Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 677
Filtrar
1.
J Agric Food Chem ; 72(38): 20944-20958, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39259217

RESUMEN

Radiation-induced lung injury (RILI) is a prevalent complication of thoracic tumor radiotherapy and accidental radiation exposure. Pyrroloquinoline quinone (PQQ), a novel vitamin B, plays a crucial role in delaying aging, antioxidation, anti-inflammation, and antiapoptosis. This study aims to investigate the protective effect and mechanisms of PQQ against RILI. C57BL/6 mice were exposed to a 20 Gy dose of X-ray radiation on the entire thorax with or without daily oral administration of PQQ for 2 weeks. PQQ effectively mitigated radiation-induced lung tissue damage, inflammation, oxidative stress, and epithelial cell apoptosis. Additionally, PQQ significantly inhibited oxidative stress and mitochondrial damage in MLE-12 cells. Mechanistically, PQQ upregulated the mRNA and protein levels of MOTS-c in irradiated lung tissue and MLE-12 cells. Knockdown of MOTS-c by siRNA substantially attenuated the protective effects of PQQ on oxidative stress, inflammation, and apoptosis. In conclusion, PQQ alleviates RILI by preserving mitochondrial function through a MOTS-c-dependent mechanism, suggesting that PQQ may serve as a promising nutraceutical intervention against RILI.


Asunto(s)
Apoptosis , Lesión Pulmonar , Ratones Endogámicos C57BL , Mitocondrias , Estrés Oxidativo , Cofactor PQQ , Animales , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Cofactor PQQ/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Lesión Pulmonar/metabolismo , Lesión Pulmonar/etiología , Lesión Pulmonar/genética , Lesión Pulmonar/prevención & control , Lesión Pulmonar/tratamiento farmacológico , Humanos , Apoptosis/efectos de los fármacos , Masculino , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/genética , Traumatismos por Radiación/tratamiento farmacológico , Traumatismos por Radiación/prevención & control , Pulmón/efectos de la radiación , Pulmón/metabolismo , Pulmón/efectos de los fármacos
2.
Med Sci (Paris) ; 40(8-9): 634-642, 2024.
Artículo en Francés | MEDLINE | ID: mdl-39303115

RESUMEN

In the event of a radiological or nuclear emergency following an accident or malicious act, potentially involving many victims, medical care requires the identification and diagnosis of individuals exposed to high doses of ionizing radiation as quickly as possible. While an initial screening can be carried out directly in the field, additional biological in-lab analyses are required to refine the diagnosis and optimize the therapeutic management of victims. The fast and simultaneous management of many patients is limited by currently established techniques. To overcome these constraints, the use of new biomarkers to predict the risk and severity of radiation-induced injuries is under investigation. This synthesis summarizes the latest scientific advances demonstrating the potential of microRNAs as biomarkers of radiationinduced injuries, highlighting their relevance for human health care and radioprotection.


Title: Les micro-ARN comme biomarqueurs des lésions radio-induites. Abstract: En cas d'urgence radiologique ou nucléaire résultant d'un accident ou d'un acte de malveillance, la prise en charge médicale requiert l'identification et le diagnostic des individus exposés à de fortes doses de rayonnements ionisants le plus rapidement possible. Bien qu'un triage préliminaire puisse être effectué directement sur le terrain, une analyse complémentaire en laboratoire est nécessaire pour affiner le diagnostic. Les techniques actuellement utilisées limitent la prise en charge rapide et simultanée de nombreux patients. Afin de pallier ces contraintes, l'utilisation de nouveaux biomarqueurs pour prédire le risque et la gravité des lésions radio-induites est à l'étude. Dans cette revue, nous abordons le potentiel des micro-ARN comme biomarqueurs pour le pronostic des lésions radio-induites et leur pertinence pour une utilisation en radioprotection chez l'homme.


Asunto(s)
Biomarcadores , MicroARNs , Traumatismos por Radiación , Humanos , Biomarcadores/análisis , Traumatismos por Radiación/diagnóstico , Traumatismos por Radiación/genética , Traumatismos por Radiación/etiología , Animales
3.
Radiat Res ; 202(3): 489-502, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39089691

RESUMEN

Radiation exposure in a therapeutic setting or during a mass casualty event requires improved medical triaging, where the time to delivery and quantity of medical countermeasures are critical to survival. Radiation-induced liver injury (RILI) and fibrosis can lead to death, but clinical symptoms manifest late in disease pathogenesis and there is no simple diagnostic test to determine RILI. Because animal models do not completely recapitulate clinical symptoms, we used a human liver-on-a-chip model to identify biomarkers of RILI. The goals of this study were: 1. to establish a microfluidic liver-on-a-chip device as a physiologically relevant model for studying radiation-induced tissue damage; and 2. to determine acute changes in RNA expression and biological pathway regulation that identify potential biomarkers and mechanisms of RILI. To model functional human liver tissue, we used the Emulate organ-on-a-chip system to establish a co-culture of human liver sinusoidal endothelial cells (LSECs) and hepatocytes. The chips were subject to 0 Gy (sham), 1 Gy, 4 Gy, or 10 Gy irradiation and cells were collected at 6 h, 24 h, or 7 days postirradiation for RNA isolation. To identify significant expression changes in messenger RNA (mRNA) and long non-coding RNA (lncRNA), we performed RNA sequencing (RNASeq) to conduct whole transcriptome analysis. We found distinct differences in expression patterns by time, dose, and cell type, with higher doses of radiation resulting in the most pronounced expression changes, as anticipated. Ingenuity Pathway Analysis indicated significant inhibition of the cell viability pathway 24 h after 10 Gy exposure in LSECs but activation of this pathway in hepatocytes, highlighting differences between cell types despite receiving the same radiation dose. Overall, hepatocytes showed fewer gene expression changes in response to radiation, with only 3 statistically significant differentially expressed genes at 7 days: APOBEC3H, PTCHD4, and GDNF. We further highlight lncRNA of interest including DINO and PURPL in hepatocytes and TMPO-AS1 and PRC-AS1 in LSECs, identifying potential biomarkers of RILI. We demonstrated the potential utility of a human liver-on-a-chip model with primary cells to model organ-specific radiation injury, establishing a model for radiation medical countermeasure development and further biomarker validation. Furthermore, we identified biomarkers that differentiate radiation dose and defined cell-specific targets for potential radiation mitigation therapies.


Asunto(s)
Dispositivos Laboratorio en un Chip , Hígado , Traumatismos por Radiación , Humanos , Hígado/efectos de la radiación , Hígado/metabolismo , Hígado/patología , Traumatismos por Radiación/genética , Traumatismos por Radiación/patología , Hepatocitos/efectos de la radiación , Hepatocitos/metabolismo , ARN/genética , ARN/metabolismo , Biomarcadores/metabolismo , Células Endoteliales/efectos de la radiación , Células Endoteliales/metabolismo
4.
Asian Pac J Cancer Prev ; 25(8): 2645-2654, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39205561

RESUMEN

BACKGROUND: Radiotherapy (RT) is a crucial treatment for head and neck cancer however, it causes adverse reactions to the normal tissue and organs adjacent to target tumor. The present study was carried out to investigate possible association of single nucleotide polymorphism in DNA repair genes with toxicity effects of radiotherapy on normal tissue. METHODS: Three hundred and fifty head and neck cancer patients receiving radiotherapy treatment were enrolled in this study. The adverse after effects of radiotherapy on the normal tissue in the form of skin reactions were recorded. Single nucleotide polymorphisms of APE1 (rs1130409), hOGG1 (rs1052133) and Rad51 (rs1801320, rs1801321) genes were studied by polymerase chain reaction-Restriction fragment length polymorphism (PCR-RFLP) and direct DNA sequencing methods and their association with development of severe radio-toxicity effects was evaluated logistic regression analysis. RESULTS: The 172G/T polymorphism of Rad51 was 2.85 times higher and significantly associated with skin reactions (OR=2.85, 95% CI: 1.50-5.41; p=0.001) and severe oral mucositis (OR=4.96, 95% CI: 2.40-10.25; p<0.0001). These results suggested that the polymorphic nature of Rad51 is responsible for risk of radiotherapy adverse effects in HNC patients. The variant 326Cys and heterozygous 326Ser/Cys genotype of hOGG1 was significantly associated with high tumor grade (OR=3.16 95% CI: 1.66-5.99; p=0.0004, and OR=3.97 95% CI: 2.15-7.34; p=<0.0001 respectively). The homozygous variant 172TT genotype of Rad51 showed positive association with poor response of both tumor and nodes towards radiotherapy treatment (p=0.007 and p=0.022). CONCLUSIONS: Interpretation of our results revealed significant association of rs1801321 SNP of Rad51 with development of adverse toxicity reactions in normal tissue of head and neck cancer patients treated with radiotherapy.


Asunto(s)
ADN Glicosilasas , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Neoplasias de Cabeza y Cuello , Polimorfismo de Nucleótido Simple , Recombinasa Rad51 , Humanos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Masculino , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Femenino , Recombinasa Rad51/genética , Persona de Mediana Edad , ADN Glicosilasas/genética , Estudios de Seguimiento , Pronóstico , Traumatismos por Radiación/genética , Traumatismos por Radiación/etiología , Anciano , Adulto , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/patología , Genotipo , Reparación del ADN/genética , Biomarcadores de Tumor/genética , Radioterapia/efectos adversos
5.
Arh Hig Rada Toksikol ; 75(2): 91-101, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38963141

RESUMEN

Even at low levels, exposure to ionising radiation can lead to eye damage. However, the underlying molecular mechanisms are not yet fully understood. We aimed to address this gap with a comprehensive in silico approach to the issue. For this purpose we relied on the Comparative Toxicogenomics Database (CTD), ToppGene Suite, Cytoscape, GeneMANIA, and Metascape to identify six key regulator genes associated with radiation-induced eye damage (ATM, CRYAB, SIRT1, TGFB1, TREX1, and YAP1), all of which have physical interactions. Some of the identified molecular functions revolve around DNA repair mechanisms, while others are involved in protein binding, enzymatic activities, metabolic processes, and post-translational protein modifications. The biological processes are mostly centred on response to DNA damage, the p53 signalling pathway in particular. We identified a significant role of several miRNAs, such as hsa-miR-183 and hsamiR-589, in the mechanisms behind ionising radiation-induced eye injuries. Our study offers a valuable method for gaining deeper insights into the adverse effects of radiation exposure.


Asunto(s)
Minería de Datos , Radiación Ionizante , Humanos , Traumatismos por Radiación/genética , Traumatismos por Radiación/etiología , Lesiones Oculares/etiología , Lesiones Oculares/genética , Genómica , Daño del ADN/efectos de la radiación
6.
Toxicol Lett ; 399: 43-51, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39032790

RESUMEN

In the event of a nuclear or radiation accident, rapid identification is required for those who exposed to potentially lethal dose irradiation. However, existing techniques are not adequate for the classification of lethal injury. Several studies have explored the potential of miRNAs as biomarkers for ionizing radiation injury, however, there are few miRNAs with specific expression for lethal radiation injury. Therefore, the aim of this study was to screen and validate the possibility of serum miRNAs as biomarkers of lethal radiation injury. We found the specific expression of mmu-miR-374c-5p / mmu-miR-194-5p on first day and mmu-miR-192-5p / mmu-miR-223-3p on third day in the mouse serum only under 10 Gy irradiation by miRNA sequencing and all significantly correlated with lymphocyte counts by Pearson's correlation analysis. In addition, it was found that among the 4 candidate serum miRNAs, only highly-expressed mmu-miR-192-5p in mouse serum irradiated at lethal doses was returned to sham-like expression levels at 3 days post-irradiation with amifostine pretreatment and closely correlated with survival rate. We demonstrated for the first time that mmu-miR-192-5p screened from lethally irradiated mice sera can be used as a potential biomarker for lethal irradiation injury, which will be helpful to improve efficiency of medical treatment to minimize casualties after a large-scale nuclear accident.


Asunto(s)
Biomarcadores , MicroARNs , Animales , MicroARNs/sangre , MicroARNs/genética , Ratones , Masculino , Biomarcadores/sangre , Traumatismos Experimentales por Radiación/sangre , Traumatismos Experimentales por Radiación/genética , Traumatismos por Radiación/sangre , Traumatismos por Radiación/genética , Ratones Endogámicos C57BL
7.
Nat Commun ; 15(1): 4825, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862542

RESUMEN

Our previous research revealed a key microRNA signature that is associated with spaceflight that can be used as a biomarker and to develop countermeasure treatments to mitigate the damage caused by space radiation. Here, we expand on this work to determine the biological factors rescued by the countermeasure treatment. We performed RNA-sequencing and transcriptomic analysis on 3D microvessel cell cultures exposed to simulated deep space radiation (0.5 Gy of Galactic Cosmic Radiation) with and without the antagonists to three microRNAs: miR-16-5p, miR-125b-5p, and let-7a-5p (i.e., antagomirs). Significant reduction of inflammation and DNA double strand breaks (DSBs) activity and rescue of mitochondria functions are observed after antagomir treatment. Using data from astronaut participants in the NASA Twin Study, Inspiration4, and JAXA missions, we reveal the genes and pathways implicated in the action of these antagomirs are altered in humans. Our findings indicate a countermeasure strategy that can potentially be utilized by astronauts in spaceflight missions to mitigate space radiation damage.


Asunto(s)
Astronautas , Radiación Cósmica , MicroARNs , Vuelo Espacial , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Radiación Cósmica/efectos adversos , Roturas del ADN de Doble Cadena/efectos de la radiación , Traumatismos por Radiación/genética , Traumatismos por Radiación/prevención & control , Masculino , Mitocondrias/efectos de la radiación , Mitocondrias/metabolismo , Mitocondrias/genética , Femenino , Adulto
8.
Cell Commun Signal ; 22(1): 292, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802843

RESUMEN

BACKGROUND: Hematopoietic stem cell (HSC) regeneration underlies hematopoietic recovery from myelosuppression, which is a life-threatening side effect of cytotoxicity. HSC niche is profoundly disrupted after myelosuppressive injury, while if and how the niche is reshaped and regulates HSC regeneration are poorly understood. METHODS: A mouse model of radiation injury-induced myelosuppression was built by exposing mice to a sublethal dose of ionizing radiation. The dynamic changes in the number, distribution and functionality of HSCs and megakaryocytes were determined by flow cytometry, immunofluorescence, colony assay and bone marrow transplantation, in combination with transcriptomic analysis. The communication between HSCs and megakaryocytes was determined using a coculture system and adoptive transfer. The signaling mechanism was investigated both in vivo and in vitro, and was consolidated using megakaryocyte-specific knockout mice and transgenic mice. RESULTS: Megakaryocytes become a predominant component of HSC niche and localize closer to HSCs after radiation injury. Meanwhile, transient insulin-like growth factor 1 (IGF1) hypersecretion is predominantly provoked in megakaryocytes after radiation injury, whereas HSCs regenerate paralleling megakaryocytic IGF1 hypersecretion. Mechanistically, HSCs are particularly susceptible to megakaryocytic IGF1 hypersecretion, and mTOR downstream of IGF1 signaling not only promotes activation including proliferation and mitochondrial oxidative metabolism of HSCs, but also inhibits ferritinophagy to restrict HSC ferroptosis. Consequently, the delicate coordination between proliferation, mitochondrial oxidative metabolism and ferroptosis ensures functional HSC expansion after radiation injury. Importantly, punctual IGF1 administration simultaneously promotes HSC regeneration and hematopoietic recovery after radiation injury, representing a superior therapeutic approach for myelosuppression. CONCLUSIONS: Our study identifies megakaryocytes as a last line of defense against myelosuppressive injury and megakaryocytic IGF1 as a novel niche signal safeguarding HSC regeneration.


Asunto(s)
Ferroptosis , Células Madre Hematopoyéticas , Factor I del Crecimiento Similar a la Insulina , Megacariocitos , Regeneración , Animales , Células Madre Hematopoyéticas/metabolismo , Megacariocitos/metabolismo , Megacariocitos/efectos de la radiación , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Ferroptosis/genética , Ratones , Ratones Endogámicos C57BL , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/patología , Traumatismos por Radiación/genética , Transducción de Señal/efectos de la radiación
9.
Int Immunopharmacol ; 133: 111987, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652961

RESUMEN

Radiation-induced kidney injury is a common side effect of radiotherapy, as the pelvic region is in close proximity to the kidneys, posing a risk of inducing radiation-induced kidney injury when treating any pelvic malignancies with radiotherapy. This type of injury typically manifests as chronic kidney disease a few months after radiotherapy, with the potential to progress to end-stage renal disease. Radiation-induced damage involves various components of the kidney, including glomeruli, tubules, interstitium, and extracellular matrix. Therefore, investigating its molecular mechanisms is crucial. In this study, we extensively searched literature databases, selecting recent transcriptomic studies related to acute kidney injury (AKI) published in the past decade. We downloaded the raw RNA sequencing datasets GSE30718 and GSE66494 related to AKI from the GEO database and identified that intestinal-type lectin ITLN1 plays a significant role in regulating radiation-induced kidney injury in rats. Differential gene analysis was performed using chip data from the GEO database, and further bioinformatics analysis identified 13 genes that may be involved in regulating kidney injury, with ITLN1 being the most relevant to kidney damage, thus selected as the target gene for this study. Subsequently, a rat model of radiation-induced kidney injury was established for experimental validation, assessing kidney tissue morphology and injury extent through staining observation and immunohistochemical staining. The protective effect of ITLN1 on kidney function was evaluated by measuring changes in rat body weight and blood pressure, serum kidney injury markers, and kidney structure. The experimental results indicate that overexpression of ITLN1 can improve kidney function in rats with radiation-induced kidney injury by activating the Akt/GSK-3ß/Nrf2 signaling pathway, suppressing oxidative stress, cell apoptosis, inflammation, cellular senescence, and fibrosis. This study highlights the significant role of ITLN1 in regulating kidney injury, providing a novel target for future treatments of radiation-induced kidney injury.


Asunto(s)
Riñón , Animales , Ratas , Riñón/patología , Riñón/metabolismo , Riñón/efectos de la radiación , Masculino , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/etiología , Humanos , Traumatismos por Radiación/genética , Ratas Sprague-Dawley , Transducción de Señal , Traumatismos Experimentales por Radiación/metabolismo
10.
Nat Commun ; 15(1): 3018, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589357

RESUMEN

Ionizing radiation induces cell death in the gastrointestinal (GI) epithelium by activating p53. However, p53 also prevents animal lethality caused by radiation-induced acute GI syndrome. Through single-cell RNA-sequencing of the irradiated mouse small intestine, we find that p53 target genes are specifically enriched in regenerating epithelial cells that undergo fetal-like reversion, including revival stem cells (revSCs) that promote animal survival after severe damage of the GI tract. Accordingly, in mice with p53 deleted specifically in the GI epithelium, ionizing radiation fails to induce fetal-like revSCs. Using intestinal organoids, we show that transient p53 expression is required for the induction of revival stem cells and is controlled by an Mdm2-mediated negative feedback loop. Together, our findings reveal that p53 suppresses severe radiation-induced GI injury by promoting fetal-like reprogramming of irradiated intestinal epithelial cells.


Asunto(s)
Traumatismos por Radiación , Proteína p53 Supresora de Tumor , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Intestinos , Tracto Gastrointestinal/metabolismo , Traumatismos por Radiación/genética , Traumatismos por Radiación/metabolismo , Células Madre/metabolismo , Apoptosis/genética
11.
Biomol Biomed ; 24(5): 1331-1349, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-38552230

RESUMEN

Radiation-induced lung injury (RILI) frequently occurs as a complication following radiotherapy for chest tumors like lung and breast cancers. However, the precise underlying mechanisms of RILI remain unclear. In this study, we generated RILI models in rats treated with a single dose of 20 Gy and examined lung tissues by single-cell RNA sequencing (scRNA-seq) 2 weeks post-radiation. Analysis of lung tissues revealed 18 major cell populations, indicating an increase in cell-cell communication following radiation exposure. Neutrophils, macrophages, and monocytes displayed distinct subpopulations and uncovered potential for pro-inflammatory effects. Additionally, endothelial cells exhibited a highly inflammatory profile and the potential for reactive oxygen species (ROS) production. Furthermore, smooth muscle cells (SMC) showed a high propensity for extracellular matrix (ECM) deposition. Our findings broaden the current understanding of RILI and highlight potential avenues for further investigation and clinical applications.


Asunto(s)
Lesión Pulmonar , Análisis de la Célula Individual , Animales , Ratas , Lesión Pulmonar/etiología , Lesión Pulmonar/genética , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Análisis de la Célula Individual/métodos , Transcriptoma/efectos de la radiación , Pulmón/patología , Pulmón/efectos de la radiación , Pulmón/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/genética , Perfilación de la Expresión Génica/métodos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de la radiación , Miocitos del Músculo Liso/patología , Masculino , Traumatismos por Radiación/patología , Traumatismos por Radiación/genética , Traumatismos por Radiación/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de la radiación , Ratas Sprague-Dawley
12.
J Stroke Cerebrovasc Dis ; 33(7): 107699, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552890

RESUMEN

BACKGROUND: Radiation treatment for diseases of the brain can result in hemorrhagic adverse radiation effects. The underlying pathologic substrate of brain bleeding after irradiation has not been elucidated, nor potential associations with induced somatic mutations. METHODS: We retrospectively reviewed our department's pathology database over 5 years and identified 5 biopsy specimens (4 patients) for hemorrhagic lesions after brain irradiation. Tissues with active malignancy were excluded. Samples were characterized using H&E, Perl's Prussian Blue, and Masson's Trichrome; immunostaining for B-cells (anti-CD20), T-cells (anti-CD3), endothelium (anti-CD31), macrophages (anti-CD163), α-smooth muscle actin, and TUNEL. DNA analysis was done by two panels of next-generation sequencing for somatic mutations associated with known cerebrovascular anomalies. RESULTS: One lesion involved hemorrhagic expansion among multifocal microbleeds that had developed after craniospinal irradiation for distant medulloblastoma treatment. Three bleeds arose in the bed of focally irradiated arteriovenous malformations (AVM) after confirmed obliteration. A fifth specimen involved the radiation field distinct from an irradiated AVM bed. From these, 2 patterns of hemorrhagic vascular pathology were identified: encapsulated hematomas and cavernous-like malformations. All lesions included telangiectasias with dysmorphic endothelium, consistent with primordial cavernous malformations with an associated inflammatory response. DNA analysis demonstrated genetic variants in PIK3CA and/or PTEN genes but excluded mutations in CCM genes. CONCLUSIONS: Despite pathologic heterogeneity, brain bleeding after irradiation is uniformly associated with primordial cavernous-like telangiectasias and disruption of genes implicated in dysangiogenesis but not genes implicated as causative of cerebral cavernous malformations. This may implicate a novel signaling axis as an area for future study.


Asunto(s)
Mutación , Traumatismos por Radiación , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Biopsia , Hemorragia Cerebral/genética , Hemorragia Cerebral/etiología , Hemorragia Cerebral/patología , Fosfatidilinositol 3-Quinasa Clase I/genética , Irradiación Craneana/efectos adversos , Bases de Datos Factuales , Análisis Mutacional de ADN , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Malformaciones Arteriovenosas Intracraneales/genética , Malformaciones Arteriovenosas Intracraneales/radioterapia , Malformaciones Arteriovenosas Intracraneales/patología , Hemorragias Intracraneales/genética , Hemorragias Intracraneales/etiología , Hemorragias Intracraneales/patología , Fenotipo , Fosfohidrolasa PTEN/genética , Traumatismos por Radiación/genética , Traumatismos por Radiación/patología , Traumatismos por Radiación/etiología , Estudios Retrospectivos , Factores de Riesgo
13.
Front Immunol ; 15: 1338922, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426100

RESUMEN

This review explores the mechanisms of chronic radiation-induced skin injury fibrosis, focusing on the transition from acute radiation damage to a chronic fibrotic state. It reviewed the cellular and molecular responses of the skin to radiation, highlighting the role of myofibroblasts and the significant impact of Transforming Growth Factor-beta (TGF-ß) in promoting fibroblast-to-myofibroblast transformation. The review delves into the epigenetic regulation of fibrotic gene expression, the contribution of extracellular matrix proteins to the fibrotic microenvironment, and the regulation of the immune system in the context of fibrosis. Additionally, it discusses the potential of biomaterials and artificial intelligence in medical research to advance the understanding and treatment of radiation-induced skin fibrosis, suggesting future directions involving bioinformatics and personalized therapeutic strategies to enhance patient quality of life.


Asunto(s)
Inteligencia Artificial , Traumatismos por Radiación , Humanos , Epigénesis Genética , Calidad de Vida , Fibrosis , Factor de Crecimiento Transformador beta/metabolismo , Traumatismos por Radiación/genética
14.
Sci Rep ; 14(1): 2681, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302506

RESUMEN

A radiological accident, whether from industrial, medical, or malicious origin, may result in localized exposure to high doses of ionizing radiations, leading to the development of local radiation injury (LRI), that may evolve toward deep ulceration and necrosis of the skin and underlying tissues. Early diagnosis is therefore crucial to facilitate identification and management of LRI victims. Circulating microRNAs (miRNA) have been studied as potential diagnostic biomarkers of several diseases including hematological defects following whole-body irradiation (WBI). This study aims to identify a blood miRNA signature associated with LRI in a preclinical C57BL/6J mouse model of hindlimb irradiation using different 10-MV X-ray doses that lead to injuries of different severities. To this end, we first performed broad-spectrum plasma miRNA profiling, followed by a targeted validation step, on two independent animal cohorts. Using a multivariate sparse partial least square discriminant analysis, we identified a panel of eight circulating miRNAs able to segregate mice according to LRI severity. Interestingly, these miRNAs were previously associated with WBI (miR-150-5p, miR-342-3p, miR-146a-5p), inflammation (miR-18a-5p, miR-148b-3p, miR-532-5p) and skin diseases (miR-139-5p, miR-195-5p). Our results suggest the use of circulating miRNAs as suitable molecular biomarkers for LRI prognosis and diagnosis.


Asunto(s)
MicroARN Circulante , MicroARNs , Traumatismos por Radiación , Humanos , Animales , Ratones , MicroARNs/genética , Ratones Endogámicos C57BL , Biomarcadores , MicroARN Circulante/genética , Traumatismos por Radiación/diagnóstico , Traumatismos por Radiación/genética , Perfilación de la Expresión Génica
15.
Int J Radiat Biol ; 100(9): 1240-1252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38190433

RESUMEN

PURPOSE: The purpose of this paper is to provide an overview of the methodology used to estimate radiation genetic risks and quantify the risk of hereditary effects as outlined in the ICRP Publication 103. It aims to highlight the historical background and development of the doubling dose method for estimating radiation-related genetic risks and its continued use in radiological protection frameworks. RESULTS: This article emphasizes the complexity associated with quantifying the risk of hereditary effects caused by radiation exposure and highlights the need for further clarification and explanation of the calculation method. As scientific knowledge in radiation sciences and human genetics continues to advance in relation to a number of factors including stability of disease frequency, selection pressures, and epigenetic changes, the characterization and quantification of genetic effects still remains a major issue for the radiological protection system of the International Commission on Radiological Protection. CONCLUSION: Further research and advancements in this field are crucial for enhancing our understanding and addressing the complexities involved in assessing and managing the risks associated with hereditary effects of radiation.


Asunto(s)
Protección Radiológica , Humanos , Protección Radiológica/métodos , Medición de Riesgo , Exposición a la Radiación/efectos adversos , Dosis de Radiación , Traumatismos por Radiación/prevención & control , Traumatismos por Radiación/genética
16.
Pract Radiat Oncol ; 14(1): e29-e39, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37742832

RESUMEN

PURPOSE: There are mixed and limited data regarding radiation therapy (RT) tolerance in carriers of a germline pathogenic or likely pathogenic (P/LP) ATM variant. We investigated RT-related toxic effects in carriers of an ATM variant who received treatment for breast cancer. METHODS AND MATERIALS: We identified 71 patients treated with adjuvant RT for breast cancer who were carriers of a variant in ATM: 15 were classified as P/LP and 56 classified as variants of unknown significance (VUS). We additionally identified 205 consecutively treated patients during a similar timeframe who were either confirmed ATM wild type or had no prior genetic testing. RT plans were reviewed. Acute and chronic toxic effects were evaluated using Common Terminology Criteria for Adverse Events version 4.0 criteria. Fisher's exact tests for count data were performed to compare toxic effects between the cohorts (P/LP vs VUS vs control). Wilcoxon rank-sum testing was performed to assess for differences in patient characteristics. RESULTS: The median toxicity follow-up was 19.4 months; median follow-up for the subcohorts was 13.3 months (P/LP), 12.6 months (VUS), and 23.3 months (control). There were no significant differences in radiation plan heterogeneity, receipt of a boost, or size of breast/chest wall planning target volume. There was greater use of hypofractionated RT in the control cohort (P = .023). After accounting for patient- and treatment-related factors that may affect toxic effects, we found no significant differences with respect to acute dermatitis, hyperpigmentation, moist desquamation, breast/chest wall pain, or breast edema. Additionally, we found no significant differences with respect to chronic breast/chest wall pain, induration, telangiectasia, or cosmetic outcome. CONCLUSIONS: RT as part of the management of breast cancer was well tolerated in carriers of a P/LP ATM variant, with toxic effect profiles that were similar to those seen in patients without known ATM mutations. High rates of excellent or good cosmesis were observed in carriers of a P/LP ATM variant who underwent breast conservation.


Asunto(s)
Neoplasias de la Mama , Traumatismos por Radiación , Humanos , Femenino , Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/patología , Traumatismos por Radiación/genética , Traumatismos por Radiación/patología , Dolor , Proteínas de la Ataxia Telangiectasia Mutada/genética
17.
Oncology ; 102(7): 1, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38160665

RESUMEN

INTRODUCTION: Bladder cancer (BC) is sensitive to radiation treatment and a subset of patients experience radiation-induced injuries including shrinkage of bladder due to bladder fibrosis. METHODS: This study is a retrospective cohort study. Three Japanese BC patients were randomly selected. Using a microRNA (miRNA) array, comparing their samples with or without radiation-induced injuries, we have checked the clustering of miRNA expression. RESULTS: Hsa-miR-130a, hsa-miR-200c, hsa-miR-141, and hsa-miR-96 were found to be highly expressed (>50 times) in patients with fibrotic bladder shrinkage (FBS) compared to those with intact bladder (IB) function. In patients with FBS, hsa-miR-6835, hsa-miR-4675, hsa-miR-371a, and hsa-miR-6885 were detected to have lesser than half expression to IB patients. We have analyzed the significance of these genes in relation to overall survival of 409 BC patients retrieved from the Cancer Genome Atlas data set. All available cutoff values between the lower and upper quartiles of expression are used for the selected genes, and false discovery rate using the Benjamini-Hochberg method is computed to correct for multiple hypothesis testing. We have run combined survival analysis of the mean expression of these four miRNAs highly expressed in FBS patients. 175 patients with high expression had a longer median survival of 98.47 months than 23.73 months in 233 patients with low expression (hazard ratio [HR]: 0.53; 0.39-0.72, log-rank p value: 7.3e-0.5). Combination analysis of all 8 genes including hsa-miR-6835, hsa-miR-4675, hsa-miR-371a, and hsa-miR-6885 showed the same HR for OS. Target scanning for these miRNAs matched specific cytokines known as an early biomarker to develop radiation-induced fibrosis. CONCLUSIONS: BC patients with fibrotic radiation injury have specific miRNA expression profile targeting profibrotic cytokines and these miRNAs possibly render to favorable survival.


Asunto(s)
MicroARNs , Traumatismos por Radiación , Neoplasias de la Vejiga Urinaria , Vejiga Urinaria , Humanos , MicroARNs/genética , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/radioterapia , Neoplasias de la Vejiga Urinaria/patología , Masculino , Estudios Retrospectivos , Femenino , Traumatismos por Radiación/genética , Traumatismos por Radiación/patología , Anciano , Vejiga Urinaria/patología , Vejiga Urinaria/efectos de la radiación , Vejiga Urinaria/metabolismo , Persona de Mediana Edad , Anciano de 80 o más Años , Fibrosis/genética
18.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38069378

RESUMEN

Patients receiving cranial radiotherapy for primary and metastatic brain tumors may experience radiation-induced brain injury (RIBI). Thus far, there has been a lack of effective preventive and therapeutic strategies for RIBI. Due to its complicated underlying pathogenic mechanisms, it is rather difficult to develop a single approach to target them simultaneously. We have recently reported that Reprimo (RPRM), a tumor suppressor gene, is a critical player in DNA damage repair, and RPRM deletion significantly confers radioresistance to mice. Herein, by using an RPRM knockout (KO) mouse model established in our laboratory, we found that RPRM deletion alleviated RIBI in mice via targeting its multiple underlying mechanisms. Specifically, RPRM knockout significantly reduced hippocampal DNA damage and apoptosis shortly after mice were exposed to whole-brain irradiation (WBI). For the late-delayed effect of WBI, RPRM knockout obviously ameliorated a radiation-induced decline in neurocognitive function and dramatically diminished WBI-induced neurogenesis inhibition. Moreover, RPRM KO mice exhibited a significantly lower level of acute and chronic inflammation response and microglial activation than wild-type (WT) mice post-WBI. Finally, we uncovered that RPRM knockout not only protected microglia against radiation-induced damage, thus preventing microglial activation, but also protected neurons and decreased the induction of CCL2 in neurons after irradiation, in turn attenuating the activation of microglial cells nearby through paracrine CCL2. Taken together, our results indicate that RPRM plays a crucial role in the occurrence of RIBI, suggesting that RPRM may serve as a novel potential target for the prevention and treatment of RIBI.


Asunto(s)
Lesiones Encefálicas , Traumatismos por Radiación , Animales , Humanos , Ratones , Apoptosis , Encéfalo/patología , Lesiones Encefálicas/genética , Lesiones Encefálicas/prevención & control , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Glicoproteínas/antagonistas & inhibidores , Glicoproteínas/metabolismo , Inflamación/patología , Microglía , Traumatismos por Radiación/genética , Traumatismos por Radiación/prevención & control , Traumatismos por Radiación/patología
19.
Radiat Res ; 200(6): 556-568, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37874034

RESUMEN

Ionizing radiation in space, radiation devices or nuclear disasters are major threats to human health and public security. Expanding countermeasures for dealing with accidental or occupational radiation exposure is crucial for the protection of radiation injuries. Circulating microRNAs (miRNAs) have emerged as promising radiation biomarkers in recent years. However, the origin, distribution and functions of radiosensitive circulating miRNAs remain unclear, which obstructs their clinical applications in the future. In this study, we found that mmu-miR-342-3p (miR-342) in mouse serum presents a stable and significant decrease after X-ray total-body irradiation (TBI). Focusing on this miRNA, we investigated the influences of circulating miR-342 on the radiation-induced injury. Through tail vein injection of Cy5-labeled synthetic miR-342, we found the exogenous miR-342-Cy5 was mainly enriched in metabolic and immune organs. Besides, the bioinformatic analysis predicted that miR-342 might involve in immune-related processes or pathways. Further, mice were tail vein injected with synthetic miR-342 mimetics (Ago-miR-342) after irradiation to upregulate the level of miR-342 in circulating blood. The results showed that the upregulation of circulating miR-342 alleviated the radiation-induced depletion of CD3+CD4+ T lymphocytes and influenced the levels of IL-2 and IL-6 in irradiated mice. Moreover, the injection of Ago-miR-342 improved the survival rates of mice with acute radiation injury. Our findings demonstrate that upregulation of circulating miR-342 alleviates the radiation-induced immune system injury, which provides us new insights into the functions of circulating miRNAs and the prospect as the targets for mitigation of radiation injuries.


Asunto(s)
MicroARN Circulante , MicroARNs , Traumatismos por Radiación , Animales , Ratones , Biomarcadores , MicroARN Circulante/genética , MicroARN Circulante/metabolismo , Sistema Inmunológico/efectos de la radiación , MicroARNs/genética , Traumatismos por Radiación/genética
20.
Asian Pac J Cancer Prev ; 24(9): 3049-3057, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37774056

RESUMEN

BACKGROUND: The genetic polymorphisms in DNA repair genes and their correlation with normal tissue toxicity in response to radiation therapy has not been consistently proven in many of the studies done in head and neck cancers (HNC). This study was intended to investigate the association of most common single nucleotide polymorphisms of DNA repair genes with acute radiation induced toxicities such as skin reactions and oral mucositis in normal tissue from HNC patients receiving radiotherapy from South-Western Maharashtra. METHODS: Two hundred HNC patients receiving radiotherapy were enrolled in this study and the radiation injuries in the form of skin reactions and oral mucositis were recorded. Three single nucleotide polymorphisms (SNPs) rs1799782, rs25489) rs25487 of XRCC1 gene, rs3218536in XRCC2 gene and rs861539 SNP of XRCC3 gene were studied by PCR-RFLP and direct DNA sequencing.  Results: The univariate analysis of SNPs of XRCC1, XRCC2 and XRCC3, the obtained results verified that XRCC1 polymorphism at 194Trp of exon 6 (OR=0.69, 95% CI: 0.28-1.71; p=0.433), codon 280 at exon 9 ((OR=1.05, 95% CI: 0.42-2.63; p=0.911) and codon 399 of at exon 10(OR=1.06, 95% CI: 0.52-2.15; p=0.867) and XRCC2 polymorphism at codon 188 at exon 3 (OR=1.07, 95% CI: 0.46-2.47; p=0.866) and 241Met variant genotype of XRCC3 (OR=2.63 95% CI: 0.42-16.30; p=0.298) showed no association with degree of radiotherapy associated dermatitis or mucositis in HNC patients. CONCLUSION: The findings from this study postulated that none of rs1799782, rs25489, rs25487 SNPs of XRCC1, rs3218536 SNP of XRCC2 nor rs861539 SNP of XRCC3 were associated with increased toxicity of radiotherapy in HNC patients of south-western Maharashtra. 
.


Asunto(s)
Neoplasias de Cabeza y Cuello , Traumatismos por Radiación , Estomatitis , Humanos , Polimorfismo de Nucleótido Simple/genética , Predisposición Genética a la Enfermedad , Reparación del ADN/genética , India , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/radioterapia , Genotipo , Traumatismos por Radiación/etiología , Traumatismos por Radiación/genética , Estudios de Casos y Controles , Proteínas de Unión al ADN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...