Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.691
Filtrar
1.
BMJ Ment Health ; 27(1)2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39313255

RESUMEN

BACKGROUND: The aim of this systematic review and meta-analysis is to evaluate and compare the prevalence rates of spontaneous movement disorders (SMDs), including dyskinesia, parkinsonism, akathisia and dystonia, in antipsychotic-naïve individuals with chronic psychosis and first-episode psychosis (FEP) and gain a more nuanced understanding of factors influencing their presence. METHODS: Several literature databases were systematically searched and screened based on predetermined eligibility criteria. Included articles underwent risk of bias assessment. The prevalence rates of SMDs were calculated using a random-effects model. RESULTS: Out of 711 articles screened, 27 were included in this meta-analysis. The pooled prevalence of spontaneous dyskinesia was 7% (3% FEP and 17% chronic schizophrenia) across 24 studies (95% CI 3 to 11; I2=94%, p<0.01) and 15% for spontaneous parkinsonism (14% FEP and 19% chronic schizophrenia) in 21 studies (95% CI 12 to 20; I2=81%, p<0.01). A meta-regression analysis found a significant positive correlation between age (p<0.05) and duration of untreated psychosis (DUP) (p<0.05) with dyskinesia but not parkinsonism prevalence. Akathisia and dystonia appear to be both less studied and less frequent in occurrence with a pooled prevalence of 4% (95% CI: 3 to 6; I2=0%, p=0.65) for akathisia in eight studies and a mean prevalence of 6% (range 0%-16%) for dystonia in five studies. CONCLUSION: The presence of varying degrees of neurodysfunction in antipsychotic-naïve patients with schizophrenia underscores the need for individualised treatment approaches that consider each patient's unique predisposition and neuromotor profile. Further research is warranted into the role of specific SMDs and risk factors including sex, race and diagnostic variations. PROSPERO REGISTRATION NUMBER: CRD42024501951.


Asunto(s)
Distonía , Trastornos del Movimiento , Trastornos Parkinsonianos , Trastornos Psicóticos , Humanos , Trastornos Psicóticos/epidemiología , Trastornos Psicóticos/tratamiento farmacológico , Prevalencia , Distonía/epidemiología , Distonía/inducido químicamente , Trastornos del Movimiento/epidemiología , Trastornos Parkinsonianos/epidemiología , Trastornos Parkinsonianos/inducido químicamente , Discinesias/epidemiología , Discinesias/etiología , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/epidemiología , Enfermedad Crónica
2.
PLoS One ; 19(9): e0296424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39302939

RESUMEN

In this study, we investigated the neuroprotective effect of a water extract of ginseng (WEG) obtained via low-temperature extraction of the brain of mice with Parkinson's disease (PD) and the ameliorative effect on the damaged intestinal system for the treatment of dyskinesia in PD mice. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) was injected intraperitoneally into male C57BL/6 mice to establish a PD model, and WEG was given via oral gavage. The results indicated that WEG could protect the damaged neuronal cells of the mice brain, inhibit the aggregation of α-synuclein (α-Syn) in the brain, and increase the positive expression rate of tyrosine hydroxylase (TH). WEG significantly improved intestinal damage and regulated intestinal disorders (P<0.05). WEG intervention increased the levels of beneficial bacteria, such as Lactobacillus, and normalized the abundance and diversity of colonies in the intestine of mice. Our results suggested that WEG protected neurons in the brain of PD mice via inhibiting the aggregation of α-Syn in the brain and increasing the positive expression level of TH in the brain. WEG regulated the gut microbiota of mice, improved the behavioral disorders of PD mice, and offered some therapeutic effects on PD mice.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Ratones Endogámicos C57BL , Panax , Extractos Vegetales , alfa-Sinucleína , Animales , Masculino , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Panax/química , Ratones , alfa-Sinucleína/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Modelos Animales de Enfermedad , Agua/química , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Tirosina 3-Monooxigenasa/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos
3.
Biomed Khim ; 70(4): 231-239, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39239897

RESUMEN

Parkinsonism in rats induced by the pesticide rotenone is one of the most adequate models of Parkinson's disease (PD). Isatin (indole-2,3-dione) is an endogenous regulator found in mammals and humans and exhibiting a wide range of biological activities mediated by numerous isatin-binding proteins, including those associated with neurodegenerative pathology. A course of rotenone administration to rats caused behavioral impairments and changes in the profile and relative content of isatin-binding proteins in the brain. In this study, we have investigated the delayed neuroprotective effect of isatin (5 days after completion of the course of rotenone administration) on behavioral reactions and the relative content of isatin-binding proteins in the brain of rats with rotenone-induced experimental parkinsonism. Although during this period the rats retained locomotor dysfunction, the proteomic analysis data (profile of isatin-binding proteins in the brain and changes in their relative content) differed from the results obtained immediately after completion of the course of rotenone administration. Moreover, all isatin-binding proteins with altered relative content changed during this period are associated to varying degrees with neurodegeneration (many with Parkinson's and Alzheimer's diseases).


Asunto(s)
Encéfalo , Isatina , Fármacos Neuroprotectores , Rotenona , Animales , Isatina/farmacología , Rotenona/toxicidad , Fármacos Neuroprotectores/farmacología , Ratas , Masculino , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Modelos Animales de Enfermedad , Ratas Wistar , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/metabolismo , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Enfermedad de Parkinson Secundaria/patología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico
4.
Neurosci Lett ; 839: 137936, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151573

RESUMEN

Synucleins, including α-synuclein (α-syn), ß-syn, and γ-syn, have been implicated in various synucleinopathies, notably Parkinson's disease (PD), which has generated increased interest in understanding their roles. Although α-syn and ß-syn have contrasting neuropathological consequences, the precise role of γ-syn remains unclear. This study validated non-motor symptoms, specifically anxiety-like behavior, along with the degradation of dopaminergic (DAergic) neurons in the nigrostriatal system and DAergic neurites in the prefrontal cortex and hippocampus of rats infused with striatal 6-hydroxydopamine (6-OHDA). Our study further investigated the alterations in γ-syn expression levels in the prefrontal cortices and hippocampi of these 6-OHDA-treated rats, aiming to establish foundational insights into the neuropathophysiology of DA depletion, a central feature of PD. Our findings revealed a significant increase in the expression of γ-syn mRNA and protein in these brain regions, in contrast to unaltered α- and ß-syn expression levels. This suggests a distinct role of γ-syn within the neurobiological milieu under conditions of DA deficiency. Overall, our data shed light on the neurobiological changes observed in the hemiparkinsonian rat model induced with 6-OHDA, underscoring the potential significance of γ-syn in PD pathology.


Asunto(s)
Dopamina , Hipocampo , Oxidopamina , Corteza Prefrontal , Regulación hacia Arriba , gamma-Sinucleína , Animales , Corteza Prefrontal/metabolismo , Oxidopamina/toxicidad , Masculino , Hipocampo/metabolismo , Dopamina/metabolismo , gamma-Sinucleína/metabolismo , gamma-Sinucleína/genética , Ratas , Ratas Sprague-Dawley , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética
5.
Exp Neurol ; 381: 114939, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39191345

RESUMEN

Dopamine replacement therapy (DRT) of Parkinson's disease (PD) may trigger non-motor complications, some of which affect hedonic homeostatic regulation. Management of iatrogenic alterations in the affective state in PD is unsatisfactory, partly because of the limitations in the experimental models that are used in the preclinical investigation of the neurobiology and therapy of these alterations. In this connection, we recently employed a new experimental approach consisting in measuring the emission of 50-kHz ultrasonic vocalizations (USVs), a marker of positive affect, in hemiparkinsonian rats treated with drugs used in the DRT of PD. To further strengthen our approach, we here evaluated how the acute and repeated (× 5, on alternate days) administration of apomorphine (2 mg/kg, i.p.) or L-3,4-dihydroxyphenilalanine (L-DOPA, 12 mg/kg, i.p.) modified the immunoreactivity for Zif-268, a marker of neuronal activation, in the nucleus accumbens (NAc), caudate-putamen (CPu) and medial prefrontal cortex (mPFC), which are brain regions that regulate emotional states and drugs' affective properties. Acute and repeated treatment with either apomorphine or L-DOPA stimulated the emission of 50-kHz USVs in hemiparkinsonian rats, and this effect was paired with increased Zif-268 immunoreactivity in the NAc and CPu, but not mPFC. These findings indicate that subcortical and cortical regions may differently regulate the emission of 50-kHz USVs in hemiparkinsonian rats treated with dopaminergic drugs used in the DRT of PD. Moreover, they provide further evidence that measuring 50-kHz USV emissions in hemiparkinsonian rats may be a relevant approach to investigate at the preclinical level the affective properties of antiparkinsonian drugs.


Asunto(s)
Antiparkinsonianos , Apomorfina , Levodopa , Vocalización Animal , Animales , Ratas , Vocalización Animal/efectos de los fármacos , Masculino , Antiparkinsonianos/farmacología , Apomorfina/farmacología , Levodopa/farmacología , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/inducido químicamente , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Neuronas/efectos de los fármacos , Ratas Wistar , Afecto/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Oxidopamina/toxicidad , Agonistas de Dopamina/farmacología
6.
Exp Neurol ; 380: 114924, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39147260

RESUMEN

Parkinson's disease (PD) involves the degeneration of dopaminergic neurons in the substantia nigra (SNpc) and manifests with both classic and non-classic motor symptoms, including respiratory failure. Our study aims to investigate the involvement of the commissural and intermediate nucleus of the solitary tract (cNTS and iNTS) in the attenuated respiratory response to hypoxia in PD. Using a PD rat model induced by bilateral injection of 6-hydroxydopamine (6-OHDA) into the striatum of male Wistar rats, we explored potential alterations in the population of Phox2b neurons or hypoxia-activated neurons in the NTS projecting to the retrotrapezoid nucleus (RTN). Additionally, we explored neuronal connectivity between SNpc and cNTS. Projections pathways were assessed using unilateral injection of the retrograde tracer Fluorogold (FG) in the cNTS and RTN. Neuronal activation was evaluated by analyzing fos expression in rats exposed to hypoxia. In the PD model, the ventilatory response, measured through whole-body plethysmography, was impaired at both baseline and in response to hypoxia. A reduction in Phox2b-expressing neurons or hypoxia-activated neurons projecting to the RTN was observed. Additionally, we identified an indirect pathway linking the SNpc and cNTS, which passes through the periaqueductal gray (PAG). In conclusion, our findings suggest impairment in the SNpc-PAG-cNTS pathway in the PD model, explaining the loss of Phox2b-expressing neurons or hypoxia-activated neurons in the cNTS and subsequent respiratory impairment during hypoxic stimulation. We propose that the reduced population of Phox2b-expressing neurons in the NTS may include the same neurons activated by hypoxia and projecting to the RTN.


Asunto(s)
Hipoxia , Oxidopamina , Ratas Wistar , Núcleo Solitario , Animales , Masculino , Ratas , Núcleo Solitario/patología , Hipoxia/patología , Oxidopamina/toxicidad , Proteínas de Homeodominio/metabolismo , Modelos Animales de Enfermedad , Degeneración Nerviosa/patología , Neuronas/patología , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/fisiopatología , Factores de Transcripción/metabolismo
7.
J Ethnopharmacol ; 335: 118691, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39134229

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: 'Karkataka Taila (KT), an ancient Ayurvedic Rasayana comprising the edible freshwater crab Scylla serrata Forskal flesh, is still used by local traditional practitioners in Kerala state to treat tremors and palsy. In the scientific community, it becomes less exposed due to the lack of adequate scientific validations and brief reports. There has been no published research on the effectiveness of KT in treating Parkinson's disease (PD). PURPOSE: The purpose of the current research work was to investigate the anti-Parkison's potential of KT against rotenone-induced neurotoxicity in SH-SY5Y cell lines and rat model of PD and investigate underlying molecular mechanisms. MATERIALS AND METHODS: The components of KT have been identified by gas chromatography-mass spectroscopy (GC-MS). The neuroprotective activity of KT was assessed using SH-SY5Y cell lines and rats against rotenone-induced PD. The parameters used for asses the neuroprotection are antioxidant markers (ROS and SOD), anti-inflammatory markers (IL-6, IL-1ß, TNF-α, and nitrite), and dopamine levels. Behavioral evaluation and rat brain histopathology were carried out to further support the neuroprotection. RESULT: Analysis using GC-MS revealed 36 constituents in KT. In vitro, the KT displayed considerable neuroprotective effects in terms of decreasing oxidative stress (ROS and SOD), neuroinflammation (IL-6, IL-1ß, TNF-α, and nitrite), and elevating dopamine concentration. In vivo data showing improvements in histopathological and biochemical parameters confirmed the in vitro study findings, and in terms of behavioral assays, KT displayed significant activity. CONCLUSION: GC-MS profiling was used to identify the bioactive compounds of KT with antioxidant, anti-inflammatory, and neuroprotective properties. As a result, they may be responsible for the therapeutic effects of KT on PD.


Asunto(s)
Fármacos Neuroprotectores , Rotenona , Animales , Rotenona/toxicidad , Humanos , Línea Celular Tumoral , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/aislamiento & purificación , Ratas , Masculino , Braquiuros , Antioxidantes/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Ratas Wistar , Estrés Oxidativo/efectos de los fármacos , Modelos Animales de Enfermedad , Dopamina/metabolismo , Extractos Vegetales/farmacología , Cromatografía de Gases y Espectrometría de Masas , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/inducido químicamente , Conducta Animal/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Etnofarmacología
8.
Afr Health Sci ; 24(1): 206-212, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38962328

RESUMEN

Introduction: Trazodone is an antidepressant agent approved for treating major depressive disorders and is also prescribed for insomnia due to its sedative effect. In a few cases, trazodone was associated with parkinsonism. Herein, we describe a case of parkinsonism after a brief exposure to a moderate dose of trazodone. Objective: To describe a case of a patient with trazodone-induced parkinsonism in which the diagnosis was suspected after the exclusion of other common and serious causes. Methods: A case report of trazodone-induced parkinsonism. Clinical Case: A 58-year-old male with sleeping problems was prescribed trazodone 50 mg daily at bedtime. The subject doubled the dosage without medical advice a week later. After 14 days of trazodone treatment, he started to experience difficulty in moving his upper limbs and recurrent falling. Neuroimaging, electrodiagnostic studies, and laboratory exams were unremarkable. Trazodone was discontinued, and the patient fully recovered. Noteworthy, the patient developed a recurrence of the motor symptoms with trazodone-rechallenge. Conclusion: Our case showed reversibly induced parkinsonism after a short intake of a moderate dose of trazodone which was prescribed for insomnia. The patient had a complete recovery after trazodone withdrawal. Noteworthy, the symptoms recurred upon trazodone-rechallenge.


Asunto(s)
Trazodona , Humanos , Trazodona/efectos adversos , Masculino , Persona de Mediana Edad , Antidepresivos de Segunda Generación/efectos adversos , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/inducido químicamente
9.
Brain Behav ; 14(7): e3605, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38956819

RESUMEN

BACKGROUND: High-frequency repeated transcranial magnetic stimulation (rTMS) stimulating the primary motor cortex (M1) is an alternative, adjunctive therapy for improving the motor symptoms of Parkinson's disease (PD). However, whether the high frequency of rTMS positively correlates to the improvement of motor symptoms of PD is still undecided. By controlling for other parameters, a disease animal model may be useful to compare the neuroprotective effects of different high frequencies of rTMS. OBJECTIVE: The current exploratory study was designed to compare the protective effects of four common high frequencies of rTMS (5, 10, 15, and 20 Hz) and iTBS (a special form of high-frequency rTMS) and explore the optimal high-frequency rTMS on an animal PD model. METHODS: Following high frequencies of rTMS application (twice a week for 5 weeks) in a MPTP/probenecid-induced chronic PD model, the effects of the five protocols on motor behavior as well as dopaminergic neuron degeneration levels were identified. The underlying molecular mechanisms were further explored. RESULTS: We found that all the high frequencies of rTMS had protective effects on the motor functions of PD models to varying degrees. Among them, the 10, 15, and 20 Hz rTMS interventions induced comparable preservation of motor function through the protection of nigrostriatal dopamine neurons. The enhancement of brain-derived neurotrophic factor (BDNF), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT-2) and the suppression of TNF-α and IL-1ß in the nigrostriatum were involved in the process. The efficacy of iTBS was inferior to that of the above three protocols. The effect of 5 Hz rTMS protocol was weakest. CONCLUSIONS: Combined with the results of the present study and the possible side effects induced by rTMS, we concluded that 10 Hz might be the optimal stimulation frequency for preserving the motor functions of PD models using rTMS treatment.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Trastornos Parkinsonianos , Probenecid , Estimulación Magnética Transcraneal , Animales , Estimulación Magnética Transcraneal/métodos , Ratones , Masculino , Probenecid/farmacología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/terapia , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Motora/metabolismo , Corteza Motora/fisiopatología , Neuronas Dopaminérgicas/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Interleucina-1beta/metabolismo , Sustancia Negra/metabolismo , Cuerpo Estriado/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Intoxicación por MPTP/terapia , Intoxicación por MPTP/prevención & control , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/fisiopatología , Actividad Motora/fisiología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología
10.
J Neurosci Methods ; 409: 110217, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964477

RESUMEN

BACKGROUND: Parkinson's patients have significant autonomic dysfunction, early detect the disorder is a major challenge. To assess the autonomic function in the rat model of rotenone induced Parkinson's disease (PD), Blood pressure and ECG signal acquisition are very important. NEW METHOD: We used telemetry to record the electrocardiogram and blood pressure signals from awake rats, with linear and nonlinear analysis techniques calculate the heart rate variability (HRV) and blood pressure variability (BPV). we applied nonlinear analysis methods like sample entropy and detrended fluctuation analysis to analyze blood pressure signals. Particularly, this is the first attempt to apply nonlinear analysis to the blood pressure evaluate in rotenone induced PD model rat. RESULTS: HRV in the time and frequency domains indicated sympathetic-parasympathetic imbalance in PD model rats. Linear BPV analysis didn't reflect changes in vascular function and blood pressure regulation in PD model rats. Nonlinear analysis revealed differences in BPV, with lower sample entropy results and increased detrended fluctuation analysis results in the PD group rats. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: our experiments demonstrate the ability to evaluate autonomic dysfunction in models of Parkinson's disease by combining the analysis of BPV with HRV, consistent with autonomic impairment in PD patients. Nonlinear analysis by blood pressure signal may help in early detection of the PD. It indicates that the fluctuation of blood pressure in the rats in the rotenone model group tends to be regular and predictable, contributes to understand the PD pathophysiological mechanisms and to find strategies for early diagnosis.


Asunto(s)
Sistema Nervioso Autónomo , Presión Sanguínea , Modelos Animales de Enfermedad , Electrocardiografía , Frecuencia Cardíaca , Rotenona , Animales , Rotenona/toxicidad , Frecuencia Cardíaca/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Presión Sanguínea/fisiología , Presión Sanguínea/efectos de los fármacos , Masculino , Sistema Nervioso Autónomo/fisiopatología , Sistema Nervioso Autónomo/efectos de los fármacos , Telemetría/métodos , Dinámicas no Lineales , Ratas , Trastornos Parkinsonianos/fisiopatología , Trastornos Parkinsonianos/inducido químicamente , Ratas Sprague-Dawley , Enfermedad de Parkinson/fisiopatología
11.
J Neurophysiol ; 132(3): 733-743, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39015077

RESUMEN

Growing evidence indicates that activation of cannabinoid type 2 (CB2) receptors protects dopamine neurons in the pathogenesis of Parkinson's disease (PD). However, the mechanisms underlying neuroprotection mediated by CB2 receptors are still elusive. In this study, we investigated the effects of CB2 receptor activation on 6-hydroxydopamine (6-OHDA)-induced dopamine neuron degeneration and iron accumulation in the substantia nigra (SN) of rats. We found that treatment with JWH133, a selective CB2 receptor agonist, significantly improved the apomorphine (APO)-induced rotational behavior in 6-OHDA-treated rats. The decreased numbers of tyrosine hydroxylase (TH)-positive neurons and reduced TH protein expression in the lesioned SN of rats were effectively restored by JWH133. Moreover, we found that JWH133 inhibited the increase of iron-staining cells in the lesioned SN of rats. To explore the protective mechanisms of activation of CB2 receptors on dopamine neurons, we further observed the effect of JWH133 on 1-methyl-4-phenylpyridinium (MPP+)-treated primary cultured ventral mesencephalon (VM) neurons from rats. We found that JWH133 significantly inhibited the increase of intracellular reactive oxygen species (ROS), the activation of Caspase-3, the decrease of mitochondrial transmembrane potential (ΔΨm), and the decrease of Bcl-2/Bax protein expression caused by MPP+ treatment. JWH133 also inhibited the MPP+-induced upregulation of divalent metal transporter-1 (DMT1) and downregulation of ferroportin 1 (FPN1). Furthermore, JWH133 also suppressed the MPP+-accelerated iron influx in the VM neurons. These results suggest that activation of CB2 receptor suppresses MPP+-induced cellular iron accumulation and prevents neurodegeneration.NEW & NOTEWORTHY Expression of cannabinoid type 2 receptors (CB2Rs) was discovered on dopamine neurons in recent years. The role of CB2R expressed on dopamine neurons in the pathogenesis of Parkinson's disease (PD) has not been fully elucidated. The content of iron accumulation in the brain is closely related to the progress of PD. We verified the inhibitory effect of CB2R on iron deposition in dopamine neurons through experiments, which provided a new idea for the treatment of PD.


Asunto(s)
Cannabinoides , Neuronas Dopaminérgicas , Hierro , Oxidopamina , Ratas Sprague-Dawley , Receptor Cannabinoide CB2 , Animales , Masculino , Cannabinoides/farmacología , Ratas , Hierro/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB2/agonistas , Sustancia Negra/metabolismo , Sustancia Negra/efectos de los fármacos , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/inducido químicamente , Tirosina 3-Monooxigenasa/metabolismo , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Agonistas de Receptores de Cannabinoides/farmacología
12.
Neurotoxicology ; 103: 320-334, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38960072

RESUMEN

Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days. Upon completion of rotenone dosing, mice were orally treated at day 15 with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.


Asunto(s)
Neuronas Dopaminérgicas , Ratones Endogámicos C57BL , Fármacos Neuroprotectores , Receptores de Glucocorticoides , Rotenona , alfa-Sinucleína , Animales , Rotenona/toxicidad , Fármacos Neuroprotectores/farmacología , Ratones , Masculino , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/metabolismo , Receptores de Glucocorticoides/metabolismo , alfa-Sinucleína/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Sustancia Negra/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Modelos Animales de Enfermedad , Fenantrenos
13.
Int Immunopharmacol ; 139: 112715, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39032471

RESUMEN

Citalopram and escitalopram are structurally close-related antidepressants and both forms are widely used in the world. We aimed to comparatively evaluate the anti-neuroinflammatory and neuroprotective effects of escitalopram and citalopram in Parkinson's disease (PD) mouse model. Mice were randomly divided into six groups and received 6-hydroxydopamine (6-OHDA) or vehicle administration. The mice were then treated with escitalopram, citalopram or saline for consecutive 7 days. Behaviors, neuroinflammation, neurotransmitters, and neurotoxicity were assessed. Results showed that citalopram but not escitalopram worsened body weight loss and increased freezing time in the PD mice. Both drugs had no impact on the anxiety-like behaviors but ameliorated the depressive-like behaviors as in elevated plus maze and sucrose splash tests. Escitalopram but not citalopram ameliorated motor discoordination in the PD mice as in rotarod test. In accordance, escitalopram but not citalopram attenuated the 6-OHDA-induced nigrostriatal dopaminergic loss. Further mechanistic investigations showed that both drugs mitigated activations of microglia and astrocytes and/or levels of pro-inflammatory cytokines in the PD mice, but escitalopram showed appreciably better effects in the substantia nigra. Neurotransmitter examination in the prefrontal cortex suggested that the two drugs had comparable effects on the disturbed neurotransmitters in the PD mice, but citalopram was prone to disrupt certain normal homeostasis. In conclusion, escitalopram is moderately superior than citalopram to suppress neuroinflammation and to protect against dopaminergic neuronal death and motor discoordination in the 6-OHDA-induced PD mice. Our findings imply that escitalopram shall be prescribed with priority over citalopram to treat PD patients with depression as escitalopram may meanwhile provide greater additional benefits to the patients.


Asunto(s)
Citalopram , Modelos Animales de Enfermedad , Escitalopram , Fármacos Neuroprotectores , Oxidopamina , Animales , Citalopram/farmacología , Citalopram/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Masculino , Ratones , Escitalopram/uso terapéutico , Escitalopram/farmacología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/inmunología , Ratones Endogámicos C57BL , Citocinas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Humanos , Conducta Animal/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/inducido químicamente
14.
Neurobiol Dis ; 198: 106559, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852753

RESUMEN

Parkinson's disease is caused by a selective vulnerability and cell loss of dopaminergic neurons of the Substantia Nigra pars compacta and, consequently, striatal dopamine depletion. In Parkinson's disease therapy, dopamine loss is counteracted by the administration of L-DOPA, which is initially effective in ameliorating motor symptoms, but over time leads to a burdening side effect of uncontrollable jerky movements, termed L-DOPA-induced dyskinesia. To date, no efficient treatment for dyskinesia exists. The dopaminergic and serotonergic systems are intrinsically linked, and in recent years, a role has been established for pre-synaptic 5-HT1a/b receptors in L-DOPA-induced dyskinesia. We hypothesized that post-synaptic serotonin receptors may have a role and investigated the effect of modulation of 5-HT4 receptor on motor symptoms and L-DOPA-induced dyskinesia in the unilateral 6-OHDA mouse model of Parkinson's disease. Administration of RS 67333, a 5-HT4 receptor partial agonist, reduces L-DOPA-induced dyskinesia without altering L-DOPA's pro-kinetic effect. In the dorsolateral striatum, we find 5-HT4 receptor to be predominantly expressed in D2R-containing medium spiny neurons, and its expression is altered by dopamine depletion and L-DOPA treatment. We further show that 5-HT4 receptor agonism not only reduces L-DOPA-induced dyskinesia, but also enhances the activation of the cAMP-PKA pathway in striatopallidal medium spiny neurons. Taken together, our findings suggest that agonism of the post-synaptic serotonin receptor 5-HT4 may be a novel therapeutic approach to reduce L-DOPA-induced dyskinesia.


Asunto(s)
Discinesia Inducida por Medicamentos , Levodopa , Oxidopamina , Animales , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/metabolismo , Levodopa/farmacología , Oxidopamina/toxicidad , Ratones , Masculino , Ratones Endogámicos C57BL , Agonistas del Receptor de Serotonina 5-HT4/farmacología , Antiparkinsonianos/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Piridinas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Piperidinas , Pirimidinas
15.
Elife ; 122024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940422

RESUMEN

Parkinson's disease (PD) is characterized by motor impairments caused by degeneration of dopamine neurons in the substantia nigra pars compacta. In addition to these symptoms, PD patients often suffer from non-motor comorbidities including sleep and psychiatric disturbances, which are thought to depend on concomitant alterations of serotonergic and noradrenergic transmission. A primary locus of serotonergic neurons is the dorsal raphe nucleus (DRN), providing brain-wide serotonergic input. Here, we identified electrophysiological and morphological parameters to classify serotonergic and dopaminergic neurons in the murine DRN under control conditions and in a PD model, following striatal injection of the catecholamine toxin, 6-hydroxydopamine (6-OHDA). Electrical and morphological properties of both neuronal populations were altered by 6-OHDA. In serotonergic neurons, most changes were reversed when 6-OHDA was injected in combination with desipramine, a noradrenaline (NA) reuptake inhibitor, protecting the noradrenergic terminals. Our results show that the depletion of both NA and dopamine in the 6-OHDA mouse model causes changes in the DRN neural circuitry.


Asunto(s)
Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Núcleo Dorsal del Rafe , Oxidopamina , Trastornos Parkinsonianos , Neuronas Serotoninérgicas , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Neuronas Serotoninérgicas/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Núcleo Dorsal del Rafe/efectos de los fármacos , Ratones , Trastornos Parkinsonianos/fisiopatología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Masculino , Ratones Endogámicos C57BL , Desipramina/farmacología , Norepinefrina/metabolismo
16.
Neuroscience ; 551: 217-228, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38843989

RESUMEN

INTRODUCTION: Magnetic resonance imaging (MRI) based brain morphometric changes in unilateral 6-hydroxydopamine (6-OHDA) induced Parkinson's disease (PD) model can be elucidated using voxel-based morphometry (VBM), study of alterations in gray matter volume and Machine Learning (ML) based analyses. METHODS: We investigated gray matter atrophy in 6-OHDA induced PD model as compared to sham control using statistical and ML based analysis. VBM and atlas-based volumetric analysis was carried out at regional level. Support vector machine (SVM)-based algorithms wherein features (volume) extracted from (a) each of the 150 brain regions (b) statistically significant features (only) and (c) volumes of each cluster identified after application of VBM (VBM_Vol) were used for training the decision model. The lesion of the 6-OHDA model was validated by estimating the net contralateral rotational behaviour by the injection of apomorphine drug and motor impairment was assessed by rotarod and open field test. RESULTS AND DISCUSSION: In PD, gray matter volume (GMV) atrophy was noted in bilateral cortical and subcortical brain regions, especially in the internal capsule, substantia nigra, midbrain, primary motor cortex and basal ganglia-thalamocortical circuits in comparison with sham control. Behavioural results revealed an impairment in motor performance. SVM analysis showed 100% classification accuracy, sensitivity and specificity at both 3 and 7 weeks using VBM_Vol. CONCLUSION: Unilateral 6-OHDA induced GMV changes in both hemispheres at 7th week may be associated with progression of the disease in the PD model. SVM based approaches provide an increased classification accuracy to elucidate GMV atrophy.


Asunto(s)
Atrofia , Sustancia Gris , Imagen por Resonancia Magnética , Oxidopamina , Sustancia Gris/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/efectos de los fármacos , Atrofia/patología , Animales , Masculino , Modelos Animales de Enfermedad , Apomorfina/farmacología , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Máquina de Vectores de Soporte , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/diagnóstico por imagen , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/diagnóstico por imagen
17.
Neuropharmacology ; 257: 110033, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38866066

RESUMEN

The anteroventral bed nucleus of stria terminalis (avBNST) is a limbic forebrain region involved in the regulation of anxiety, and expresses GABAB receptors, which are located at both pre- and post-synaptic sites. However, it is unclear how blockade of these receptors affects anxiety-like behaviors, particularly in Parkinson's disease (PD)-related anxiety. In the present study, unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, and increased GABA release and decreased glutamate release in the avBNST, as well as decreased level of dopamine (DA) in the basolateral amygdala (BLA). Intra-avBNST injection of pre-synaptic GABAB receptor antagonist CGP36216 produced anxiolytic-like effects, while the injection of post-synaptic GABAB receptor antagonist CGP35348 induced anxiety-like responses in both sham and 6-OHDA rats. Intra-avBNST injection of CGP36216 inhibited the GABAergic neurons and increased GABA/glutamate ratio in the avBNST and increased levels of DA and serotonin (5-HT) in the BLA; conversely, CGP35348 produced opposite effects on the firing activity of avBNST GABAergic neurons and levels of the neurotransmitters in the avBNST and BLA. Moreover, the doses of the antagonists producing significant behavioral effects in 6-OHDA rats were lower than those in sham rats, and the duration of action of the antagonists on the firing rate of the neurons and release of the neurotransmitters was prolonged in 6-OHDA rats. Altogether, these findings suggest that pre- and post-synaptic GABAB receptors in the avBNST are implicated in PD-related anxiety-like behaviors, and degeneration of the nigrostriatal pathway enhances functions and/or upregulates expression of these receptors.


Asunto(s)
Ansiolíticos , Ansiedad , Antagonistas de Receptores de GABA-B , Oxidopamina , Trastornos Parkinsonianos , Receptores de GABA-B , Núcleos Septales , Animales , Núcleos Septales/efectos de los fármacos , Núcleos Septales/metabolismo , Masculino , Ansiedad/metabolismo , Antagonistas de Receptores de GABA-B/farmacología , Ansiolíticos/farmacología , Ratas , Receptores de GABA-B/metabolismo , Oxidopamina/toxicidad , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/psicología , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ratas Sprague-Dawley , Serotonina/metabolismo , Complejo Nuclear Basolateral/metabolismo , Complejo Nuclear Basolateral/efectos de los fármacos , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Compuestos Organofosforados
18.
Biochem Pharmacol ; 226: 116343, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38852645

RESUMEN

The abnormal accumulation of fibrillar α-synuclein in the substantia nigra contributes to Parkinson's disease (PD). Chemical chaperones like 4-phenyl butyric acid (4PBA) show neuroprotective potential, but high doses are required. A derivative, 5-phenyl valeric acid (5PVA), has reported therapeutic potential for PD by reducing Pael-R expression. This study assessed 5PVA's efficacy in PD animals and its molecular mechanism. In vitro studies revealed 5PVA's anti-aggregation ability against alpha-synuclein and neuroprotective effects on SHSY5Y neuroblastoma cells exposed to rotenone. PD-like symptoms were induced in SD rats with rotenone, followed by 5PVA treatment at 100 mg/kg and 130 mg/kg. Behavioral analysis showed significant improvement in memory and motor activity with 5PVA administration. Histopathological studies demonstrated normal neuronal histoarchitecture in mid-brain tissue sections of 5PVA-treated animals compared to the PD group. mRNA studies revealed significant suppression in the expression of various protein folding and heat-shock protein markers in the 5PVA-treated group. In conclusion, 5PVA, with its anti-aggregation ability against alpha-synuclein, acts as a chemical chaperone, showing potential as a therapeutic candidate for PD treatment.


Asunto(s)
Estrés del Retículo Endoplásmico , Ratas Sprague-Dawley , Rotenona , alfa-Sinucleína , Animales , alfa-Sinucleína/metabolismo , Rotenona/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratas , Masculino , Línea Celular Tumoral , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ácidos Pentanoicos/farmacología , Ácidos Pentanoicos/uso terapéutico , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/patología , Agregado de Proteínas/efectos de los fármacos
19.
J Ethnopharmacol ; 332: 118363, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38763373

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ganoderma lucidum, a renowned tonic traditional Chinese medicine, is widely recognized for the exceptional activity in soothing nerves and nourishing the brain. It has been extensively employed to alleviate various neurological disorders, notably Parkinson's disease (PD). AIM OF THE STUDY: To appraise the antiparkinsonian effect of GAA, the main bioactive constituent of G. lucidum, and clarify the molecular mechanism through the perspective of ferritinophagy-mediated dopaminergic neuron ferroptosis. MATERIALS AND METHODS: PD mouse and cell models were established using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP+), respectively. Cell viability, behavioral tests and immunofluorescence analysis were performed to evaluate the neurotoxicity, motor dysfunction and dopaminergic loss, respectively. Biochemical assay kits were used to determine the levels of iron, lipid reactive oxygen species (ROS), malondialdehyde (MDA), total ROS and glutathione (GSH). Western blot and immunofluorescence were applied to detect the expressions of nuclear receptor co-activator 4 (NCOA4), ferritin heavy chain 1 (FTH1), p62 and LC3B. Additionally, NCOA4-overexpressing plasmid vector was constructed to verify the inhibitory effect of GAA on the neurotoxicity and ferroptosis-related parameters in PD models. RESULTS: GAA significantly mitigated MPP+/MPTP-induced neurotoxicity, motor dysfunction and dopaminergic neuron loss (p<0.01 or p<0.05). In contrast to MPP+/MPTP treatment, GAA treatment decreased the levels of iron, MDA, lipid and total ROS, while increasing the GSH level. GAA also reduced the levels of NCOA4 and LC3B, and enhanced the expressions of FTH1 and p62 in PD models (p<0.01 or p<0.05). However, the protective effect of GAA against the neurotoxicity, NCOA4-mediated ferritinophagy and ferroptosis in PD model was abolished by the overexpression of NCOA4 (p<0.01). CONCLUSION: GAA exerted a protective effect on PD, and this effect was achieved by suppressing dopaminergic neuron ferroptosis through the inhibition of NCOA4-mediated ferritinophagy.


Asunto(s)
Neuronas Dopaminérgicas , Ferritinas , Ferroptosis , Ratones Endogámicos C57BL , Coactivadores de Receptor Nuclear , Animales , Ferroptosis/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Coactivadores de Receptor Nuclear/metabolismo , Ratones , Masculino , Ferritinas/metabolismo , Fármacos Neuroprotectores/farmacología , Autofagia/efectos de los fármacos , Antiparkinsonianos/farmacología , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Modelos Animales de Enfermedad
20.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791326

RESUMEN

Chronic environmental exposure to toxic heavy metals, which often occurs as a mixture through occupational and industrial sources, has been implicated in various neurological disorders, including Parkinsonism. Vanadium pentoxide (V2O5) typically presents along with manganese (Mn), especially in welding rods and high-capacity batteries, including electric vehicle batteries; however, the neurotoxic effects of vanadium (V) and Mn co-exposure are largely unknown. In this study, we investigated the neurotoxic impact of MnCl2, V2O5, and MnCl2-V2O5 co-exposure in an animal model. C57BL/6 mice were intranasally administered either de-ionized water (vehicle), MnCl2 (252 µg) alone, V2O5 (182 µg) alone, or a mixture of MnCl2 (252 µg) and V2O5 (182 µg) three times a week for up to one month. Following exposure, we performed behavioral, neurochemical, and histological studies. Our results revealed dramatic decreases in olfactory bulb (OB) weight and levels of tyrosine hydroxylase, dopamine, and 3,4-dihydroxyphenylacetic acid in the treatment groups compared to the control group, with the Mn/V co-treatment group producing the most significant changes. Interestingly, increased levels of α-synuclein expression were observed in the substantia nigra (SN) of treated animals. Additionally, treatment groups exhibited locomotor deficits and olfactory dysfunction, with the co-treatment group producing the most severe deficits. The treatment groups exhibited increased levels of the oxidative stress marker 4-hydroxynonenal in the striatum and SN, as well as the upregulation of the pro-apoptotic protein PKCδ and accumulation of glomerular astroglia in the OB. The co-exposure of animals to Mn/V resulted in higher levels of these metals compared to other treatment groups. Taken together, our results suggest that co-exposure to Mn/V can adversely affect the olfactory and nigral systems. These results highlight the possible role of environmental metal mixtures in the etiology of Parkinsonism.


Asunto(s)
Compuestos de Manganeso , Manganeso , Ratones Endogámicos C57BL , Vanadio , Animales , Ratones , Manganeso/toxicidad , Vanadio/toxicidad , Masculino , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/patología , Dopamina/metabolismo , Compuestos de Vanadio , Estrés Oxidativo/efectos de los fármacos , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , alfa-Sinucleína/metabolismo , Cloruros/toxicidad , Cloruros/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Aldehídos/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Modelos Animales de Enfermedad , Ácido 3,4-Dihidroxifenilacético/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...