Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Molecules ; 29(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125043

RESUMEN

Insomnia is the second most prevalent mental illness worldwide. Periostracum cicadae (PC), as an animal traditional Chinese medicine with rich pharmacological effects, has been documented as a treatment for children's night cries, and later extended to treat insomnia. This study aimed to investigate the effects of PC extract and N-acetyldopamine compounds in ameliorating insomnia. The UPLC-ESI-QTOF-MS analysis determined that PC extract mainly contained N-acetyldopamine components. Previously, we also isolated some acetyldopamine polymers from PC extract, among which acetyldopamine dimer A (NADA) was present in high content. Molecular docking and molecular dynamic simulations demonstrated that NADA could form stable complexes with 5-HT1A, BDNF, and D2R proteins, respectively. The effects of PC extract and NADA on insomnia were evaluated in the PCPA-induced insomnia model. The results indicated that PC extract and NADA could effectively ameliorate hypothalamic pathology of insomnia rats, increase the levels of 5-HT, GABA, and BDNF, and decrease the levels of DA, DOPAC, and HVA. Meanwhile, the PC extract and NADA also could significantly affect the expression of 5-HT1A, BDNF, and DARPP-32 proteins. This study proved that PC extract and acetyldopamine dimer A could effectively improve PCPA-induced insomnia in rats. It is speculated that the main pharmacological substances of PC were acetyldopamine components.


Asunto(s)
Dopamina , Simulación del Acoplamiento Molecular , Neurotransmisores , Trastornos del Inicio y del Mantenimiento del Sueño , Animales , Ratas , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Trastornos del Inicio y del Mantenimiento del Sueño/inducido químicamente , Dopamina/metabolismo , Dopamina/análogos & derivados , Neurotransmisores/metabolismo , Neurotransmisores/química , Neurotransmisores/farmacología , Masculino , Sueño/efectos de los fármacos , Modelos Animales de Enfermedad , Simulación de Dinámica Molecular , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT1A/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Factor Neurotrófico Derivado del Encéfalo/metabolismo
2.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39126038

RESUMEN

Obstructive sleep apnea (OSA) has been linked to disruptions in circadian rhythm and neurotrophin (NFT) signaling. This study explored the link between neuromodulators, chronotype, and insomnia in OSA. The participants (n = 166) underwent polysomnography (PSG) before being categorized into either the control or the OSA group. The following questionnaires were completed: Insomnia Severity Index (ISI), Epworth Sleepiness Scale, Chronotype Questionnaire (morningness-eveningness (ME), and subjective amplitude (AM). Blood samples were collected post-PSG for protein level assessment using ELISA kits for brain-derived neurotrophic factor (BDNF), proBDNF, glial-cell-line-derived neurotrophic factor, NFT3, and NFT4. Gene expression was analyzed utilizing qRT-PCR. No significant differences were found in neuromodulator levels between OSA patients and controls. The controls with insomnia exhibited elevated neuromodulator gene expression (p < 0.05). In the non-insomnia individuals, BDNF and NTF3 expression was increased in the OSA group compared to controls (p = 0.007 for both); there were no significant differences between the insomnia groups. The ISI scores positively correlated with all gene expressions in both groups, except for NTF4 in OSA (R = 0.127, p = 0.172). AM and ME were predicting factors for the ISI score and clinically significant insomnia (p < 0.05 for both groups). Compromised compensatory mechanisms in OSA may exacerbate insomnia. The correlation between chronotype and NFT expression highlights the role of circadian misalignments in sleep disruptions.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Ritmo Circadiano , Polisomnografía , Apnea Obstructiva del Sueño , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Trastornos del Inicio y del Mantenimiento del Sueño/fisiopatología , Apnea Obstructiva del Sueño/fisiopatología , Apnea Obstructiva del Sueño/metabolismo , Apnea Obstructiva del Sueño/complicaciones , Masculino , Femenino , Persona de Mediana Edad , Adulto , Factor Neurotrófico Derivado del Encéfalo/sangre , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neurotransmisores/metabolismo , Neurotransmisores/sangre , Encuestas y Cuestionarios , Neurotrofina 3/metabolismo , Neurotrofina 3/genética , Estudios de Casos y Controles
3.
Drug Des Devel Ther ; 18: 2617-2639, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957410

RESUMEN

Objective: To explored the potential molecular mechanism of Sugemule-4 decoction (MMS-4D) in treating insomnia. Methods: DL-4-chlorophenylalanine (PCPA) + chronic unpredictable mild stress stimulation (CUMS) was used to induce an insomnia model in rats. After the model was successfully established, MMS-4D was intervened at low, medium, and high doses for 7 days. The open-field test (OFT) was used to preliminarily evaluate the efficacy. The potential mechanism of MMS-4D in treating insomnia was investigated using gut microbiota, serum metabolomics, and network pharmacology (NP). Experimental validation of the main components of the key pathways was carried out using ELISA and Western blot. Results: The weights of the insomnia-model rats were significantly raised (p ≤ 0.05), the total exercise distance in the OFT increased (p ≤ 0.05), the rest time shortened, and the number of standing times increased (p ≤ 0.05), after treatment with MMS-4D. Moreover, there was a substantial recovery in the 5-HT, DA, GABA, and Glu levels in the hypothalamus tissue and the 5-HT and GABA levels in the colon tissue of rats. The expression of DAT and DRD1 proteins in the hippocampus of insomnia rats reduced after drug treatment. MMS-4D may treat insomnia by regulating different crucial pathways including 5-HT -, DA -, GABA -, and Glu-mediated neuroactive light receiver interaction, cAMP signaling pathway, serotonergic, glutamatergic, dopaminergic, and GABAergic synapses. Conclusion: This study revealed that MMS-4D can improve the general state and behavioral changes of insomnia model rats. Its mechanism may be related to the reversal of abnormal pathways mediated by 5-HT, DA, GABA, and Glu, such as Serotonergic synapse, Dopaminergic synapse, Glutamatergic synapse, and GABAergic synapse.


Asunto(s)
Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Farmacología en Red , Ratas Sprague-Dawley , Trastornos del Inicio y del Mantenimiento del Sueño , Animales , Ratas , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Medicamentos Herbarios Chinos/farmacología , Metabolómica , Relación Dosis-Respuesta a Droga
4.
Biomolecules ; 14(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38927034

RESUMEN

Insomnia, also known as sleeplessness, is a sleep disorder due to which people have trouble sleeping, followed by daytime sleepiness, low energy, irritability, and a depressed mood. It may result in an increased risk of accidents of all kinds as well as problems focusing and learning. Dietary supplements have become popular products for alleviating insomnia, while the lenient requirements for pre-market research result in unintelligible mechanisms of different combinations of dietary supplements. In this study, we aim to systematically identify the molecular mechanisms of a sleep cocktail's pharmacological effects based on findings from network pharmacology and molecular docking. A total of 249 targets of the sleep cocktail for the treatment of insomnia were identified and enrichment analysis revealed multiple pathways involved in the nervous system and inflammation. Protein-protein interaction (PPI) network analysis and molecular complex detection (MCODE) analysis yielded 10 hub genes, including AKT1, ADORA1, BCL2, CREB1, IL6, JUN, RELA, STAT3, TNF, and TP53. Results from weighted correlation network analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of insomnia-related transcriptome data from peripheral blood mononuclear cells (PBMCs) showed that a sleep cocktail may also ease insomnia via regulating the inflammatory response. Molecular docking results reveal good affinity of Sleep Cocktail to 9 selected key targets. It is noteworthy that the crucial target HSP90AA1 binds to melatonin most stably, which was further validated by MD simulation.


Asunto(s)
Simulación del Acoplamiento Molecular , Farmacología en Red , Mapas de Interacción de Proteínas , Humanos , Mapas de Interacción de Proteínas/efectos de los fármacos , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Suplementos Dietéticos , Sueño/efectos de los fármacos
5.
Brain Behav Immun ; 120: 199-207, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838835

RESUMEN

Knee osteoarthritis (KOA) is linked to an enhanced release of interleukin-6 (IL-6). Increased levels of IL-6 are associated with greater pain and insomnia. While total knee arthroplasty (TKA) typically results in the reduction of pain, for a subgroup of patients, pain does not improve. Understanding patients' propensity to upregulate IL-6 may provide insight into variation in the clinical success of TKA for improving pain, and insomnia may play an important modulatory role. We investigated the association between pre- and post-surgical changes in clinical pain and IL-6 reactivity, and whether change in insomnia moderated this association. Patients (n = 39) with KOA came in-person before and 3-months after TKA. At both visits, patients completed validated measures of clinical pain and insomnia, as well as underwent quantitative sensory testing (QST). Blood samples were collected to analyze IL-expression both before and after QST procedures to assess changes in IL-6 in response to QST (IL-6 reactivity). Patients were categorized into two groups based on change in clinical pain from pre- to post-surgery: 1) pain decreased > 2 points (pain improved) and 2) pain did not decrease > 2 points (pain did not improve). Based on this definition, 49 % of patients had improved pain at 3-months. Among patients with improved pain, IL-6 reactivity significantly decreased from pre- to post-surgery, whereas there was no significant change in IL-6 reactivity among those whose pain did not improve. There was also a significant interaction between pain status and change in insomnia, such that among patients whose insomnia decreased over time, improved pain was significantly associated with a reduction in IL-6 reactivity. However, among patients whose insomnia increased over time, pain status and change in IL-6 reactivity were not significantly associated. Our findings suggest that the resolution of clinical pain after TKA may be associated with discernible alterations in pro-inflammatory responses that can be measured under controlled laboratory conditions, and this association may be moderated by perioperative changes in insomnia. Randomized controlled trials which carefully characterize the phenotypic features of patients are needed to understand how and for whom behavioral interventions may be beneficial in modulating inflammation, pain, and insomnia.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Interleucina-6 , Osteoartritis de la Rodilla , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Masculino , Femenino , Interleucina-6/sangre , Interleucina-6/metabolismo , Anciano , Persona de Mediana Edad , Osteoartritis de la Rodilla/cirugía , Dimensión del Dolor/métodos , Dolor/metabolismo , Dolor Postoperatorio/metabolismo , Índice de Severidad de la Enfermedad
6.
J Agric Food Chem ; 72(20): 11515-11530, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38726599

RESUMEN

Chronic stress is a major inducer of anxiety and insomnia. Milk casein has been studied for its stress-relieving effects. We previously prepared a casein hydrolysate (CP) rich in the sleep-enhancing peptide YPVEPF, and this study aims to systemically investigate the different protective effects of CP and casein on dysfunction and anxiety/insomnia behavior and its underlying mechanisms in chronically stressed mice. Behavioral results showed that CP ameliorated stress-induced insomnia and anxiety more effectively than milk casein, and this difference in amelioration was highly correlated with an increase in GABA, 5-HT, GABAA, 5-HT1A receptors, and BDNF and a decrease in IL-6 and NMDA receptors in stressed mice. Furthermore, CP restored these dysfunctions in the brain and colon by activating the HPA response, modulating the ERK/CREB-BDNF-TrκB signaling pathway, and alleviating inflammation. The abundant YPVEPF (1.20 ± 0.04%) and Tyr-based/Trp-containing peptides of CP may be the key reasons for its different effects compared to casein. Thus, this work revealed the main active structures of CP and provided a novel dietary intervention strategy for the prevention and treatment of chronic-stress-induced dysfunction and anxiety/insomnia behaviors.


Asunto(s)
Ansiedad , Encéfalo , Caseínas , Trastornos del Inicio y del Mantenimiento del Sueño , Animales , Masculino , Ratones , Ansiedad/prevención & control , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Caseínas/química , Caseínas/administración & dosificación , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Trastornos del Inicio y del Mantenimiento del Sueño/fisiopatología , Trastornos del Inicio y del Mantenimiento del Sueño/prevención & control , Estrés Psicológico
7.
J Ethnopharmacol ; 332: 118401, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38815875

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Compound Zaoren Granules (CZG), an optimized herbal formulation based on the traditional Chinese medicine prescription Suanzaoren decoction, are designed specifically for insomnia treatment. However, the mechanisms underlying its efficacy in treating insomnia are not yet fully understood. AIM OF THE STUDY: The research investigated the mechanisms of CZG's improvement in insomnia by regulating cAMP/CREB signaling pathway and metabolic profiles. METHODS: The main components of CZG were characterized by liquid chromatography-mass spectrometry (LC-MS). Subsequently, these validated components were applied to network pharmacological analysis to predict signaling pathways associated with insomnia. We evaluated the effect of CZG on BV-2 cells in vitro. We also evaluated the behavioral indexes of CUMS combined with PCPA induced insomnia in rats. HE staining and Nissl staining were used to observe the pathological damage of hippocampus. ELISA was used to detect the levels of various neurotransmitters, orexins, HPA axis, and inflammatory factors in insomnia rats. Then we detected the expression of cAMP/CREB signaling pathway through ELISA, WB, and IHC. Finally, the metabolomics was further analyzed by using UHPLC-QTOF-MS/MS to investigate the changes in the hippocampus of insomnia rats and the possible metabolic pathways were also speculated. RESULTS: The results of CZG in vitro experiments showed that CZG has protective and anti-inflammatory effects on LPS induced BV-2 cells. A total of 161 chemical components were identified in CZG. After conducting network pharmacology analysis through these confirmed components, we select the cAMP/CREB signaling pathway for further investigate. The behavioral research results on insomnia rats showed that CZG significantly prolonged sleep time, mitigated brain tissue pathological damage, and exhibited liver protective properties. CZG treats insomnia by regulating the content of various neurotransmitters, reducing levels of orexin, HPA axis, and inflammatory factors. It can also treat insomnia by upregulating the expression of the cAMP/CREB signaling pathway. Hippocampus metabolomics analysis identified 69 differential metabolites associated with insomnia. The metabolic pathways related to these differential metabolites have also been predicted. CONCLUSION: These results indicate that CZG can significantly prolong sleep time. CZG is used to treat insomnia by regulating various neurotransmitters, HPA axis, inflammatory factors, cAMP/CREB signaling pathways, and metabolic disorders.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , AMP Cíclico , Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Transducción de Señal , Trastornos del Inicio y del Mantenimiento del Sueño , Animales , Transducción de Señal/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Masculino , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/inducido químicamente , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ratas , AMP Cíclico/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/inducido químicamente , Enfermedades Metabólicas/metabolismo , Ratones , Línea Celular , Farmacología en Red
8.
Biomolecules ; 14(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38672436

RESUMEN

Recent evidence suggests that the gut microbiota plays a role in insomnia pathogenesis. This study compared the dietary habits and microbiota metabolites of older adults with insomnia of short vs. normal sleep duration (ISSD and INSD, respectively). Data collection included sleep assessment through actigraphy, dietary analysis using the Food Frequency Questionnaire, and metabolomic profiling of stool samples. The results show that ISSD individuals had higher body mass index and a greater prevalence of hypertension. Significant dietary differences were observed, with the normal sleep group consuming more kilocalories per day and specific aromatic amino acids (AAAs) phenylalanine and tyrosine and branch-chain amino acid (BCAA) valine per protein content than the short sleep group. Moreover, metabolomic analysis identified elevated levels of the eight microbiota metabolites, benzophenone, pyrogallol, 5-aminopental, butyl acrylate, kojic acid, deoxycholic acid (DCA), trans-anethole, and 5-carboxyvanillic acid, in the short compared to the normal sleep group. The study contributes to the understanding of the potential role of dietary and microbial factors in insomnia, particularly in the context of sleep duration, and opens avenues for targeted dietary interventions and gut microbiota modulation as potential therapeutic approaches for treating insomnia.


Asunto(s)
Microbioma Gastrointestinal , Trastornos del Inicio y del Mantenimiento del Sueño , Sueño , Humanos , Masculino , Femenino , Anciano , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Trastornos del Inicio y del Mantenimiento del Sueño/microbiología , Trastornos del Inicio y del Mantenimiento del Sueño/dietoterapia , Persona de Mediana Edad , Heces/microbiología , Metaboloma , Dieta , Metabolómica , Duración del Sueño
9.
Chin J Nat Med ; 21(7): 483-498, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37517817

RESUMEN

Insomnia is a common sleep disorder without effective therapy and can affect a person's life. The mechanism of the disease is not completely understood. Hence, there is a need to understand the targets related to insomnia, in order to develop innovative therapies and new compounds. Recently, increasing interest has been focused on complementary and alternative medicines for treating or preventing insomnia. Research into their molecular components has revealed that their sedative and sleep-promoting properties rely on the interactions with various neurotransmitter systems in the brain. In this review, the role of 5-hydroxytryptamine (5-HT) in insomnia development is summarized, while a systematic analysis of studies is conducted to assess the mechanisms of herbal medicines on different 5-HT receptors subtypes, in order to provide reference for subsequent research.


Asunto(s)
Plantas Medicinales , Trastornos del Inicio y del Mantenimiento del Sueño , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Sueño , Humanos , Animales
10.
J Sleep Res ; 32(4): e13872, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36889676

RESUMEN

The norepinephrine locus coeruleus system (LC NE) represents a promising treatment target in patients with insomnia disorder (ID) due to its well understood links to arousal and sleep regulation. However, consistent markers of LC NE activity are lacking. This study measured three potential indirect markers of LC NE activity - REM sleep, P3 amplitude during an auditory oddball paradigm (as a marker of phasic LC activation), and baseline pupil diameter (as a marker of tonic LC activation). The parameters were then combined in a statistical model and tested to compare LC NE activity between 20 subjects with insomnia disorder (13 female; age 44.2 ± 15.1 year) and 20 healthy, good sleeping controls (GSC; 11 female; age 45.4 ± 11.6 year). No group differences regarding the primary outcome parameters were detected. Specifically, insomnia disorder did not display the hypothesised changes in markers of LC NE function. While increased LC NE function remains an interesting speculative pathway for hyperarousal in insomnia disorder, the investigated markers do not appear closely related to each other and fail to discriminate between insomnia disorder and good sleeping controls in these samples.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Femenino , Adulto , Persona de Mediana Edad , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Locus Coeruleus/metabolismo , Norepinefrina , Nivel de Alerta/fisiología , Sueño
11.
Acupunct Med ; 41(6): 336-344, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36655631

RESUMEN

BACKGROUND: Insomnia is a well-recognized clinical sleep disorder in the adult population. It has been established that acupuncture has a clinical effects in the treatment of insomnia; however, research on the underlying neural circuits involved in these effects is limited. METHODS: The modified multiple platform method (MMPM) was used to establish a rat model of chronic sleep deprivation (CSD). Forty rats were randomly divided into a control (Con) group, (untreated) CSD group, electroacupuncture-treated CSD group (CSD + EA) and estazolam-treated CSD group (CSD + Estazolam group) with n = 10 per group. In the CSD + EA group, EA was delivered at Yintang and unilateral HT7 (left and right treated every other day) with continuous waves (2 Hz frequency) for 30 min/day over 7 consecutive days. In the CSD + Estazolam groups, estazolam was administered by oral gavage (0.1 mg/kg) for 7 consecutive days. The open field test (OFT) was used to observe behavioral changes. Immunofluorescence assays and enzyme-linked immunosorbent assay (ELISA) were used to observe the effects of EA on the ventral tegmental area (VTA)-nucleus accumbens (NAc) dopamine (DA) pathway. We also assessed the effects of EA on the expression of dopamine D1 receptor (D1R) and dopamine D2 receptor (D2R) in the NAc, which are the downstream targets of the VTA-NAc DA pathway. RESULTS: After CSD was established by MMPM, rats exhibited increased autonomous activity and increased excitability of the VTA-NAc DA pathway, with increased VTA and NAc DA content, increased D1R expression and decreased D2R expression in the NAc. EA appeared to reduce the autonomous ability of CSD rats, leading to lower DA content in the VTA and NAc, reduced expression of D1R in the NAc and increased expression of D2R. Most importantly, EA produced effects similar to estazolam with respect to the general condition of rats with CSD and regulation of the VTA-NAc DA pathway. CONCLUSIONS: The therapeutic effect of EA in chronic insomnia may be mediated by reduced excitability of the VTA-NAc DA pathway, with lower DA content in the VTA and NAc, downregulated expression of D1R in the NAc and increased expression of D2R.


Asunto(s)
Electroacupuntura , Trastornos del Inicio y del Mantenimiento del Sueño , Ratas , Animales , Área Tegmental Ventral/metabolismo , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Privación de Sueño/terapia , Trastornos del Inicio y del Mantenimiento del Sueño/terapia , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Estazolam/metabolismo , Estazolam/farmacología
12.
Nat Genet ; 54(8): 1125-1132, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35835914

RESUMEN

Insomnia is a heritable, highly prevalent sleep disorder for which no sufficient treatment currently exists. Previous genome-wide association studies with up to 1.3 million subjects identified over 200 associated loci. This extreme polygenicity suggested that many more loci remain to be discovered. The current study almost doubled the sample size to 593,724 cases and 1,771,286 controls, thereby increasing statistical power, and identified 554 risk loci (including 364 novel loci). To capitalize on this large number of loci, we propose a novel strategy to prioritize genes using external biological resources and functional interactions between genes across risk loci. Of all 3,898 genes naively implicated from the risk loci, we prioritize 289 and find brain-tissue expression specificity and enrichment in specific gene sets of synaptic signaling functions and neuronal differentiation. We show that this novel gene prioritization strategy yields specific hypotheses on underlying mechanisms of insomnia that would have been missed by traditional approaches.


Asunto(s)
Estudio de Asociación del Genoma Completo , Trastornos del Inicio y del Mantenimiento del Sueño , Encéfalo/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Herencia Multifactorial , Polimorfismo de Nucleótido Simple/genética , Trastornos del Inicio y del Mantenimiento del Sueño/genética , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo
13.
Eur J Pharmacol ; 930: 175149, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35878808

RESUMEN

There has been ample research showing that insomnia is a potential trigger of depression as well as a symptom of depression. These two factors contribute to behavioural problems and are closely related to the plasticity of hippocampal synapses. Although depression and insomnia impair hippocampal synaptic plasticity, the mechanism by which this happens remains a mystery. This study aimed to investigate the pathogenesis of insomnia comorbidity in depression and the regulatory effect of venlafaxine combined with melatonin on hippocampal synaptic plasticity in chronic unpredictable mild stress (CUMS) with sleep deprivation (SD) rats. Thus, rats were subjected to 14 days of chronic mild unpredictable stress, gradually acclimated to sleep deprivation on days 12-14. Followed by 21 consecutive days of sleep deprivation, 18 h per day, with daily gavage of venlafaxine (13.5 mg/kg) + melatonin (72 mg/kg) on days 15-36. Venlafaxine + melatonin treatment improves depression-like behaviour, pentobarbital sodium experimental sleep latency, and sleep duration in CUMS +SD rats. In addition to improving depressive-like behaviors, sleep deprivation also upregulates the expression of caspase-specific cysteine protein 3 (Caspase 3) in the pineal glial cells of chronic mild rats, as well as in hippocampal microglia. Expression of ionic calcium-binding adaptor 1 (iba-1), downregulates the secretion of several synaptic plasticity-related proteins, notably cAMP response element binding protein (CREB), glial cell line-derived neurotrophic factor (GDNF), and the synaptic scaffolding protein Spinophiline (Spinophiline). Hematoxylin-eosin staining showed that the structure of the pineal gland and hippocampus was damaged, and Golgi staining showed that the dendrites and spines in the DG area of the hippocampus were destroyed, vaguely aggregated or even disappeared, and the connection network could not be established. Western blot analysis further revealed a positive correlation between low melatonin levels and reduced Spinophiline protein. Interestingly, venlafaxine + melatonin reversed these events by promoting hippocampal synaptic plasticity by regulating melatonin secretion from the pineal gland. Therefore, it exerted an antidepressant effect in sleep deprivation combined with CUMS model rats. Overall, the results of this study suggest that the pathophysiology of depressive insomnia comorbidity is mediated by impaired pineal melatonin secretion and impaired hippocampal synaptic plasticity. In addition, these responses are associated with melatonin secretion from the pineal gland.


Asunto(s)
Melatonina , Glándula Pineal , Trastornos del Inicio y del Mantenimiento del Sueño , Animales , Depresión/metabolismo , Hipocampo/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Plasticidad Neuronal/fisiología , Ratas , Privación de Sueño/complicaciones , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Clorhidrato de Venlafaxina/farmacología
14.
Adv Biol (Weinh) ; 6(11): e2101203, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35822937

RESUMEN

The bi-directional relationship between sleep and stress has been actively researched as sleep disturbances and stress have become increasingly common in society. Interestingly, the brain and underlying neural circuits important for sleep regulation may respond uniquely to stress that leads to post-traumatic stress disorder (PTSD) and stress that does not. In stress that does not lead to PTSD, the hypothalamic-pituitary-adrenal axis (HPA) pathway is activated normally that results in sympathetic nervous system activation that allows the brain and body to return to baseline functioning. However, exposure to stress that leads to PTSD, causes enhanced negative feedback of this same pathway and results in long-term physiological and psychological changes. In this review, how stress regulates glucocorticoid signaling pathways in brain glial cells called astrocytes, and then mediates stress-induced insomnia are examined. Astrocytes are critical sleep regulatory cells and their connections to sleep and stress due to disturbed glucocorticoid signaling provide a novel mechanism to explain how stress leads to insomnia. This review will examine the interactions of stress neurobiology, astrocytes, sleep, and glucocorticoid signaling pathways and will examine the how stress that leads to PTSD and stress that does not impacts sleep-regulatory processes.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Trastornos por Estrés Postraumático , Humanos , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Glucocorticoides/metabolismo , Trastornos por Estrés Postraumático/metabolismo
15.
Sleep ; 45(8)2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35537191

RESUMEN

We investigated the potential role of sleep-trait associated genetic loci in conferring a degree of their effect via pancreatic α- and ß-cells, given that both sleep disturbances and metabolic disorders, including type 2 diabetes and obesity, involve polygenic contributions and complex interactions. We determined genetic commonalities between sleep and metabolic disorders, conducting linkage disequilibrium genetic correlation analyses with publicly available GWAS summary statistics. Then we investigated possible enrichment of sleep-trait associated SNPs in promoter-interacting open chromatin regions within α- and ß-cells, intersecting public GWAS reports with our own ATAC-seq and high-resolution promoter-focused Capture C data generated from both sorted human α-cells and an established human beta-cell line (EndoC-ßH1). Finally, we identified putative effector genes physically interacting with sleep-trait associated variants in α- and EndoC-ßH1cells running variant-to-gene mapping and establish pathways in which these genes are significantly involved. We observed that insomnia, short and long sleep-but not morningness-were significantly correlated with type 2 diabetes, obesity and other metabolic traits. Both the EndoC-ßH1 and α-cells were enriched for insomnia loci (p = .01; p = .0076), short sleep loci (p = .017; p = .022) and morningness loci (p = 2.2 × 10-7; p = .0016), while the α-cells were also enriched for long sleep loci (p = .034). Utilizing our promoter contact data, we identified 63 putative effector genes in EndoC-ßH1 and 76 putative effector genes in α-cells, with these genes showing significant enrichment for organonitrogen and organophosphate biosynthesis, phosphatidylinositol and phosphorylation, intracellular transport and signaling, stress responses and cell differentiation. Our data suggest that a subset of sleep-related loci confer their effects via cells in pancreatic islets.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Trastornos del Inicio y del Mantenimiento del Sueño , Mapeo Cromosómico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Islotes Pancreáticos/metabolismo , Obesidad/metabolismo , Sueño , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo
16.
Bioengineered ; 13(2): 3148-3170, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35067174

RESUMEN

BanXia-YiYiRen (Pinellia Ternata and Coix Seed, BX-YYR) has been clinically proven to be an effective Chinese medicine compatible with the treatment of insomnia. However, the underlying mechanism of BX-YYR against insomnia remains unclear. This study aimed to explore the pharmacological mechanisms of BX-YYR in treating insomnia based on network pharmacology and experimental validation. The drug-disease targets were obtained using publicly available databases. The analysis revealed 21 active compounds and 101 potential targets of BX-YYR from the pharmacological database of Chinese medicine system and analysis platform (TCMSP) and 1020 related targets of insomnia from the GeneCards and Online Mendelian Inheritance in Man (OMIM) databases. Furthermore, 38 common targets of BX-YYR against insomnia were identified, and these common targets were used to construct a protein-protein interaction (PPI) network. The visual PPI network was constructed by Cytoscape software. The top three genes from PPI according to degree value are FOS, AKT1, and CASP3. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were applied to reveal the potential targets and signaling pathways involved in BX-YYR against insomnia, especially the serotonergic pathway. In addition, molecular docking revealed that baicalein, beta-sitosterol, and stigmasterol displayed strong binding to AKT1, FOS, PRKCA, and VEGFA. Experimental study found that BX-YYR against insomnia might play a role in improving sleep by modulating the serotonergic pathway. In summary, our findings revealed the underlying mechanism of BX-YYR against insomnia and provided an objective basis for further experimental study and clinical application.


Asunto(s)
Medicamentos Herbarios Chinos , Simulación del Acoplamiento Molecular , Farmacología en Red , Mapas de Interacción de Proteínas/efectos de los fármacos , Trastornos del Inicio y del Mantenimiento del Sueño , Animales , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Humanos , Masculino , Ratas , Ratas Wistar , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo
17.
J Neuroimmunol ; 363: 577794, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34971898

RESUMEN

Myeloid differentiation primary response gene 88 (MyD88) is essential for microglial activation. Despite the significant role of microglia in regulating sleep homeostasis, the contribution of MyD88 to sleep is yet to be determined. To address this, we performed electroencephalographic and electromyographic recordings on MyD88-KO mice and wild-type mice to investigate their sleep/wake cycles. In the daytime, MyD88-KO mice exhibited prolonged wakefulness and shorter non-rapid eye movement sleep duration. Tail suspension and sucrose preference tests revealed that MyD88-KO mice displayed a depressive-like phenotype. We determined monoamines in the prefrontal cortex (PFC) using high-performance liquid chromatography and observed a decreased content of serotonin in the PFC of MyD88-KO mice. Flow cytometry revealed that CD11b, CD45, and F4/80 expressions were elevated at Zeitgeber time (ZT) 1 compared to at ZT13 only in wild-type mice. Furthermore, MFG-E8 and C1qB-tagged synapses were enhanced at ZT1 in the PFC of wild-type mice but not in MyD88-KO mice. Primary cultured microglia from MyD88-KO mice revealed decreased phagocytic ability. These findings indicate that genetic deletion of MyD88 induces insomnia and depressive behavior, at least in part, by affecting microglial homeostasis functions and lowering the serotonergic neuronal output.


Asunto(s)
Depresión/metabolismo , Microglía/metabolismo , Factor 88 de Diferenciación Mieloide/deficiencia , Corteza Prefrontal/metabolismo , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Serotonina/metabolismo
18.
Eur J Nucl Med Mol Imaging ; 49(4): 1127-1135, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34651222

RESUMEN

PURPOSE: Histamine H3 receptor antagonists and inverse agonists have been extensively developed to treat sleep-wake, neurocognitive, and allied disorders. However, potential adverse effects, including insomnia, hampered the clinical use of these drugs, possibly due to their persistent interaction with the target molecules. The purpose of the present study was to estimate the pharmacokinetics and pharmacodynamics of enerisant, a novel antagonist and inverse agonist for histamine H3 receptors. METHODS: To measure the histamine H3 receptor occupancy by enerisant, positron emission tomography studies using [11C]TASP457, a specific radioligand for histamine H3 receptors, were performed in 12 healthy men at baseline and at 2 h after oral administration of enerisant hydrochloride. For three of these subjects, two additional scans were performed at 6 and 26 h after the administration. Relationships between the receptor occupancy by enerisant and its dose and plasma concentrations were then analyzed. RESULTS: Administration of enerisant hydrochloride decreased the radioligand binding in a dose-dependent manner. The estimated receptor occupancy values at 2 h varied as a function of its dose or plasma concentration. The time course of the occupancy showed persistently high levels (> 85%) in the two subjects with higher doses (25 and 12.5 mg). The occupancy was also initially high at 2 h and 6 h with the lower dose of 5 mg, but it decreased to 69.7% at 26 h. CONCLUSION: The target engagement of enerisant was demonstrated in the brains of living human subjects. The occupancy of histamine H3 receptors by enerisant at 2 h can be predicted by applying the plasma concentration of enerisant to Hill's plot. The preliminary time-course investigation showed persistently high brain occupancy with high doses of enerisant despite the decreasing plasma concentration of the drug. Five milligrams or less dose would be appropriate for the treatment for narcolepsy with initially high occupancy allowing for effective treatment of narcolepsy, and then the occupancy level would be expected to decrease to a level to avoid this drug's unwanted side effect of insomnia at night, although further research is warranted to confirm the statement since the expected decrease is based on the finding in one subject. TRIAL REGISTRATION: This study was retrospectively registered with ClinicalTrials.gov (NCT04631276) on November 17, 2020.


Asunto(s)
Narcolepsia , Fármacos Neuroprotectores , Receptores Histamínicos H3 , Trastornos del Inicio y del Mantenimiento del Sueño , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Histamina/metabolismo , Humanos , Ligandos , Masculino , Narcolepsia/metabolismo , Niacinamida , Tomografía de Emisión de Positrones/métodos , Piridinas , Quinolonas , Receptores Histamínicos H3/metabolismo , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo
19.
Sleep Breath ; 26(1): 339-346, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34105104

RESUMEN

PURPOSE: Insomnia is frequently co-morbid with obstructive sleep apnea (OSA); the effect of insomnia or co-morbid insomnia and OSA (OSA + I) on associated metabolic outcomes in adults with type 2 diabetes (T2D) remains unclear. This study in adults with T2D compared metabolic outcomes among persons with OSA, insomnia, or OSA + I. METHODS: This study analyzed baseline data from the Diabetes Sleep Treatment Trial of persons recruited for symptoms of OSA or poor sleep quality. Home sleep studies determined OSA presence and severity. Insomnia was evaluated using the Insomnia Severity Index. Height and weight to calculate body mass index (BMI) and blood for laboratory values were obtained. Multivariate general linear models were used to examine the impact of the type of sleep disorder and sociodemographic, lifestyle, and sleep risk factors on metabolic outcomes. RESULTS: Participants (N = 253) were middle-aged (56.3 ± 10.5 years), white (60.5%), obese (mean BMI of 35.3 ± 7.1 kg/m2), and male (51.4%) with poor glucose control (mean HbA1c of 8.0 ± 1.8%). Most participants had OSA + I (42.7%) or insomnia only (41.0%). HbA1c and BMI differed among the sleep disorder groups. In addition, in the adjusted models, having insomnia only, compared to OSA only, was associated on average with higher HbA1c levels (b = 1.08 ± 0.40, p < 0.007) and lower BMI (b = - 7.03 ± 1.43, p < 0.001). CONCLUSIONS: Findings suggest that insomnia frequently co-exists with OSA, is independently associated with metabolic outcomes in adults with T2D, and should be considered in investigations of the effects of OSA in persons with T2D. TRIAL REGISTRATION: Diabetes-Obstructive Sleep Apnea Treatment Trial (NCT01901055), https: Clinicaltrials.gov/ct2/show/NCT01901055; Registration date: July 17, 2013.


Asunto(s)
Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Apnea Obstructiva del Sueño/metabolismo , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Anciano , Estudios Transversales , Complicaciones de la Diabetes/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Apnea Obstructiva del Sueño/complicaciones , Trastornos del Inicio y del Mantenimiento del Sueño/complicaciones
20.
BMC Microbiol ; 21(1): 296, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34715778

RESUMEN

BACKGROUND: Ganoderma (Lingzhi in Chinese) has shown good clinical outcomes in the treatment of insomnia, restlessness, and palpitation. However, the mechanism by which Ganoderma ameliorates insomnia is unclear. We explored the mechanism of the anti-insomnia effect of Ganoderma using systems pharmacology from the perspective of central-peripheral multi-level interaction network analysis. METHODS: The active components and central active components of Ganoderma were obtained from the TCMIP and TCMSP databases, then screened to determine their pharmacokinetic properties. The potential target genes of these components were identified using the Swiss Target Prediction and TCMSP databases. The results were matched with the insomnia target genes obtained from the GeneCards, OMIM, DisGeNET, and TCMIP databases. Overlapping targets were subjected to multi-level interaction network analysis and enrichment analysis using the STRING, Metascape, and BioGPS databases. The networks analysed were protein-protein interaction (PPI), drug-component-target gene, component-target gene-organ, and target gene-extended disease; we also performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. RESULTS: In total, 34 sedative-hypnotic components (including 5 central active components) were identified, corresponding to 51 target genes. Multi-level interaction network analysis and enrichment analysis demonstrated that Ganoderma exerted an anti-insomnia effect via multiple central-peripheral mechanisms simultaneously, mainly by regulating cell apoptosis/survival and cytokine expression through core target genes such as TNF, CASP3, JUN, and HSP90αA1; it also affected immune regulation and apoptosis. Therefore, Ganoderma has potential as an adjuvant therapy for insomnia-related complications. CONCLUSION: Ganoderma exerts an anti-insomnia effect via complex central-peripheral multi-level interaction networks.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Ganoderma/química , Trastornos del Inicio y del Mantenimiento del Sueño , Bases de Datos Genéticas , Bases de Datos Farmacéuticas , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Redes Reguladoras de Genes/efectos de los fármacos , Hipnóticos y Sedantes/química , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/uso terapéutico , Farmacología en Red , Mapas de Interacción de Proteínas/efectos de los fármacos , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/genética , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...