered with PROSPERO (2023 CRD42023434650). A comprehensive search of multiple databases yielded 37 reports detailing 39 patients. Dyken's criteria were used for SSPE diagnosis, and the International Movement Disorders Society definitions were applied to categorize movement disorders. Results: The majority of patients were male, with an average age of 13.8 years. Approximately, 80% lacked a reliable vaccination history, and 39% had prior measles infections. Dystonia was the most common movement disorder (49%), followed by parkinsonism and choreoathetosis. Rapid disease progression was noted in 64% of cases, with a disease duration of ≤6 months in 72%. Neuroimaging showed T2/FLAIR MR hyperintensities, primarily periventricular, with 26% affecting the basal ganglia/thalamus. Brain biopsies revealed inflammatory and neurodegenerative changes. Over half of the patients (56%) reached an akinetic mute state or died. Conclusion: SSPE is associated with diverse movement disorders, predominantly hyperkinetic. The prevalence of dystonia suggests basal ganglia dysfunction.


Asunto(s)
Trastornos del Movimiento , Panencefalitis Esclerosante Subaguda , Humanos , Corea/fisiopatología , Corea/diagnóstico por imagen , Corea/etiología , Distonía/fisiopatología , Distonía/etiología , Hipercinesia/fisiopatología , Hipercinesia/etiología , Hipocinesia/fisiopatología , Hipocinesia/etiología , Trastornos del Movimiento/fisiopatología , Trastornos del Movimiento/etiología , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/fisiopatología , Panencefalitis Esclerosante Subaguda/fisiopatología , Panencefalitis Esclerosante Subaguda/diagnóstico por imagen , Panencefalitis Esclerosante Subaguda/complicaciones , Informes de Casos como Asunto , Masculino , Femenino , Adolescente
8.
Artículo en Inglés | MEDLINE | ID: mdl-38656860

RESUMEN

In neurodegenerative disorders, neuronal firing patterns and oscillatory activity are remarkably altered in specific brain regions, which can serve as valuable biomarkers for the identification of deep brain regions. The subthalamic nucleus (STN) has been the primary target for DBS in patients with Parkinson's disease (PD). In this study, changes in the spike firing patterns and spectral power of local field potentials (LFPs) in the pre-STN (zona incerta, ZI) and post-STN (cerebral peduncle, cp) regions were investigated in PD rats, providing crucial evidence for the functional localization of the STN. Sixteen-channel microelectrode arrays (MEAs) with sites distributed at different depths and widths were utilized to record neuronal activities. The spikes in the STN exhibited higher firing rates than those in the ZI and cp. Furthermore, the LFP power in the delta band in the STN was the greatest, followed by that in the ZI, and was greater than that in the cp. Additionally, increased LFP power was observed in the beta bands in the STN. To identify the best performing classification model, we applied various convolutional neural networks (CNNs) based on transfer learning to analyze the recorded raw data, which were processed using the Gram matrix of the spikes and the fast Fourier transform of the LFPs. The best transfer learning model achieved an accuracy of 95.16%. After fusing the spike and LFP classification results, the time precision for processing the raw data reached 500 ms. The pretrained model, utilizing raw data, demonstrated the feasibility of employing transfer learning for training models on neural activity. This approach highlights the potential for functional localization within deep brain regions.


Asunto(s)
Estimulación Encefálica Profunda , Microelectrodos , Ratas Sprague-Dawley , Núcleo Subtalámico , Núcleo Subtalámico/fisiopatología , Animales , Ratas , Masculino , Modelos Animales de Enfermedad , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/rehabilitación , Potenciales de Acción/fisiología , Algoritmos , Sistemas de Computación , Trastornos Parkinsonianos/fisiopatología , Trastornos Parkinsonianos/rehabilitación , Aprendizaje Automático
9.
J Mol Model ; 30(5): 133, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625397

RESUMEN

CONTEXT: Parkinson's disease is a neurodegenerative condition characterized by the degeneration of dopaminergic neurons, resulting in motor disabilities such as rigidity, bradykinesia, postural instability, and resting tremors. While the exact cause of Parkinson's remains uncertain, both familial and sporadic forms are often associated with the G2019S mutation found in the kinase domain of LRRK2. Roco4 is an analogue of LRRK2 protein in Dictyostelium discoideum which is an established model organism to investigate LRRK2 inhibitors. In this study, the potential treatment of Parkinson's was explored by inhibiting the activity of the mutated LRRK2 protein using Roco4 as the base protein structure. Mongolicain-A and Bacoside-A exhibited significant selectivity towards the G2019S mutation, displaying a binding affinity of - 12.3 Kcal/mol and - 11.4 Kcal/mol respectively. Mongolicain-A demonstrated increased specificity towards Roco4, while Bacoside-A demonstrated significant binding affinity to all 34 kinases proteins alike. The Molecular Dynamics Studies (MDS) results strongly suggests that Mongolicain-A is a significant inhibitor of Roco4 kinase. ADMET and drugability analysis also suggests that among the two best ligands, Mongolicain-A demonstrates significant physicochemical properties to be suitable for best drug like molecule. Based on the in-silico molecular docking, molecular dynamic simulation, ADMET and drugability analyses, it is strongly suggested that, Mongolicain-A could be a potential candidate for treatment and management of Parkinson's disease via inhibition of LRRK2 protein. Further in-vitro and in-vivo investigations are in demand to validate these findings. METHODS: To identify potential inhibitors, 3069 phytochemicals were screened using molecular docking via AutoDock Vina. Molecular Dynamics Simulation was carried out using GROMACS 2022.2 for a duration of 100ns per complex to study the stability and inhibition potential of the protein ligand complexes. ADMET analysis was carriedout using Molinspiration and preADMET web tool.


Asunto(s)
Antineoplásicos , Dictyostelium , Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular
10.
Neuropharmacology ; 252: 109946, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599494

RESUMEN

The spontaneous firing activity of nigral dopaminergic neurons is associated with some important roles including modulation of dopamine release, expression of tyrosine hydroxylase (TH), as well as neuronal survival. The decreased neuroactivity of nigral dopaminergic neurons has been revealed in Parkinson's disease. Central glucagon-like peptide-1 (GLP-1) functions as a neurotransmitter or neuromodulator to exert multiple brain functions. Although morphological studies revealed the expression of GLP-1 receptors (GLP-1Rs) in the substantia nigra pars compacta, the possible modulation of GLP-1 on spontaneous firing activity of nigral dopaminergic neurons is unknown. The present extracellular in vivo single unit recordings revealed that GLP-1R agonist exendin-4 significantly increased the spontaneous firing rate and decreased the firing regularity of partial nigral dopaminergic neurons of adult male C57BL/6 mice. Blockade of GLP-1Rs by exendin (9-39) decreased the firing rate of nigral dopaminergic neurons suggesting the involvement of endogenous GLP-1 in the modulation of firing activity. Furthermore, the PKA and the transient receptor potential canonical (TRPC) 4/5 channels are involved in activation of GLP-1Rs-induced excitatory effects of nigral dopaminergic neurons. Under parkinsonian state, both the exogenous and endogenous GLP-1 could still induce excitatory effects on the surviving nigral dopaminergic neurons. As the mild excitatory stimuli exert neuroprotective effects on nigral dopaminergic neurons, the present GLP-1-induced excitatory effects may partially contribute to its antiparkinsonian effects.


Asunto(s)
Potenciales de Acción , Neuronas Dopaminérgicas , Exenatida , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Ratones Endogámicos C57BL , Sustancia Negra , Animales , Masculino , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Exenatida/farmacología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Ratones , Ponzoñas/farmacología , Péptidos/farmacología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/fisiopatología , Fragmentos de Péptidos/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
11.
Brain Res ; 1835: 148918, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38588847

RESUMEN

The lateral habenula (LHb) projects to the ventral tegmental area (VTA) and dorsal raphe nuclei (DRN) that deliver dopamine (DA) and serotonin (5-HT) to cortical and limbic regions such as the medial prefrontal cortex (mPFC), hippocampus and basolateral amygdala (BLA). Dysfunctions of VTA-related mesocorticolimbic dopaminergic and DRN-related serotonergic systems contribute to non-motor symptoms in Parkinson's disease (PD). However, how the LHb affects the VTA and DRN in PD remains unclear. Here, we used electrophysiological and neurochemical approaches to explore the effects of LHb lesions on the firing activity of VTA and DRN neurons, as well as the levels of DA and 5-HT in related brain regions in unilateral 6-hydroxydopamie (6-OHDA)-induced PD rats. We found that compared to sham lesions, lesions of the LHb increased the firing rate of DA neurons in the VTA and 5-HT neurons in the DRN, but decreased the firing rate of GABAergic neurons in the same nucleus. In addition, lesions of the LHb increased the levels of DA and 5-HT in the mPFC, ventral hippocampus and BLA compared to sham lesions. These findings suggest that lesions of the LHb enhance the activity of mesocorticolimbic dopaminergic and serotonergic systems in PD.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Núcleo Dorsal del Rafe , Habénula , Ratas Sprague-Dawley , Neuronas Serotoninérgicas , Serotonina , Área Tegmental Ventral , Animales , Área Tegmental Ventral/metabolismo , Habénula/metabolismo , Masculino , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Núcleo Dorsal del Rafe/metabolismo , Neuronas Serotoninérgicas/metabolismo , Neuronas Serotoninérgicas/fisiología , Ratas , Serotonina/metabolismo , Dopamina/metabolismo , Oxidopamina/toxicidad , Trastornos Parkinsonianos/fisiopatología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/patología , Corteza Prefrontal/metabolismo , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiopatología
12.
Behav Pharmacol ; 35(4): 201-210, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38660812

RESUMEN

microRNAs (miRNAs) play a significant role in the pathophysiology of Parkinson's disease. In this study, we evaluated the neuroprotective effect of thymoquinone on the expression profiles of miRNA and cognitive functions in the 6-hydroxydopamine (6-OHDA)-induced Parkinson's model. Male adult Wistar albino rats (200-230 g, n  = 36) were randomly assigned to six groups: Sham, thymoquinone (10 mg/kg, p.o.), 6-OHDA, 6-OHDA + thymoquinone (10 mg/kg), 6-OHDA + thymoquinone (20 mg/kg), and 6-OHDA + thymoquinone (50 mg/kg). Behavioral changes were detected using the open field and the elevated plus maze tests. The mature 728 miRNA expressions were evaluated by miRNA microarray (GeneChip miRNA 4.0). Ten miRNAs were selected (rno-miR-212-5p, rno-miR-146b-5p, rno-miR-150-5p, rno-miR-29b-2-5p, rno-miR-126a-3p, rno-miR-187-3p, rno-miR-34a-5p, rno-miR-181d-5p, rno-miR-204-3p, and rno-miR-30c-2-3p) and confirmed by real-time PCR. Striatum samples were stained with hematoxylin-eosin to determine the effect of dopaminergic lesions. One-way ANOVA test and independent sample t -test were used for statistical analyses. rno-miR-204-3p was upregulated at 6-OHDA and downregulated at the 50 mg/kg dose of thymoquinone. In conclusion, thymoquinone at a dose of 50 mg/kg ameliorates symptoms of Parkinson's disease in a 6-OHDA rat model by downregulation of miR-204-3p. Also, the results showed that thymoquinone can improve locomotor activity and willing exploration and decreased anxiety. Therefore, thymoquinone can be used as a therapeutic agent.


Asunto(s)
Benzoquinonas , Modelos Animales de Enfermedad , Regulación hacia Abajo , MicroARNs , Oxidopamina , Ratas Wistar , Animales , MicroARNs/metabolismo , MicroARNs/genética , Oxidopamina/farmacología , Masculino , Benzoquinonas/farmacología , Regulación hacia Abajo/efectos de los fármacos , Ratas , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos
13.
Behav Pharmacol ; 35(4): 185-192, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38563661

RESUMEN

LY-404,039 is an orthosteric agonist at metabotropic glutamate 2 and 3 (mGlu 2/3 ) receptors, with a possible additional agonist effect at dopamine D 2 receptors. LY-404,039 and its pro-drug, LY-2140023, have previously been tested in clinical trials for psychiatric indications and could therefore be repurposed if they were shown to be efficacious in other conditions. We have recently demonstrated that the mGlu 2/3 orthosteric agonist LY-354,740 alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced abnormal involuntary movements (AIMs) in the 6-hydroxydopamine (6-OHDA)-lesioned rat without hampering the anti-parkinsonian action of L-DOPA. Here, we seek to take advantage of a possible additional D 2 -agonist effect of LY-404,039 and see if an anti-parkinsonian benefit might be achieved in addition to the antidyskinetic effect of mGlu 2/3 activation. To this end, we have administered LY-404,039 (vehicle, 0.1, 1 and 10 mg/kg) to 6-OHDA-lesioned rats, after which the severity of axial, limbs and oro-lingual (ALO) AIMs was assessed. The addition of LY-404,039 10 mg/kg to L-DOPA resulted in a significant reduction of ALO AIMs over 60-100 min (54%, P  < 0.05). In addition, LY-404,039 significantly enhanced the antiparkinsonian effect of L-DOPA, assessed through the cylinder test (76%, P  < 0.01). These results provide further evidence that mGlu 2/3 orthosteric stimulation may alleviate dyskinesia in PD and, in the specific case of LY-404,039, a possible D 2 -agonist effect might also make it attractive to address motor fluctuations. Because LY-404,039 and its pro-drug have been administered to humans, they could possibly be advanced to Phase IIa trials rapidly for the treatment of motor complications in PD.


Asunto(s)
Discinesia Inducida por Medicamentos , Levodopa , Oxidopamina , Trastornos Parkinsonianos , Receptores de Glutamato Metabotrópico , Animales , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Ratas , Trastornos Parkinsonianos/tratamiento farmacológico , Masculino , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Oxidopamina/farmacología , Levodopa/farmacología , Antiparkinsonianos/farmacología , Aminoácidos/farmacología , Relación Dosis-Respuesta a Droga , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Compuestos Bicíclicos con Puentes/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Ratas Wistar
14.
Elife ; 122024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587883

RESUMEN

Midbrain dopamine (mDA) neurons comprise diverse cells with unique innervation targets and functions. This is illustrated by the selective sensitivity of mDA neurons of the substantia nigra compacta (SNc) in patients with Parkinson's disease, while those in the ventral tegmental area (VTA) are relatively spared. Here, we used single nuclei RNA sequencing (snRNA-seq) of approximately 70,000 mouse midbrain cells to build a high-resolution atlas of mouse mDA neuron diversity at the molecular level. The results showed that differences between mDA neuron groups could best be understood as a continuum without sharp differences between subtypes. Thus, we assigned mDA neurons to several 'territories' and 'neighborhoods' within a shifting gene expression landscape where boundaries are gradual rather than discrete. Based on the enriched gene expression patterns of these territories and neighborhoods, we were able to localize them in the adult mouse midbrain. Moreover, because the underlying mechanisms for the variable sensitivities of diverse mDA neurons to pathological insults are not well understood, we analyzed surviving neurons after partial 6-hydroxydopamine (6-OHDA) lesions to unravel gene expression patterns that correlate with mDA neuron vulnerability and resilience. Together, this atlas provides a basis for further studies on the neurophysiological role of mDA neurons in health and disease.


Asunto(s)
Ascomicetos , Trastornos Parkinsonianos , Adulto , Humanos , Animales , Ratones , Neuronas Dopaminérgicas , Perfilación de la Expresión Génica , Trastornos Parkinsonianos/genética , Mesencéfalo , Oxidopamina
15.
Geriatr Psychol Neuropsychiatr Vieil ; 22(1): 93-102, 2024 Mar 01.
Artículo en Francés | MEDLINE | ID: mdl-38573149

RESUMEN

Cortico-basal degeneration is a relatively uncommon cause of degenerative parkinsonism in the elderly. From a clinical point of view, it manifests as a cortico-basal syndrome (CBS), featuring a highly asymmetrical akinetic-rigid syndrome, dystonia, myoclonus and cognitive-behavioral impairment with predominant apraxia. Other clinical phenotypes are possible, including variants with mainly language or behavioral impairment, or with axial, symmetrical parkinsonism resembling progressive supranuclear palsy (PSP). Current diagnostic criteria take into account the heterogeneity of clinical presentations. However, a diagnosis of certainty can only be reached by a pathological study, with the evidence of TAU-positive intraneuronal inclusions. Indeed SCB may be underpinned by other lesional substrates, ranging from frontotemporal degeneration to Alzheimer's disease. Symptom management must be early, multidisciplinary and adapted to the progression of the disorder. The identification of the pathological substrate is an essential prerequisite for pathophysiological therapeutic trials.


Asunto(s)
Enfermedad de Alzheimer , Degeneración Corticobasal , Trastornos Parkinsonianos , Anciano , Humanos , Síndrome , Enfermedad de Alzheimer/diagnóstico , Atrofia , Trastornos Parkinsonianos/diagnóstico
16.
J Neurosci Res ; 102(4): e25328, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38651310

RESUMEN

Although manifesting contrasting phenotypes, Parkinson's disease and dystonia, the two most common movement disorders, can originate from similar pathophysiology. Previously, we demonstrated that lesioning (silencing) of a discrete dorsal region in the globus pallidus (rodent equivalent to globus pallidus externa) in rats and produced parkinsonism, while lesioning a nearby ventral hotspot-induced dystonia. Presently, we injected fluorescent-tagged multi-synaptic tracers into these pallidal hotspots (n = 36 Long Evans rats) and permitted 4 days for the viruses to travel along restricted connecting pathways and reach the motor cortex before sacrificing the animals. Viral injections in the Parkinson's hotspot fluorescent labeled a circumscribed region in the secondary motor cortex, while injections in the dystonia hotspot labeled within the primary motor cortex. Custom probability mapping and N200 staining affirmed the segregation of the cortical territories for Parkinsonism and dystonia to the secondary and primary motor cortices. Intracortical microstimulation localized territories specifically to their respective rostral and caudal microexcitable zones. Parkinsonian features are thus explained by pathological signaling within a secondary motor subcircuit normally responsible for initiation and scaling of movement, while dystonia is explained by abnormal (and excessive) basal ganglia signaling directed at primary motor corticospinal transmission.


Asunto(s)
Ganglios Basales , Distonía , Corteza Motora , Vías Nerviosas , Trastornos Parkinsonianos , Ratas Long-Evans , Animales , Corteza Motora/fisiopatología , Corteza Motora/patología , Trastornos Parkinsonianos/fisiopatología , Trastornos Parkinsonianos/patología , Ratas , Vías Nerviosas/fisiopatología , Distonía/fisiopatología , Distonía/patología , Distonía/etiología , Ganglios Basales/patología , Masculino , Globo Pálido/patología , Modelos Animales de Enfermedad
19.
J Neurol Sci ; 459: 122983, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574438

RESUMEN

Acute midbrain injury may cause both hyperkinetic movement disorders and parkinsonism. The temporal interval between the insult and the emergence of hyperkinetic disorders can last years. A delayed appearance of parkinsonism, on the other hand, was rarely described. We present three cases of male patients (50-, 58- and 28-year-old) who developed levodopa-responsive parkinsonism 20, 8 and two years, respectively, after acute brain insult involving the midbrain. Insults included subcortical intracerebral hemorrhage dissecting into the midbrain, embolic basilar occlusion and trauma. A fluorodopa scan, performed in two cases, revealed reduced striatal uptake. All individuals improved on low doses of levodopa and developed motor fluctuations shortly after levodopa was introduced. We conclude that delayed, levodopa-responsive parkinsonism following midbrain injury should be recognized in the relevant clinical setup. Possible mechanisms include age-related loss of dopaminergic neurons superimposed on acute injury and secondary neurodegeneration.


Asunto(s)
Levodopa , Trastornos Parkinsonianos , Humanos , Masculino , Levodopa/efectos adversos , Trastornos Parkinsonianos/complicaciones , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/tratamiento farmacológico , Encéfalo , Mesencéfalo/diagnóstico por imagen , Cuerpo Estriado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA