Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 768
Filtrar
1.
Biomed Pharmacother ; 177: 116978, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906028

RESUMEN

Radiation-induced brain injury (RIBI) is a significant challenge in radiotherapy for head and neck tumors, impacting patients' quality of life. In exploring potential treatments, this study focuses on memantine hydrochloride and hydrogen-rich water, hypothesized to mitigate RIBI through inhibiting the NLRP3/NLRC4/Caspase-1 pathway. In a controlled study involving 40 Sprague-Dawley rats, divided into five groups including a control and various treatment groups, we assessed the effects of these treatments on RIBI. Post-irradiation, all irradiated groups displayed symptoms like weight loss and salivation, with notable variations among different treatment approaches. Particularly, hydrogen-rich water showed a promising reduction in these symptoms. Histopathological analysis indicated substantial hippocampal damage in the radiation-only group, while the groups receiving memantine and/or hydrogen-rich water exhibited significant mitigation of such damage. Molecular studies, revealed a decrease in oxidative stress markers and an attenuated inflammatory response in the treatment groups. Immunohistochemistry further confirmed these molecular changes, suggesting the effectiveness of these agents. Echoing recent scientific inquiries into the protective roles of specific compounds against radiation-induced damages, our study adds to the growing body of evidence on the potential of memantine and hydrogen-rich water as novel therapeutic strategies for RIBI.


Asunto(s)
Caspasa 1 , Hidrógeno , Memantina , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Ratas Sprague-Dawley , Agua , Animales , Memantina/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Hidrógeno/farmacología , Piroptosis/efectos de los fármacos , Ratas , Caspasa 1/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Lesiones Encefálicas/etiología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/prevención & control , Lesiones Encefálicas/patología , Traumatismos por Radiación/tratamiento farmacológico , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/patología , Estrés Oxidativo/efectos de los fármacos , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/prevención & control
2.
Cardiovasc Toxicol ; 24(8): 776-788, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38916845

RESUMEN

Oxidative stress results from the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in quantities exceeding the potential activity of the body's antioxidant system and is one of the risk factors for the development of vascular dysfunction in diabetes and exposure to ionizing radiation. Being the secondary products of normal aerobic metabolism in living organisms, ROS and RNS act as signaling molecules that play an important role in the regulation of vital organism functions. Meanwhile, in high concentrations, these compounds are toxic and disrupt various metabolic pathways. The various stress factors (hyperglycemia, gamma-irradiation, etc.) trigger free oxygen and nitrogen radicals accumulation in cells that are capable to damage almost all cellular components including ion channels and transporters such as Na+/K+-ATPase, BKCa, and TRP channels. Vascular dysfunctions are governed by interaction of ROS and RNS. For example, the reaction of ROS with NO produces peroxynitrite (ONOO-), which not only oxidizes DNA, cellular proteins, and lipids, but also disrupts important signaling pathways that regulate the cation channel functions in the vascular endothelium. Further increasing in ROS levels and formation of ONOO- leads to reduced NO bioavailability and causes endothelial dysfunction. Thus, imbalance of ROS and RNS and their affect on membrane ion channels plays an important role in the pathogenesis of vascular dysfunction associated with various disorders.


Asunto(s)
Estrés Oxidativo , Especies Reactivas de Oxígeno , Humanos , Animales , Estrés Oxidativo/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/fisiopatología , Traumatismos por Radiación/etiología , Estrés Nitrosativo/efectos de la radiación , Especies de Nitrógeno Reactivo/metabolismo , Transducción de Señal , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/fisiopatología , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatología , Radiación Ionizante
3.
CNS Neurosci Ther ; 30(6): e14794, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867379

RESUMEN

BACKGROUND: Radiation-induced brain injury is a neurological condition resulting from radiotherapy for malignant tumors, with its underlying pathogenesis still not fully understood. Current hypotheses suggest that immune cells, particularly the excessive activation of microglia in the central nervous system and the migration of peripheral immune cells into the brain, play a critical role in initiating and progressing the injury. This review aimed to summarize the latest advances in the cellular and molecular mechanisms and the therapeutic potential of microglia in radiation-induced brain injury. METHODS: This article critically examines recent developments in understanding the role of microglia activation in radiation-induced brain injury. It elucidates associated mechanisms and explores novel research pathways and therapeutic options for managing this condition. RESULTS: Post-irradiation, activated microglia release numerous inflammatory factors, exacerbating neuroinflammation and facilitating the onset and progression of radiation-induced damage. Therefore, controlling microglial activation and suppressing the secretion of related inflammatory factors is crucial for preventing radiation-induced brain injury. While microglial activation is a primary factor in neuroinflammation, the precise mechanisms by which radiation prompts this activation remain elusive. Multiple signaling pathways likely contribute to microglial activation and the progression of radiation-induced brain injury. CONCLUSIONS: The intricate microenvironment and molecular mechanisms associated with radiation-induced brain injury underscore the crucial roles of immune cells in its onset and progression. By investigating the interplay among microglia, neurons, astrocytes, and peripheral immune cells, potential strategies emerge to mitigate microglial activation, reduce the release of inflammatory agents, and impede the entry of peripheral immune cells into the brain.


Asunto(s)
Lesiones Encefálicas , Microglía , Traumatismos por Radiación , Microglía/efectos de la radiación , Microglía/metabolismo , Animales , Humanos , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/terapia , Lesiones Encefálicas/etiología , Lesiones Encefálicas/metabolismo , Enfermedades Neuroinflamatorias/etiología
4.
Neuropathol Appl Neurobiol ; 50(3): e12992, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831600

RESUMEN

PURPOSE: Radiation-induced brain injury, one of the side effects of cranial radiotherapy in tumour patients, usually results in durable and serious cognitive disorders. Microglia are important innate immune-effector cells in the central nervous system. However, the interaction between microglia and neurons in radiation-induced brain injury remains uncharacterised. METHODS AND MATERIALS: We established a microglia-neuron indirect co-culture model to assess the interaction between them. Microglia exposed to radiation were examined for pyroptosis using lactate dehydrogenase (LDH) release, Annexin V/PI staining, SYTOX staining and western blot. The role of nucleotide-binding oligomerisation domain-like receptor family pyrin domain containing 3 (NLRP3) was investigated in microglia exposed to radiation and in mouse radiation brain injury model through siRNA or inhibitor. Mini-mental state examination and cytokines in blood were performed in 23 patients who had experienced cranial irradiation. RESULTS: Microglia exerted neurotoxic features after radiation in the co-culture model. NLRP3 was up-regulated in microglia exposed to radiation, and then caspase-1 was activated. Thus, the gasdermin D protein was cleaved, and it triggered pyroptosis in microglia, which released inflammatory cytokines. Meanwhile, treatment with siRNA NLRP3 in vitro and NLRP3 inhibitor in vivo attenuated the damaged neuron cell and cognitive impairment, respectively. What is more, we found that the patients after radiation with higher IL-6 were observed to have a decreased MMSE score. CONCLUSIONS: These findings indicate that radiation-induced pyroptosis in microglia may promote radiation-induced brain injury via the secretion of neurotoxic cytokines. NLRP3 was evaluated as an important mediator in radiation-induced pyroptosis and a promising therapeutic target for radiation-induced brain injury.


Asunto(s)
Lesiones Encefálicas , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Piroptosis/efectos de la radiación , Piroptosis/fisiología , Microglía/metabolismo , Microglía/efectos de la radiación , Microglía/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Ratones , Humanos , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Lesiones Encefálicas/etiología , Masculino , Neuronas/metabolismo , Neuronas/patología , Neuronas/efectos de la radiación , Técnicas de Cocultivo , Traumatismos por Radiación/patología , Traumatismos por Radiación/metabolismo , Femenino , Ratones Endogámicos C57BL , Persona de Mediana Edad
5.
Redox Biol ; 73: 103219, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38851001

RESUMEN

Radiation causes damage to normal tissues that leads to increased oxidative stress, inflammation, and fibrosis, highlighting the need for the selective radioprotection of healthy tissues without hindering radiotherapy effectiveness in cancer. This study shows that adiponectin, an adipokine secreted by adipocytes, protects normal tissues from radiation damage invitro and invivo. Specifically, adiponectin (APN) reduces chronic oxidative stress and fibrosis in irradiated mice. Importantly, APN also conferred no protection from radiation to prostate cancer cells. Adipose tissue is the primary source of circulating endogenous adiponectin. However, this study shows that adipose tissue is sensitive to radiation exposure exhibiting morphological changes and persistent oxidative damage. In addition, radiation results in a significant and chronic reduction in blood APN levels from adipose tissue in mice and human prostate cancer patients exposed to pelvic irradiation. APN levels negatively correlated with bowel toxicity and overall toxicities associated with radiotherapy in prostate cancer patients. Thus, protecting, or modulating APN signaling may improve outcomes for prostate cancer patients undergoing radiotherapy.


Asunto(s)
Adiponectina , Fibrosis , Estrés Oxidativo , Neoplasias de la Próstata , Masculino , Animales , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Humanos , Ratones , Estrés Oxidativo/efectos de la radiación , Adiponectina/metabolismo , Adiponectina/sangre , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de la radiación , Protectores contra Radiación/farmacología , Protectores contra Radiación/uso terapéutico
6.
Radiat Oncol ; 19(1): 82, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926892

RESUMEN

BACKGROUND: Radiation-induced fibrosis (RIF) is an important late complication of radiation therapy, and the resulting damaging effects of RIF can significantly impact reconstructive outcomes. There is currently a paucity of effective treatment options available, likely due to the continuing knowledge gap surrounding the cellular mechanisms involved. In this study, detailed analyses of irradiated and non-irradiated human skin samples were performed incorporating histological and single-cell transcriptional analysis to identify novel features guiding development of skin fibrosis following radiation injury. METHODS: Paired irradiated and contralateral non-irradiated skin samples were obtained from six female patients undergoing post-oncologic breast reconstruction. Skin samples underwent histological evaluation, immunohistochemistry, and biomechanical testing. Single-cell RNA sequencing was performed using the 10X single cell platform. Cells were separated into clusters using Seurat in R. The SingleR classifier was applied to ascribe cell type identities to each cluster. Differentially expressed genes characteristic to each cluster were then determined using non-parametric testing. RESULTS: Comparing irradiated and non-irradiated skin, epidermal atrophy, dermal thickening, and evidence of thick, disorganized collagen deposition within the extracellular matrix of irradiated skin were readily appreciated on histology. These histologic features were associated with stiffness that was higher in irradiated skin. Single-cell RNA sequencing revealed six predominant cell types. Focusing on fibroblasts/stromal lineage cells, five distinct transcriptional clusters (Clusters 0-4) were identified. Interestingly, while all clusters were noted to express Cav1, Cluster 2 was the only one to also express Cav2. Immunohistochemistry demonstrated increased expression of Cav2 in irradiated skin, whereas Cav1 was more readily identified in non-irradiated skin, suggesting Cav1 and Cav2 may act antagonistically to modulate fibrotic cellular responses. CONCLUSION: In response to radiation therapy, specific changes to fibroblast subpopulations and enhanced Cav2 expression may contribute to fibrosis. Altogether, this study introduces a novel pathway of caveolin involvement which may contribute to fibrotic development following radiation injury.


Asunto(s)
Caveolina 1 , Fibroblastos , Análisis de la Célula Individual , Piel , Humanos , Femenino , Fibroblastos/efectos de la radiación , Fibroblastos/metabolismo , Caveolina 1/metabolismo , Caveolina 1/genética , Caveolina 1/biosíntesis , Piel/efectos de la radiación , Piel/patología , Piel/metabolismo , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/patología , Caveolina 2/metabolismo , Caveolina 2/genética , Traumatismos por Radiación/patología , Traumatismos por Radiación/metabolismo , Fibrosis , Persona de Mediana Edad
7.
Gut Microbes ; 16(1): 2347722, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706205

RESUMEN

The intestine is prone to radiation damage in patients undergoing radiotherapy for pelvic tumors. However, there are currently no effective drugs available for the prevention or treatment of radiation-induced enteropathy (RIE). In this study, we aimed at investigating the impact of indole-3-carboxaldehyde (I3A) derived from the intestinal microbiota on RIE. Intestinal organoids were isolated and cultivated for screening radioprotective tryptophan metabolites. A RIE model was established using 13 Gy whole-abdominal irradiation in male C57BL/6J mice. After oral administration of I3A, its radioprotective ability was assessed through the observation of survival rates, clinical scores, and pathological analysis. Intestinal stem cell survival and changes in the intestinal barrier were observed through immunofluorescence and immunohistochemistry. Subsequently, the radioprotective mechanisms of I3A was investigated through 16S rRNA and transcriptome sequencing, respectively. Finally, human colon cancer cells and organoids were cultured to assess the influence of I3A on tumor radiotherapy. I3A exhibited the most potent radioprotective effect on intestinal organoids. Oral administration of I3A treatment significantly increased the survival rate in irradiated mice, improved clinical and histological scores, mitigated mucosal damage, enhanced the proliferation and differentiation of Lgr5+ intestinal stem cells, and maintained intestinal barrier integrity. Furthermore, I3A enhanced the abundance of probiotics, and activated the AhR/IL-10/Wnt signaling pathway to promote intestinal epithelial proliferation. As a crucial tryptophan metabolite, I3A promotes intestinal epithelial cell proliferation through the AhR/IL-10/Wnt signaling pathway and upregulates the abundance of probiotics to treat RIE. Microbiota-derived I3A demonstrates potential clinical application value for the treatment of RIE.


Asunto(s)
Microbioma Gastrointestinal , Indoles , Ratones Endogámicos C57BL , Probióticos , Receptores de Hidrocarburo de Aril , Vía de Señalización Wnt , Animales , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Humanos , Probióticos/administración & dosificación , Probióticos/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Indoles/metabolismo , Indoles/farmacología , Protectores contra Radiación/farmacología , Organoides/metabolismo , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/prevención & control , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/efectos de la radiación , Intestinos/microbiología , Intestinos/efectos de la radiación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
8.
Adv Sci (Weinh) ; 11(28): e2306217, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38742466

RESUMEN

Radiation proctopathy (RP) is a common complication of radiotherapy for pelvic malignancies with high incidence. RP accompanies by microbial dysbiosis. However, how the gut microbiota affects the disease remains unclear. Here, metabolomics reveals that the fecal and serous concentrations of microbiota-derived 3-hydroxybutyrate (3HB) are significantly reduced in RP mice and radiotherapeutic patients. Moreover, the concentration of 3HB is negatively associated with the expression of proinflammatory IL6 that is increased along with the severity of radiation damage. 3HB treatment significantly downregulates IL6 expression and alleviates IL6-mediated radiation damage. Irradiated cell-fecal microbiota co-culture experiments and in vivo assays show that such a radioprotection of 3HB is mediated by GPR43. Microbiome analysis reveals that radiation leads to a distinct bacterial community compared to untreated controls, in which Akkermansia muciniphila is significantly reduced in RP mice and radiotherapeutic patients and is associated with lower 3HB concentration. Gavage of A. muciniphila significantly increases 3HB concentration, downregulates GPR43 and IL6 expression, and ameliorates radiation damage. Collectively, these results demonstrate that the gut microbiota, including A. muciniphila, induce higher concentrations of 3HB to block GPR43-mediated IL6 signaling, thereby conferring radioprotection. The findings reveal a novel implication of the gut-immune axis in radiation pathophysiology, with potential therapeutic applications.


Asunto(s)
Ácido 3-Hidroxibutírico , Microbioma Gastrointestinal , Interleucina-6 , Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Ratones , Interleucina-6/metabolismo , Interleucina-6/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Humanos , Traumatismos por Radiación/metabolismo , Modelos Animales de Enfermedad , Proctitis/metabolismo , Ratones Endogámicos C57BL , Masculino , Akkermansia/metabolismo
9.
Cell Commun Signal ; 22(1): 292, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802843

RESUMEN

BACKGROUND: Hematopoietic stem cell (HSC) regeneration underlies hematopoietic recovery from myelosuppression, which is a life-threatening side effect of cytotoxicity. HSC niche is profoundly disrupted after myelosuppressive injury, while if and how the niche is reshaped and regulates HSC regeneration are poorly understood. METHODS: A mouse model of radiation injury-induced myelosuppression was built by exposing mice to a sublethal dose of ionizing radiation. The dynamic changes in the number, distribution and functionality of HSCs and megakaryocytes were determined by flow cytometry, immunofluorescence, colony assay and bone marrow transplantation, in combination with transcriptomic analysis. The communication between HSCs and megakaryocytes was determined using a coculture system and adoptive transfer. The signaling mechanism was investigated both in vivo and in vitro, and was consolidated using megakaryocyte-specific knockout mice and transgenic mice. RESULTS: Megakaryocytes become a predominant component of HSC niche and localize closer to HSCs after radiation injury. Meanwhile, transient insulin-like growth factor 1 (IGF1) hypersecretion is predominantly provoked in megakaryocytes after radiation injury, whereas HSCs regenerate paralleling megakaryocytic IGF1 hypersecretion. Mechanistically, HSCs are particularly susceptible to megakaryocytic IGF1 hypersecretion, and mTOR downstream of IGF1 signaling not only promotes activation including proliferation and mitochondrial oxidative metabolism of HSCs, but also inhibits ferritinophagy to restrict HSC ferroptosis. Consequently, the delicate coordination between proliferation, mitochondrial oxidative metabolism and ferroptosis ensures functional HSC expansion after radiation injury. Importantly, punctual IGF1 administration simultaneously promotes HSC regeneration and hematopoietic recovery after radiation injury, representing a superior therapeutic approach for myelosuppression. CONCLUSIONS: Our study identifies megakaryocytes as a last line of defense against myelosuppressive injury and megakaryocytic IGF1 as a novel niche signal safeguarding HSC regeneration.


Asunto(s)
Ferroptosis , Células Madre Hematopoyéticas , Factor I del Crecimiento Similar a la Insulina , Megacariocitos , Regeneración , Animales , Células Madre Hematopoyéticas/metabolismo , Megacariocitos/metabolismo , Megacariocitos/efectos de la radiación , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Ferroptosis/genética , Ratones , Ratones Endogámicos C57BL , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/patología , Traumatismos por Radiación/genética , Transducción de Señal/efectos de la radiación
10.
Nat Commun ; 15(1): 3018, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589357

RESUMEN

Ionizing radiation induces cell death in the gastrointestinal (GI) epithelium by activating p53. However, p53 also prevents animal lethality caused by radiation-induced acute GI syndrome. Through single-cell RNA-sequencing of the irradiated mouse small intestine, we find that p53 target genes are specifically enriched in regenerating epithelial cells that undergo fetal-like reversion, including revival stem cells (revSCs) that promote animal survival after severe damage of the GI tract. Accordingly, in mice with p53 deleted specifically in the GI epithelium, ionizing radiation fails to induce fetal-like revSCs. Using intestinal organoids, we show that transient p53 expression is required for the induction of revival stem cells and is controlled by an Mdm2-mediated negative feedback loop. Together, our findings reveal that p53 suppresses severe radiation-induced GI injury by promoting fetal-like reprogramming of irradiated intestinal epithelial cells.


Asunto(s)
Traumatismos por Radiación , Proteína p53 Supresora de Tumor , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Intestinos , Tracto Gastrointestinal/metabolismo , Traumatismos por Radiación/genética , Traumatismos por Radiación/metabolismo , Células Madre/metabolismo , Apoptosis/genética
11.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473879

RESUMEN

Pelvic cancer survivors who were treated with radiation therapy are at risk for developing (hemorrhagic) radiation cystitis (RC) many years after completion of radiation therapy. Patients with RC suffer from lower urinary tract symptoms, including frequency, nocturia, pelvic pain, and incontinence. In advanced stages, hematuria can occur, potentially escalating to life-threatening levels. Current therapeutic options for RC are limited, partly due to ethical concerns regarding bladder biopsy in patients with fragile bladder tissue. This study aimed to leverage our established preclinical model to elucidate the molecular pathways implicated in radiation-induced tissue changes in the bladder. Female C57Bl/6 mice received a single dose of 40 Gy using CT-guided imaging and a two-beam irradiation approach using the SARRP irradiator. Bladders from irradiated and age-matched littermate controls were harvested at 1 week [n = 5/group] or 6 months [n = 5/group] after irradiation, RNA was harvested, and mRNA sequencing was performed at paired-end 150bp on the Illumina NovaSeq6000 with a target of 30 million reads per sample. Following RNA sequencing, thorough bioinformatics analysis was performed using iPathwayGuide v2012 (ADVAITA Bioinformatics). Findings of the RNA sequencing were validated using qPCR analysis. At 1 week post-irradiation, altered gene expression was detected in genes involved in DNA damage response, apoptosis, and transcriptional regulation. By 6 months post-irradiation, significant changes in gene expression were observed in inflammation, collagen catabolism, and vascular health. Affected pathways included the p53, JAK-STAT, and PI3K-Akt pathways. These findings were validated in vivo in bladder tissues from our preclinical model. This is the first study to determine the molecular changes in the bladder in response to radiation treatment. We have successfully pinpointed several pathways and specific genes that undergo modification, thereby contributing to the progression of radiation cystitis. These insights enhance our understanding of the pathophysiology of radiation cystitis and may ultimately pave the way to the identification of potential new therapeutic targets.


Asunto(s)
Cistitis , Traumatismos por Radiación , Ratones , Animales , Humanos , Femenino , Recién Nacido , Fosfatidilinositol 3-Quinasas/metabolismo , Cistitis/patología , Vejiga Urinaria/patología , Traumatismos por Radiación/metabolismo , Análisis de Secuencia de ARN
12.
Radiat Res ; 201(6): 572-585, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555945

RESUMEN

Radiation enteritis is a common complication of abdominal and pelvic radiotherapy. Several previous studies showed that fecal microbiota transplantation (FMT) could alleviate radiation enteritis. In this study, we investigated the efficacy of FMT in alleviating radiation enteritis and explored the mechanisms by multi-omics approaches. Briefly, C57BL/6J mice were subjected to 9 Gy irradiation to the localized abdominal field, and randomized received FMT from healthy donor mice or saline. H&E staining of harvested small intestine showed FMT decreased epithelial injury. Radiation-induced microbiota dysbiosis, characterized by a decrease in beneficial bacteria Lactobacillaceae and Lachnospiraceae, while these bacteria were restored by FMT. Fecal metabolomics analysis revealed that FMT modulated metabolic dysregulation. Two tryptophan pathway metabolites, indole-3-acetaldehyde and N-Acetyl-5-hydroxytryptamine were decreased after irradiation, whereas these metabolites showed a pronounced recovery in mice receiving FMT. Proteomics analysis of small intestine indicated that radiation enteritis triggered immune-inflammatory responses, which were potentially mitigated by FMT. In 21 patients receiving pelvic radiotherapy for cervical cancer, those who developed enteritis (n = 15) had higher abundance in Lachnospiraceae. Moreover, Indole-3-acetaldehyde was reduced after irradiation. These findings provide insights into the therapeutic effects of FMT in radiation enteritis and highlight Lachnospiraceae and the tryptophan metabolite, Indole-3-acetaldehyde may protect against radiation enteritis.


Asunto(s)
Enteritis , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Triptófano , Animales , Triptófano/metabolismo , Enteritis/terapia , Enteritis/metabolismo , Enteritis/microbiología , Enteritis/etiología , Microbioma Gastrointestinal/efectos de la radiación , Ratones , Femenino , Humanos , Traumatismos por Radiación/terapia , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/microbiología , Masculino
13.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474123

RESUMEN

Radiotherapy-induced cardiac toxicity and consequent diseases still represent potential severe late complications for many cancer survivors who undergo therapeutic thoracic irradiation. We aimed to assess the phenotypic and paracrine features of resident cardiac mesenchymal stromal cells (CMSCs) at early follow-up after the end of thoracic irradiation of the heart as an early sign and/or mechanism of cardiac toxicity anticipating late organ dysfunction. Resident CMSCs were isolated from a rat model of fractionated thoracic irradiation with accurate and clinically relevant heart dosimetry that developed delayed dose-dependent cardiac dysfunction after 1 year. Cells were isolated 6 and 12 weeks after the end of radiotherapy and fully characterized at the transcriptional, paracrine, and functional levels. CMSCs displayed several altered features in a dose- and time-dependent trend, with the most impaired characteristics observed in those exposed in situ to the highest radiation dose with time. In particular, altered features included impaired cell migration and 3D growth and a and significant association of transcriptomic data with GO terms related to altered cytokine and growth factor signaling. Indeed, the altered paracrine profile of CMSCs derived from the group at the highest dose at the 12-week follow-up gave significantly reduced angiogenic support to endothelial cells and polarized macrophages toward a pro-inflammatory profile. Data collected in a clinically relevant rat model of heart irradiation simulating thoracic radiotherapy suggest that early paracrine and transcriptional alterations of the cardiac stroma may represent a dose- and time-dependent biological substrate for the delayed cardiac dysfunction phenotype observed in vivo.


Asunto(s)
Cardiopatías , Células Madre Mesenquimatosas , Traumatismos por Radiación , Ratas , Humanos , Animales , Cardiotoxicidad/metabolismo , Células Endoteliales/metabolismo , Células Madre Mesenquimatosas/metabolismo , Fenotipo , Cardiopatías/metabolismo , Traumatismos por Radiación/metabolismo
14.
Am J Pathol ; 194(6): 975-988, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38423356

RESUMEN

Radiation-induced enteritis, a significant concern in abdominal radiation therapy, is associated closely with gut microbiota dysbiosis. The mucus layer plays a pivotal role in preventing the translocation of commensal and pathogenic microbes. Although significant expression of REGγ in intestinal epithelial cells is well established, its role in modulating the mucus layer and gut microbiota remains unknown. The current study revealed notable changes in gut microorganisms and metabolites in irradiated mice lacking REGγ, as compared to wild-type mice. Concomitant with gut microbiota dysbiosis, REGγ deficiency facilitated the infiltration of neutrophils and macrophages, thereby exacerbating intestinal inflammation after irradiation. Furthermore, fluorescence in situ hybridization assays unveiled an augmented proximity of bacteria to intestinal epithelial cells in REGγ knockout mice after irradiation. Mechanistically, deficiency of REGγ led to diminished goblet cell populations and reduced expression of key goblet cell markers, Muc2 and Tff3, observed in both murine models, minigut organoid systems and human intestinal goblet cells, indicating the intrinsic role of REGγ within goblet cells. Interestingly, although administration of broad-spectrum antibiotics did not alter the goblet cell numbers or mucin 2 (MUC2) secretion, it effectively attenuated inflammation levels in the ileum of irradiated REGγ absent mice, bringing them down to the wild-type levels. Collectively, these findings highlight the contribution of REGγ in counteracting radiation-triggered microbial imbalances and cell-autonomous regulation of mucin secretion.


Asunto(s)
Enteritis , Microbioma Gastrointestinal , Células Caliciformes , Homeostasis , Ratones Noqueados , Mucina 2 , Complejo de la Endopetidasa Proteasomal , Animales , Humanos , Ratones , Disbiosis/microbiología , Disbiosis/metabolismo , Enteritis/microbiología , Enteritis/metabolismo , Enteritis/patología , Células Caliciformes/patología , Células Caliciformes/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Ratones Endogámicos C57BL , Mucina 2/metabolismo , Proteínas Asociadas a Pancreatitis/metabolismo , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/microbiología , Traumatismos por Radiación/patología , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/microbiología , Factor Trefoil-3/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de la radiación , Autoantígenos/genética , Autoantígenos/metabolismo , Autoantígenos/efectos de la radiación
15.
Curr Pharm Des ; 30(9): 683-701, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38415445

RESUMEN

BACKGROUND: Recent studies have shown that XihuangWan (XHW) is a kind of Chinese medicine with significant anti-tumor and anti-inflammatory activities. However, its mechanism for preventing and treating radiation proctitis in rectal cancer patients during radiotherapy remains unclear. METHODS: This study employed the network pharmacology to establish a "drug-active ingredient-target genedisease" network via using TCMSP, SymMap, GeneCard, and OMIM databases. The PPI network was conducted by the String tool. The core targets of XHW in the treatment of rectal cancer and radiation enteritis were identified by topological analysis, and the functional annotation analysis and pathway enrichment analysis were performed. RESULTS: A total of 61 active ingredients of XHW ingredients, 4607 rectal cancer-related genes, 5803 radiation enteritis-related genes, and 68 common targets of XHW in the treatment of rectal cancer and radiation enteritis were obtained. PTGS1 and NR3C2, as identified potential targets, were significantly associated with OS of colorectal cancer patients. GO and KEGG enrichment analysis showed that bioinformatics annotation of these common genes was mainly involved in DNA-binding transcription factor, PI3K/Akt, TNF, HIF-1 signaling pathway, and colorectal cancer pathway. CONCLUSION: The active ingredients of XHW, mainly including Quercetin, Ellagic acid, and Stigmasterol, might act on common targets of rectal cancer and radiation enteritis, such as PTGS1, NR3C2, IL-6, EGFR, HIF-1A, CASP3, BCL2, ESR1, MYC, and PPARG, and regulate multiple signaling pathways like PI3K-Akt, TNF, and HIF-1 to inhibit tumor proliferation, tumor angiogenesis, inflammatory responses, and oxidative stress, thereby achieving prevention and treatment of radiation enteritis in rectal cancer patients during radiotherapy. It provided an important reference for further elucidating the anti-inflammation and anti-tumor mechanism and clinical application of XHW.


Asunto(s)
Medicamentos Herbarios Chinos , Enteritis , Farmacología en Red , Neoplasias del Recto , Humanos , Neoplasias del Recto/radioterapia , Neoplasias del Recto/tratamiento farmacológico , Neoplasias del Recto/patología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Enteritis/tratamiento farmacológico , Enteritis/metabolismo , Traumatismos por Radiación/tratamiento farmacológico , Traumatismos por Radiación/metabolismo
16.
Life Sci ; 341: 122486, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331314

RESUMEN

PURPOSE: Damage to the hematopoietic system and functional inhibition are severe consequences of radiation exposure. In this study, we have investigated the effect of empagliflozin on radiation-induced hematopoietic damage, with the aim of providing new preventive approach to such injuries. METHODS AND MATERIALS: Mice were given 4 Gy total body irradiation (TBI) 1 h after the oral administration of empagliflozin, followed by the continuous administration of the same dose of empagliflozin for 6d, and then sacrificed on the 10th day after irradiation. The reactive oxygen species (ROS) levels in hematopoietic cells and their regulatory mechanisms were also been investigated. Colony forming unit granulocyte macrophage assay and bone marrow transplantation assays were performed to detect the function of the bone marrow cells. KEY FINDINGS: Empagliflozin increased the cell viability, reduced ROS levels, and attenuated apoptosis in vitro after the bone marrow cells were exposed to 1 Gy radiation. Empagliflozin significantly attenuated ionizing radiation injuries to the hematopoietic system, increased the peripheral blood cell count, and enhanced the proportion and function of hematopoietic stem cells in mice exposed to 4 Gy TBI. These effects may be related to the NOX-4/ROS/p38 pathway-mediated suppression of MAPK in hematopoietic stem cells. Empagliflozin also influenced the expression of Nrf-2 and increased glutathione peroxidase activity, thereby promoting the clearance of reactive oxygen species. Furthermore, empagliflozin mitigated metabolic abnormalities by inhibiting the mammalian target of rapamycin. SIGNIFICANCE: Our study has demonstrated that empagliflozin can reduce radiation-induced injury in hematopoietic stem cells. This finding suggests that empagliflozin is a promising novel agent for preventing radiation-induced damage to the hematopoietic system.


Asunto(s)
Glucósidos , Células Madre Hematopoyéticas , Traumatismos por Radiación , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Ensayo de Unidades Formadoras de Colonias , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/metabolismo , Traumatismos por Radiación/metabolismo , Irradiación Corporal Total , Ratones Endogámicos C57BL , Mamíferos/metabolismo
17.
Nat Commun ; 15(1): 137, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167344

RESUMEN

Radiation-induced gastrointestinal syndrome is a major complication and limiting factor for radiotherapy. Tumor suppressor p53 has a protective role in radiation-induced gastrointestinal toxicity. However, its underlying mechanism remains unclear. Here we report that regulating the IL12-p40/MHC class II signaling pathway is a critical mechanism by which p53 protects against radiation-induced gastrointestinal syndrome. p53 inhibits the expression of inflammatory cytokine IL12-p40, which in turn suppresses the expression of MHC class II on intestinal epithelial cells to suppress T cell activation and inflammation post-irradiation that causes intestinal stem cell damage. Anti-IL12-p40 neutralizing antibody inhibits inflammation and rescues the defects in intestinal epithelial regeneration post-irradiation in p53-deficient mice and prolongs mouse survival. These results uncover that the IL12-p40/MHC class II signaling mediates the essential role of p53 in ensuring intestinal stem cell function and proper immune reaction in response to radiation to protect mucosal epithelium, and suggest a potential therapeutic strategy to protect against radiation-induced gastrointestinal syndrome.


Asunto(s)
Traumatismos por Radiación , Proteína p53 Supresora de Tumor , Animales , Ratones , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/efectos de la radiación , Mucosa Intestinal/metabolismo , Traumatismos por Radiación/metabolismo , Inflamación/metabolismo , Interleucina-12/metabolismo
18.
Int J Radiat Oncol Biol Phys ; 118(5): 1228-1239, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38072325

RESUMEN

PURPOSE: Radiation-induced lung injury (RILI) is a progressive inflammatory process seen after irradiation for lung cancer. The disease can be insidious, often characterized by acute pneumonitis followed by chronic fibrosis with significant associated morbidity. No therapies are approved for RILI, and accurate disease quantification is a major barrier to improved management. Here, we sought to noninvasively quantify RILI using a molecular imaging probe that specifically targets type 1 collagen in mouse models and patients with confirmed RILI. METHODS AND MATERIALS: Using a murine model of lung radiation, mice were imaged with EP-3533, a type 1 collagen probe, to characterize the development of RILI and to assess disease mitigation after losartan treatment. The human analog probe 68Ga-CBP8, targeting type 1 collagen, was tested on excised human lung tissue containing RILI and was quantified via autoradiography. 68Ga-CBP8 positron emission tomography was used to assess RILI in vivo in 6 human subjects. RESULTS: Murine models demonstrated that probe signal correlated with progressive RILI severity over 6 months. The probe was sensitive to mitigation of RILI by losartan. Excised human lung tissue with RILI had increased binding versus unirradiated control tissue, and 68Ga-CBP8 uptake correlated with collagen proportional area. Human imaging revealed significant 68Ga-CBP8 uptake in areas of RILI and minimal background uptake. CONCLUSIONS: These findings support the ability of a molecular imaging probe targeted at type 1 collagen to detect RILI in preclinical models and human disease, suggesting a role for targeted molecular imaging of collagen in the assessment of RILI.


Asunto(s)
Lesión Pulmonar , Traumatismos por Radiación , Humanos , Animales , Ratones , Lesión Pulmonar/diagnóstico por imagen , Lesión Pulmonar/etiología , Lesión Pulmonar/metabolismo , Colágeno Tipo I/metabolismo , Radioisótopos de Galio/metabolismo , Losartán/metabolismo , Pulmón/efectos de la radiación , Traumatismos por Radiación/metabolismo , Colágeno , Imagen Molecular
19.
Radiat Res ; 201(2): 160-173, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38124379

RESUMEN

The effect of ionizing radiation on the gastrointestinal tract is a common complication of abdominal and pelvic radiotherapy. However, the pathological features of radiation enteropathy and its effective medical intervention regimen is still a global challenge. Here, we explored the role and mechanism of enteric alpha-defensins (EαDs) in protecting against radiation enteropathy. To address this, we utilized EαDs-deficiency mice, in which the matrix metallopeptidase 7 to activate Paneth cell α-defensins was knockout (KO) mice, and the complementary wild-type (WT) control mice for this study. Remarkably, the KO mice were more susceptible to 5.0 Gy total-body irradiation, resulting in worse clinic scores and lower survival rate, compared with the wild-type mice. Histological examination indicated that the KO mice were subjected to slow recovery of intestinal villus and mucosa function, characterized by the reduced expression of TFF3, Glut1 and Muc2. In addition, compared with the wild-type controls, the KO mice experienced serious inflammation response in intestinal tissue, indicated by the remarkably increased expression level of IL-1ß, IL-6 and IL-12. Using high-throughput sequencing analysis, we found that the intestinal bacterial community of the KO mice was more prone to dysbiosis than that of the WT mice, with significantly increased abundance of opportunistic pathogenic bacteria, such as Streptococcus sp. and Escherichia-Shigella sp., whereas remarkably decreased probiotics harboring Lactobacillus sp., Desulfovibrio sp. etc. Fecal metabolomics analysis indicated that the relative abundance of 31 metabolites arose significantly different between WT and KO mice on day 10 after radiation exposure. A subset of differential metabolites to regulate host metabolism and immunity, such as acetic acid, acetate, butanoic acid, was negatively correlated with the alteration of gut microbiota in the irradiated KO mice. This study provides new insight into EαDs contribution to the recovery of radiation-induced intestinal damage, and suggests a potential novel target to prevent the adverse effects of radiotherapy.


Asunto(s)
Microbioma Gastrointestinal , Traumatismos por Radiación , alfa-Defensinas , Ratones , Animales , alfa-Defensinas/genética , alfa-Defensinas/metabolismo , Microbioma Gastrointestinal/efectos de la radiación , Intestinos , Mucosa Intestinal/metabolismo , Heces/microbiología , Traumatismos por Radiación/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL
20.
Commun Biol ; 6(1): 1248, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071238

RESUMEN

Intestine is a highly radiation-sensitive organ that could be injured during the radiotherapy for pelvic, abdominal, and retroperitoneal tumors. However, the dynamic change of the intestinal microenvironment related to radiation-induced intestine injury (RIII) is still unclear. Using single-cell RNA sequencing, we pictured a dynamic landscape of the intestinal microenvironment during RIII and regeneration. We showed that the various cell types of intestine exhibited heterogeneous radiosensitivities. We revealed the distinct dynamic patterns of three subtypes of intestinal stem cells (ISCs), and the cellular trajectory analysis suggested a complex interconversion pattern among them. For the immune cells, we found that Ly6c+ monocytes can give rise to both pro-inflammatory macrophages and resident macrophages after RIII. Through cellular communication analysis, we identified a positive feedback loop between the macrophages and endothelial cells, which could amplify the inflammatory response induced by radiation. Besides, we identified different T cell subtypes and revealed their role in immunomodulation during the early stage of RIII through inflammation and defense response relevant signaling pathways. Overall, our study provides a valuable single-cell map of the multicellular dynamics during RIII and regeneration, which may facilitate the understanding of the mechanism of RIII.


Asunto(s)
Enfermedades Intestinales , Traumatismos por Radiación , Humanos , Células Endoteliales/patología , Intestinos/patología , Traumatismos por Radiación/metabolismo , Células Madre/metabolismo , Microambiente Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...