Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Dis Model Mech ; 17(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38566589

RESUMEN

The addition of O-linked ß-N-acetylglucosamine (O-GlcNAc) to proteins (referred to as O-GlcNAcylation) is a modification that is crucial for vertebrate development. O-GlcNAcylation is catalyzed by O-GlcNAc transferase (OGT) and reversed by O-GlcNAcase (OGA). Missense variants of OGT have recently been shown to segregate with an X-linked syndromic form of intellectual disability, OGT-linked congenital disorder of glycosylation (OGT-CDG). Although the existence of OGT-CDG suggests that O-GlcNAcylation is crucial for neurodevelopment and/or cognitive function, the underlying pathophysiologic mechanisms remain unknown. Here we report a mouse line that carries a catalytically impaired OGT-CDG variant. These mice show altered O-GlcNAc homeostasis with decreased global O-GlcNAcylation and reduced levels of OGT and OGA in the brain. Phenotypic characterization of the mice revealed lower body weight associated with reduced body fat mass, short stature and microcephaly. This mouse model will serve as an important tool to study genotype-phenotype correlations in OGT-CDG in vivo and for the development of possible treatment avenues for this disorder.


Asunto(s)
Modelos Animales de Enfermedad , Discapacidad Intelectual , N-Acetilglucosaminiltransferasas , Animales , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/deficiencia , Discapacidad Intelectual/genética , Encéfalo/patología , Encéfalo/metabolismo , Fenotipo , Ratones , Trastornos del Neurodesarrollo/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/enzimología , beta-N-Acetilhexosaminidasas/metabolismo , Glicosilación , Peso Corporal
2.
J Med Genet ; 59(2): 170-179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33323470

RESUMEN

INTRODUCTION: The Tousled-like kinases 1 and 2 (TLK1 and TLK2) are involved in many fundamental processes, including DNA replication, cell cycle checkpoint recovery and chromatin remodelling. Mutations in TLK2 were recently associated with 'Mental Retardation Autosomal Dominant 57' (MRD57, MIM# 618050), a neurodevelopmental disorder characterised by a highly variable phenotype, including mild-to-moderate intellectual disability, behavioural abnormalities, facial dysmorphisms, microcephaly, epilepsy and skeletal anomalies. METHODS: We re-evaluate whole exome sequencing and array-CGH data from a large cohort of patients affected by neurodevelopmental disorders. Using spatial proteomics (BioID) and single-cell gel electrophoresis, we investigated the proximity interaction landscape of TLK2 and analysed the effects of p.(Asp551Gly) and a previously reported missense variant (c.1850C>T; p.(Ser617Leu)) on TLK2 interactions, localisation and activity. RESULTS: We identified three new unrelated MRD57 families. Two were sporadic and caused by a missense change (c.1652A>G; p.(Asp551Gly)) or a 39 kb deletion encompassing TLK2, and one was familial with three affected siblings who inherited a nonsense change from an affected mother (c.1423G>T; p.(Glu475Ter)). The clinical phenotypes were consistent with those of previously reported cases. The tested mutations strongly impaired TLK2 kinase activity. Proximal interactions between TLK2 and other factors implicated in neurological disorders, including CHD7, CHD8, BRD4 and NACC1, were identified. Finally, we demonstrated a more relaxed chromatin state in lymphoblastoid cells harbouring the p.(Asp551Gly) variant compared with control cells, conferring susceptibility to DNA damage. CONCLUSION: Our study identified novel TLK2 pathogenic variants, confirming and further expanding the MRD57-related phenotype. The molecular characterisation of missense variants increases our knowledge about TLK2 function and provides new insights into its role in neurodevelopmental disorders.


Asunto(s)
Cromatina/metabolismo , Trastornos del Neurodesarrollo/genética , Proteínas Quinasas/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Metaboloma , Persona de Mediana Edad , Mutación , Mutación Missense , Trastornos del Neurodesarrollo/enzimología , Linaje , Mapeo de Interacción de Proteínas , Proteínas Quinasas/metabolismo , Secuenciación del Exoma , Adulto Joven
3.
Ann Neurol ; 91(2): 225-237, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34954817

RESUMEN

OBJECTIVE: ATP synthase (ATPase) is responsible for the majority of ATP production. Nevertheless, disease phenotypes associated with mutations in ATPase subunits are extremely rare. We aimed at expanding the spectrum of ATPase-related diseases. METHODS: Whole-exome sequencing in cohorts with 2,962 patients diagnosed with mitochondrial disease and/or dystonia and international collaboration were used to identify deleterious variants in ATPase-encoding genes. Findings were complemented by transcriptional and proteomic profiling of patient fibroblasts. ATPase integrity and activity were assayed using cells and tissues from 5 patients. RESULTS: We present 10 total individuals with biallelic or de novo monoallelic variants in nuclear ATPase subunit genes. Three unrelated patients showed the same homozygous missense ATP5F1E mutation (including one published case). An intronic splice-disrupting alteration in compound heterozygosity with a nonsense variant in ATP5PO was found in one patient. Three patients had de novo heterozygous missense variants in ATP5F1A, whereas another 3 were heterozygous for ATP5MC3 de novo missense changes. Bioinformatics methods and populational data supported the variants' pathogenicity. Immunohistochemistry, proteomics, and/or immunoblotting revealed significantly reduced ATPase amounts in association to ATP5F1E and ATP5PO mutations. Diminished activity and/or defective assembly of ATPase was demonstrated by enzymatic assays and/or immunoblotting in patient samples bearing ATP5F1A-p.Arg207His, ATP5MC3-p.Gly79Val, and ATP5MC3-p.Asn106Lys. The associated clinical profiles were heterogeneous, ranging from hypotonia with spontaneous resolution (1/10) to epilepsy with early death (1/10) or variable persistent abnormalities, including movement disorders, developmental delay, intellectual disability, hyperlactatemia, and other neurologic and systemic features. Although potentially reflecting an ascertainment bias, dystonia was common (7/10). INTERPRETATION: Our results establish evidence for a previously unrecognized role of ATPase nuclear-gene defects in phenotypes characterized by neurodevelopmental and neurodegenerative features. ANN NEUROL 2022;91:225-237.


Asunto(s)
Mitocondrias/enzimología , ATPasas de Translocación de Protón Mitocondriales/genética , Enfermedades del Sistema Nervioso/enzimología , Enfermedades del Sistema Nervioso/genética , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/genética , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Distonía/enzimología , Distonía/genética , Epilepsia/genética , Variación Genética , Humanos , Mitocondrias/genética , Translocasas Mitocondriales de ADP y ATP/genética , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Modelos Moleculares , Mutación , Mutación Missense , Linaje , Fenotipo , Proteómica , Secuenciación del Exoma
4.
Biochem Soc Trans ; 49(4): 1567-1588, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34241636

RESUMEN

By removing Ser/Thr-specific phosphorylations in a multitude of protein substrates in diverse tissues, Protein Phosphatase type 2A (PP2A) enzymes play essential regulatory roles in cellular signalling and physiology, including in brain function and development. Here, we review current knowledge on PP2A gene mutations causally involved in neurodevelopmental disorders and intellectual disability, focusing on PPP2CA, PPP2R1A and PPP2R5D. We provide insights into the impact of these mutations on PP2A structure, substrate specificity and potential function in neurobiology and brain development.


Asunto(s)
Encéfalo/fisiología , Discapacidad Intelectual/genética , Isoenzimas/genética , Mutación , Trastornos del Neurodesarrollo/genética , Proteína Fosfatasa 2/genética , Animales , Encéfalo/crecimiento & desarrollo , Humanos , Discapacidad Intelectual/enzimología , Isoenzimas/metabolismo , Ratones , Trastornos del Neurodesarrollo/enzimología , Proteína Fosfatasa 2/metabolismo , Especificidad por Sustrato
5.
Hum Genet ; 140(7): 1077-1096, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33944995

RESUMEN

The Okur-Chung neurodevelopmental syndrome, or OCNDS, is a newly discovered rare neurodevelopmental disorder. It is characterized by developmental delay, intellectual disability, behavioral problems (hyperactivity, repetitive movements and social interaction deficits), hypotonia, epilepsy and language/verbalization deficits. OCNDS is linked to de novo mutations in CSNK2A1, that lead to missense or deletion/truncating variants in the encoded protein, the protein kinase CK2α. Eighteen different missense CK2α mutations have been identified to date; however, no biochemical or cell biological studies have yet been performed to clarify the functional impact of such mutations. Here, we show that 15 different missense CK2α mutations lead to varying degrees of loss of kinase activity as recombinant purified proteins and when mutants are ectopically expressed in mammalian cells. We further detect changes in the phosphoproteome of three patient-derived fibroblast lines and show that the subcellular localization of CK2α is altered for some of the OCNDS-linked variants and in patient-derived fibroblasts. Our data argue that reduced kinase activity and abnormal localization of CK2α may underlie the OCNDS phenotype.


Asunto(s)
Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Animales , Células COS , Quinasa de la Caseína II/química , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Línea Celular , Chlorocebus aethiops , Fibroblastos/enzimología , Humanos , Espectrometría de Masas , Ratones , Ratones Noqueados , Modelos Moleculares , Mutación Missense
6.
Mol Cell Neurosci ; 112: 103602, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33581237

RESUMEN

Ubiquitination is a key posttranslational modification for the controlled protein degradation and proteostasis. The substrate specificity is determined by a family of E3 ubiquitin ligases, which are encoded by more than 600 genes in the mammalian genome. Gain- or loss-of-function of a number of E3 genes results in neurodegeneration or neurodevelopmental disorders, affecting synapse function. This implies that the specific ubiquitination of synaptic substrates are of crucial importance for the normal neuronal network. In this review, we will summarize the history, current topics, and challenges in the field of ubiquitination-dependent regulations of synaptogenesis and synaptic transmission.


Asunto(s)
Encéfalo/enzimología , Proteínas del Tejido Nervioso/fisiología , Sinapsis/enzimología , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitinación , Animales , Encéfalo/patología , Humanos , Ratones , Familia de Multigenes , Degeneración Nerviosa/enzimología , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Plasticidad Neuronal , Enfermedad de Parkinson/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Proteostasis , Dominios RING Finger , Transmisión Sináptica , Ubiquitina-Proteína Ligasas/clasificación , Ubiquitina-Proteína Ligasas/genética
7.
Neurochem Int ; 145: 104990, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33592203

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are important for synaptogenesis, synaptic maturation and refinement during the early postnatal weeks after birth. Defective synapse formation or refinement underlie cognitive and emotional abnormalities in various neurodevelopmental disorders (NDDs), including schizophrenia (Sz) and autism spectrum disorder (ASD). Serine racemase (SR) is a neuronal enzyme that produces D-serine, a co-agonist required for full NMDAR activation. NMDAR hypofunction as a result of genetic SR elimination and reduced synaptic availability of D-serine reduces neuronal dendritic arborization and spine density. In adult mouse brain, the expression of SR parallels that of NMDARs across forebrain regions including the striatum, amygdala, hippocampus, and medial prefrontal cortex (mPFC). However, there have yet to be studies providing a detailed characterization of the spatial and temporal expression of SR during early periods of synaptogenesis. Here, we examined the postnatal expression of SR in cortical and subcortical brain regions important for learning, memory and emotional regulation, during the first four weeks after birth. Using dual-antigen immunofluorescence, we demonstrate that the number of SR+ neurons steadily increases with postnatal age across the mPFC, amygdala, hippocampus and striatum. We also identified differences in the rate of SR protein induction both across and within brain regions. Analyzing existing human post-mortem brain in situ data, there was a similar developmental mRNA expression profile of SRR and GRIN1 (GluN1 subunit) from infancy through the first decade of life. Our findings further support a developmental role for D-serine mediated NMDAR activation regulating synaptogenesis and neural circuit refinement, which has important implications for the pathophysiology of Sz and other NDDs.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Prosencéfalo/enzimología , Prosencéfalo/crecimiento & desarrollo , Racemasas y Epimerasas/biosíntesis , Animales , Masculino , Ratones Endogámicos C57BL , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Racemasas y Epimerasas/genética , Receptores de N-Metil-D-Aspartato/biosíntesis , Receptores de N-Metil-D-Aspartato/genética
8.
Biochimie ; 183: 55-62, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33596448

RESUMEN

Succinyl-CoA:3-oxoacid coenzyme A transferase deficiency (SCOTD) is a rare autosomal recessive disorder of ketone body utilization caused by mutations in OXCT1. We performed a systematic literature search and evaluated clinical, biochemical and genetic data on 34 previously published and 10 novel patients with SCOTD. Structural mapping and in silico analysis of protein variants is also presented. All patients presented with severe ketoacidotic episodes. Age at first symptoms ranged from 36 h to 3 years (median 7 months). About 70% of patients manifested in the first year of life, approximately one quarter already within the neonatal period. Two patients died, while the remainder (95%) were alive at the time of the report. Almost all the surviving patients (92%) showed normal psychomotor development and no neurologic abnormalities. A total of 29 missense mutations are reported. Analysis of the published crystal structure of the human SCOT enzyme, paired with both sequence-based and structure-based methods to predict variant pathogenicity, provides insight into the biochemical consequences of the reported variants. Pathogenic variants cluster in SCOT protein regions that affect certain structures of the protein. The described pathogenic variants can be viewed in an interactive map of the SCOT protein at https://michelanglo.sgc.ox.ac.uk/r/oxct. This comprehensive data analysis provides a systematic overview of all cases of SCOTD published to date. Although SCOTD is a rather benign disorder with often favourable outcome, metabolic crises can be life-threatening or even fatal. As the diagnosis can only be made by enzyme studies or mutation analyses, SCOTD may be underdiagnosed.


Asunto(s)
Acidosis , Encefalopatías Metabólicas Innatas , Coenzima A Transferasas/deficiencia , Mutación Missense , Trastornos del Neurodesarrollo , Acidosis/enzimología , Acidosis/genética , Encefalopatías Metabólicas Innatas/enzimología , Encefalopatías Metabólicas Innatas/genética , Coenzima A Transferasas/química , Coenzima A Transferasas/genética , Coenzima A Transferasas/metabolismo , Cristalografía por Rayos X , Humanos , Cuerpos Cetónicos/química , Cuerpos Cetónicos/genética , Cuerpos Cetónicos/metabolismo , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Dominios Proteicos
9.
J Med Genet ; 58(7): 495-504, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32719099

RESUMEN

BACKGROUND: Adenosine-to-inosine RNA editing is a co-transcriptional/post-transcriptional modification of double-stranded RNA, catalysed by one of two active adenosine deaminases acting on RNA (ADARs), ADAR1 and ADAR2. ADARB1 encodes the enzyme ADAR2 that is highly expressed in the brain and essential to modulate the function of glutamate and serotonin receptors. Impaired ADAR2 editing causes early onset progressive epilepsy and premature death in mice. In humans, ADAR2 dysfunction has been very recently linked to a neurodevelopmental disorder with microcephaly and epilepsy in four unrelated subjects. METHODS: We studied three children from two consanguineous families with severe developmental and epileptic encephalopathy (DEE) through detailed physical and instrumental examinations. Exome sequencing (ES) was used to identify ADARB1 mutations as the underlying genetic cause and in vitro assays with transiently transfected cells were performed to ascertain the impact on ADAR2 enzymatic activity and splicing. RESULTS: All patients showed global developmental delay, intractable early infantile-onset seizures, microcephaly, severe-to-profound intellectual disability, axial hypotonia and progressive appendicular spasticity. ES revealed the novel missense c.1889G>A, p.(Arg630Gln) and deletion c.1245_1247+1 del, p.(Leu415PhefsTer14) variants in ADARB1 (NM_015833.4). The p.(Leu415PhefsTer14) variant leads to incorrect splicing resulting in frameshift with a premature stop codon and loss of enzyme function. In vitro RNA editing assays showed that the p.(Arg630Gln) variant resulted in a severe impairment of ADAR2 enzymatic activity. CONCLUSION: In conclusion, these data support the pathogenic role of biallelic ADARB1 variants as the cause of a distinctive form of DEE, reinforcing the importance of RNA editing in brain function and development.


Asunto(s)
Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Encefalopatías/genética , Epilepsia/genética , Trastornos del Neurodesarrollo/genética , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/genética , Alelos , Encefalopatías/enzimología , Encefalopatías/metabolismo , Niño , Preescolar , Consanguinidad , Epilepsia/enzimología , Femenino , Células HEK293 , Humanos , Mutación , Trastornos del Neurodesarrollo/enzimología , Linaje , Edición de ARN , Proteínas de Unión al ARN/metabolismo
10.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019657

RESUMEN

The calcium/calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous and central player in Ca2+ signaling that is best known for its functions in the brain. In particular, the α isoform of CaMKII has been the subject of intense research and it has been established as a central regulator of neuronal plasticity. In contrast, little attention has been paid to CaMKIIß, the other predominant brain isoform that interacts directly with the actin cytoskeleton, and the functions of CaMKIIß in this organ remain largely unexplored. However, recently, the perturbation of CaMKIIß expression has been associated with multiple neuropsychiatric and neurodevelopmental diseases, highlighting CAMK2B as a gene of interest. Herein, after highlighting the main structural and expression differences between the α and ß isoforms, we will review the specific functions of CaMKIIß, as described so far, in neuronal development and plasticity, as well as its potential implication in brain diseases.


Asunto(s)
Encéfalo/enzimología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Trastornos Mentales/genética , Trastornos del Neurodesarrollo/genética , Plasticidad Neuronal/fisiología , Neuronas/enzimología , Animales , Encéfalo/fisiopatología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Movimiento Celular , Regulación de la Expresión Génica , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Memoria/fisiología , Trastornos Mentales/enzimología , Trastornos Mentales/fisiopatología , Mutación , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/fisiopatología , Neuronas/ultraestructura , Transducción de Señal , Sinapsis/enzimología , Sinapsis/ultraestructura
11.
J Hum Genet ; 65(5): 481-485, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32005903

RESUMEN

p21-activated kinases (PAKs) are protein serine/threonine kinases stimulated by Rho-family p21 GTPases such as CDC42 and RAC. PAKs have been implicated in several human disorders, with pathogenic variants in PAK3 associated with intellectual disability and several PAK members, especially PAK1 and PAK4, overexpressed in human cancer. Recently, de novo PAK1 variants were reported to be causative of neurodevelopmental disorder (ND) with secondary macrocephaly in three patients. We herein report a fourth patient with ND, epilepsy, and macrocephaly caused by a de novo PAK1 missense variant. Two previously reported missense PAK1 variants functioned as activating alleles by reducing PAK1 homodimerization. To examine the pathogenicity of the identified novel p.Ser110Thr variant, we carried out in silico structural analysis. Our findings suggest that this variant also prevents PAK1 homodimerization, leading to constitutive PAK1 activation.


Asunto(s)
Epilepsia , Megalencefalia , Mutación Missense , Trastornos del Neurodesarrollo , Multimerización de Proteína , Quinasas p21 Activadas , Sustitución de Aminoácidos , Niño , Activación Enzimática/genética , Epilepsia/enzimología , Epilepsia/genética , Humanos , Masculino , Megalencefalia/enzimología , Megalencefalia/genética , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Dominios Proteicos , Quinasas p21 Activadas/química , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
12.
Trends Genet ; 36(3): 160-176, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32007289

RESUMEN

Like breadcrumbs in the forest, cotranscriptionally acquired histone methylation acts as a memory of prior transcription. Because it can be retained through cell divisions, transcriptional memory allows cells to coordinate complex transcriptional programs during development. However, if not reprogrammed properly during cell fate transitions, it can also disrupt cellular identity. In this review, we discuss the consequences of failure to reprogram histone methylation during three crucial epigenetic reprogramming windows: maternal reprogramming at fertilization, embryonic stem cell (ESC) differentiation, and the continuous maintenance of cell identity in differentiated cells. In addition, we discuss how following the wrong breadcrumb trail of transcriptional memory provides a framework for understanding how heterozygous loss-of-function mutations in histone-modifying enzymes may cause severe neurodevelopmental disorders.


Asunto(s)
Diferenciación Celular/genética , Reprogramación Celular/genética , Epigénesis Genética/genética , Histona Metiltransferasas/genética , Trastornos del Neurodesarrollo/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Fertilización/genética , Código de Histonas/genética , Humanos , Metilación , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/patología
13.
Acta Neuropathol Commun ; 8(1): 6, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32000863

RESUMEN

Human WWOX gene resides in the chromosomal common fragile site FRA16D and encodes a tumor suppressor WW domain-containing oxidoreductase. Loss-of-function mutations in both alleles of WWOX gene lead to autosomal recessive abnormalities in pediatric patients from consanguineous families, including microcephaly, cerebellar ataxia with epilepsy, mental retardation, retinal degeneration, developmental delay and early death. Here, we report that targeted disruption of Wwox gene in mice causes neurodevelopmental disorders, encompassing abnormal neuronal differentiation and migration in the brain. Cerebral malformations, such as microcephaly and incomplete separation of the hemispheres by a partial interhemispheric fissure, neuronal disorganization and heterotopia, and defective cerebellar midline fusion are observed in Wwox-/- mice. Degenerative alterations including severe hypomyelination in the central nervous system, optic nerve atrophy, Purkinje cell loss and granular cell apoptosis in the cerebellum, and peripheral nerve demyelination due to Schwann cell apoptosis correspond to reduced amplitudes and a latency prolongation of transcranial motor evoked potentials, motor deficits and gait ataxia in Wwox-/- mice. Wwox gene ablation leads to the occurrence of spontaneous epilepsy and increased susceptibility to pilocarpine- and pentylenetetrazol (PTZ)-induced seizures in preweaning mice. We determined that a significantly increased activation of glycogen synthase kinase 3ß (GSK3ß) occurs in Wwox-/- mouse cerebral cortex, hippocampus and cerebellum. Inhibition of GSK3ß by lithium ion significantly abolishes the onset of PTZ-induced seizure in Wwox-/- mice. Together, our findings reveal that the neurodevelopmental and neurodegenerative deficits in Wwox knockout mice strikingly recapitulate the key features of human neuropathies, and that targeting GSK3ß with lithium ion ameliorates epilepsy.


Asunto(s)
Encéfalo/enzimología , Encéfalo/patología , Epilepsia/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Trastornos del Neurodesarrollo/genética , Convulsiones/genética , Oxidorreductasa que Contiene Dominios WW/genética , Animales , Movimiento Celular , Epilepsia/enzimología , Ratones Noqueados , Trastornos del Neurodesarrollo/enzimología , Neuronas/patología , Nervios Periféricos/ultraestructura , Tractos Piramidales/fisiopatología , Células de Schwann/patología , Convulsiones/enzimología
14.
J Neurodev Disord ; 11(1): 29, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31839000

RESUMEN

BACKGROUND: The mitochondrial aminoacyl-tRNA synthetase proteins (mt-aaRSs) are a group of nuclear-encoded enzymes that facilitate conjugation of each of the 20 amino acids to its cognate tRNA molecule. Mitochondrial diseases are a large, clinically heterogeneous group of disorders with diverse etiologies, ages of onset, and involved organ systems. Diseases related to mt-aaRS mutations are associated with specific syndromes that affect the central nervous system and produce highly characteristic MRI patterns, prototypically the DARS2, EARS, and AARS2 leukodystrophies, which are caused by mutations in mitochondrial aspartyl-tRNA synthetase, mitochondria glutamate tRNA synthetase, and mitochondrial alanyl-tRNA synthetase, respectively. BODY: The disease patterns emerging for these leukodystrophies are distinct in terms of the age of onset, nature of disease progression, and predominance of involved white matter tracts. In DARS2 and EARS2 disorders, earlier disease onset is typically correlated with more significant brain abnormalities, rapid neurological decline, and greater disability. In AARS2 leukodystrophy cases reported thus far, there is nearly invariable progression to severe disability and atrophy of involved brain regions, often within a decade. Although most mutations are compound heterozygous inherited in an autosomal recessive fashion, homozygous variants are found in each disorder and demonstrate high phenotypic variability. Affected siblings manifest disease on a wide spectrum. CONCLUSION: The syndromic nature and selective vulnerability of white matter tracts in these disorders suggests there may be a shared mechanism of mitochondrial dysfunction to target for study. There is evidence that the clinical variability and white matter tract specificity of each mt-aaRS leukodystrophy depend on both canonical and non-canonical effects of the mutations on the process of mitochondrial translation. Furthermore, different sensitivities to the mt-aaRS mutations have been observed based on cell type. Most mutations result in at least partial retention of mt-aaRS enzyme function with varied effects on the mitochondrial respiratory chain complexes. In EARS2 and AARS2 cells, this appears to result in cumulative impairment of respiration. Mt-aaRS mutations may also affect alternative biochemical pathways such as the integrated stress response, a homeostatic program in eukaryotic cells that typically confers cytoprotection, but can lead to cell death when abnormally activated in response to pathologic states. Systematic review of this group of disorders and further exploration of disease mechanisms in disease models and neural cells are warranted.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Encéfalo/enzimología , Enfermedades Desmielinizantes/enzimología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/enzimología , Trastornos del Neurodesarrollo/enzimología , Animales , Encéfalo/patología , Enfermedades Desmielinizantes/complicaciones , Humanos , Enfermedades Mitocondriales/complicaciones , Proteínas Mitocondriales/metabolismo
15.
Stem Cell Res ; 41: 101583, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31698190

RESUMEN

Asparagine synthetase (ASNS) deficiency (ASNSD; MIM #615574) is a rare neurodevelopmental disorder caused by mutations in the ASNS gene. The ASNS gene maps to cytogenetic band 7q21.3 and is 35 kb long. ASNSD is characterised by congenital microcephaly, severely delayed psychomotor development, seizures, and hyperekplexic activity. Here, we reported a family with compound heterozygous mutations in ASNS (NM_001178076:c.551C>T; c. 944A>C) and established induced pluripotent stem cells (iPSCs) from blood samples. To date, limited functional data have been reported to explain the underlying pathophysiology of ASNSD; therefore, iPSCs from these patients may be powerful tools for studying disease mechanisms.


Asunto(s)
Aspartatoamoníaco Ligasa/deficiencia , Aspartatoamoníaco Ligasa/genética , Diferenciación Celular , Células Madre Pluripotentes Inducidas/patología , Leucocitos Mononucleares/patología , Mutación , Trastornos del Neurodesarrollo/patología , Adulto , Animales , Células Cultivadas , Niño , Femenino , Heterocigoto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Teratoma/enzimología , Teratoma/genética , Teratoma/patología
16.
Hum Genet ; 138(11-12): 1259-1266, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31555905

RESUMEN

Alkylglycerol monooxygenase (AGMO) is the only enzyme known to cleave the O-alkyl bonds of ether lipids (alkylglycerols) which are essential components of cell membranes. A homozygous frameshift variant [p.(Glu324LysfsTer12)] in AGMO has recently been reported in two male siblings with syndromic microcephaly. In this study, we identified rare nonsense, in frame deletion, and missense biallelic variants in AGMO in two unrelated individuals with neurodevelopmental disabilities. We assessed the activity of seven disease associated AGMO variants including the four variants identified in our two affected individuals expressed in human embryonic kidney (HEK293T) cells. We demonstrated significantly diminished enzyme activity for all disease-associated variants, supporting the mechanism as decreased AGMO activity. Future mechanistic studies are necessary to understand how decreased AGMO activity leads to the neurologic manifestations.


Asunto(s)
Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Mutación , Trastornos del Neurodesarrollo/patología , Alelos , Células HEK293 , Humanos , Masculino , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Pronóstico
17.
J Clin Invest ; 129(10): 4194-4206, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31449058

RESUMEN

Polymerase δ is essential for eukaryotic genome duplication and synthesizes DNA at both the leading and lagging strands. The polymerase δ complex is a heterotetramer comprising the catalytic subunit POLD1 and the accessory subunits POLD2, POLD3, and POLD4. Beyond DNA replication, the polymerase δ complex has emerged as a central element in genome maintenance. The essentiality of polymerase δ has constrained the generation of polymerase δ-knockout cell lines or model organisms and, therefore, the understanding of the complexity of its activity and the function of its accessory subunits. To our knowledge, no germline biallelic mutations affecting this complex have been reported in humans. In patients from 2 independent pedigrees, we have identified what we believe to be a novel syndrome with reduced functionality of the polymerase δ complex caused by germline biallelic mutations in POLD1 or POLD2 as the underlying etiology of a previously unknown autosomal-recessive syndrome that combines replicative stress, neurodevelopmental abnormalities, and immunodeficiency. Patients' cells showed impaired cell-cycle progression and replication-associated DNA lesions that were reversible upon overexpression of polymerase δ. The mutations affected the stability and interactions within the polymerase δ complex or its intrinsic polymerase activity. We believe our discovery of human polymerase δ deficiency identifies the central role of this complex in the prevention of replication-related DNA lesions, with particular relevance to adaptive immunity.


Asunto(s)
ADN Polimerasa III/deficiencia , ADN Polimerasa III/genética , Mutación de Línea Germinal , Síndromes de Inmunodeficiencia/enzimología , Síndromes de Inmunodeficiencia/genética , Adolescente , Alelos , Sustitución de Aminoácidos , ADN Polimerasa III/química , Replicación del ADN/genética , Estabilidad de Enzimas/genética , Genes Recesivos , Humanos , Masculino , Modelos Moleculares , Complejos Multienzimáticos/química , Complejos Multienzimáticos/deficiencia , Complejos Multienzimáticos/genética , Mutación Missense , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Linaje , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Adulto Joven
18.
Am J Hum Genet ; 105(2): 283-301, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31353023

RESUMEN

The RNA polymerase II complex (pol II) is responsible for transcription of all ∼21,000 human protein-encoding genes. Here, we describe sixteen individuals harboring de novo heterozygous variants in POLR2A, encoding RPB1, the largest subunit of pol II. An iterative approach combining structural evaluation and mass spectrometry analyses, the use of S. cerevisiae as a model system, and the assessment of cell viability in HeLa cells allowed us to classify eleven variants as probably disease-causing and four variants as possibly disease-causing. The significance of one variant remains unresolved. By quantification of phenotypic severity, we could distinguish mild and severe phenotypic consequences of the disease-causing variants. Missense variants expected to exert only mild structural effects led to a malfunctioning pol II enzyme, thereby inducing a dominant-negative effect on gene transcription. Intriguingly, individuals carrying these variants presented with a severe phenotype dominated by profound infantile-onset hypotonia and developmental delay. Conversely, individuals carrying variants expected to result in complete loss of function, thus reduced levels of functional pol II from the normal allele, exhibited the mildest phenotypes. We conclude that subtle variants that are central in functionally important domains of POLR2A cause a neurodevelopmental syndrome characterized by profound infantile-onset hypotonia and developmental delay through a dominant-negative effect on pol-II-mediated transcription of DNA.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Hipotonía Muscular/patología , Mutación , Trastornos del Neurodesarrollo/patología , Saccharomyces cerevisiae/crecimiento & desarrollo , Adolescente , Edad de Inicio , Niño , Preescolar , Femenino , Células HeLa , Heterocigoto , Humanos , Masculino , Hipotonía Muscular/enzimología , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Fenotipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
19.
Nat Commun ; 10(1): 707, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755602

RESUMEN

Aminoacyl-tRNA synthetases (ARSs) function to transfer amino acids to cognate tRNA molecules, which are required for protein translation. To date, biallelic mutations in 31 ARS genes are known to cause recessive, early-onset severe multi-organ diseases. VARS encodes the only known valine cytoplasmic-localized aminoacyl-tRNA synthetase. Here, we report seven patients from five unrelated families with five different biallelic missense variants in VARS. Subjects present with a range of global developmental delay, epileptic encephalopathy and primary or progressive microcephaly. Longitudinal assessment demonstrates progressive cortical atrophy and white matter volume loss. Variants map to the VARS tRNA binding domain and adjacent to the anticodon domain, and disrupt highly conserved residues. Patient primary cells show intact VARS protein but reduced enzymatic activity, suggesting partial loss of function. The implication of VARS in pediatric neurodegeneration broadens the spectrum of human diseases due to mutations in tRNA synthetase genes.


Asunto(s)
Epilepsia/genética , Mutación , Valina-ARNt Ligasa/genética , Alelos , Anticodón , Niño , Preescolar , Progresión de la Enfermedad , Epilepsia/enzimología , Epilepsia/patología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Estudios Longitudinales , Mutación con Pérdida de Función , Masculino , Microcefalia/enzimología , Microcefalia/genética , Modelos Moleculares , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Linaje , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , ARN de Transferencia/genética , Secuenciación del Exoma , Secuenciación Completa del Genoma
20.
Nat Commun ; 10(1): 708, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755616

RESUMEN

Aminoacyl tRNA synthetases (ARSs) link specific amino acids with their cognate transfer RNAs in a critical early step of protein translation. Mutations in ARSs have emerged as a cause of recessive, often complex neurological disease traits. Here we report an allelic series consisting of seven novel and two previously reported biallelic variants in valyl-tRNA synthetase (VARS) in ten patients with a developmental encephalopathy with microcephaly, often associated with early-onset epilepsy. In silico, in vitro, and yeast complementation assays demonstrate that the underlying pathomechanism of these mutations is most likely a loss of protein function. Zebrafish modeling accurately recapitulated some of the key neurological disease traits. These results provide both genetic and biological insights into neurodevelopmental disease and pave the way for further in-depth research on ARS related recessive disorders and precision therapies.


Asunto(s)
Encefalopatías/genética , Microcefalia/genética , Valina-ARNt Ligasa/genética , Alelos , Animales , Encefalopatías/enzimología , Encefalopatías/patología , Línea Celular , Modelos Animales de Enfermedad , Epilepsia/enzimología , Epilepsia/genética , Epilepsia/patología , Femenino , Fibroblastos , Técnicas de Inactivación de Genes , Predisposición Genética a la Enfermedad , Humanos , Mutación con Pérdida de Función , Masculino , Microcefalia/enzimología , Microcefalia/patología , Modelos Moleculares , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Linaje , Prosencéfalo/patología , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA