Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.381
Filtrar
1.
Front Immunol ; 15: 1392569, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983863

RESUMEN

Introduction: Parasite-mediated selection is considered one of the potential mechanisms contributing to the coexistence of asexual-sexual complexes. Gibel carp (Carassius gibelio), an invasive fish species in Europe, often forms populations composed of gynogenetic and sexual specimens. Methods: The experimental infection was induced in gynogenetic and sexual gibel carp using eye-fluke Diplostomum pseudospathaceum (Trematoda), and the transcriptome profile of the spleen as a major immune organ in fish was analyzed to reveal the differentially expressed immunity-associated genes related to D. pseudospathaceum infection differing between gynogenetic and sexual gibel carp. Results: High parasite infection was found in gynogenetic fish when compared to genetically diverse sexuals. Although metacercariae of D. pseudospathaceum are situated in an immune-privileged organ, our results show that eye trematodes may induce a host immune response. We found differential gene expression induced by eye-fluke infection, with various impacts on gynogenetic and sexual hosts, documenting for the majority of DEGs upregulation in sexuals, and downregulation in asexuals. Differences in gene regulation between gynogenetic and sexual gibel carp were evidenced in many immunity-associated genes. GO analyses revealed the importance of genes assigned to the GO terms: immune function, the Notch signaling pathway, MAP kinase tyrosine/threonine/phosphatase activity, and chemokine receptor activity. KEGG analyses revealed the importance of the genes involved in 12 immunity-associated pathways - specifically, FoxO signaling, adipocytokine signaling, TGF-beta signaling, apoptosis, Notch signaling, C-type lectin receptor signaling, efferocytosis, intestinal immune network for IgA production, insulin signaling, virion - human immunodeficiency virus, Toll-like receptor signaling, and phosphatidylinositol signaling system. Discussion: Our study indicates the limited potential of asexual fish to cope with higher parasite infection (likely a loss of capacity to induce an effective immune response) and highlights the important role of molecular mechanisms associated with immunity for the coexistence of gynogenetic and sexual gibel carp, potentially contributing to its invasiveness.


Asunto(s)
Enfermedades de los Peces , Especies Introducidas , Trematodos , Infecciones por Trematodos , Animales , Trematodos/fisiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/parasitología , Infecciones por Trematodos/veterinaria , Infecciones por Trematodos/inmunología , Infecciones por Trematodos/parasitología , Transcriptoma , Interacciones Huésped-Parásitos/inmunología , Regulación de la Expresión Génica , Carpas/parasitología , Carpas/inmunología , Carpas/genética , Femenino , Perfilación de la Expresión Génica , Reproducción/inmunología
2.
Adv Exp Med Biol ; 1454: 391-440, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008272

RESUMEN

The trematodes are a species-rich group of parasites, with some estimates suggesting that there are more than 24,000 species. However, the complexities associated with their taxonomic status and nomenclature can hinder explorations of the biology of wildlife trematodes, including fundamental aspects such as host use, life cycle variation, pathology, and disease. In this chapter, we review work on selected trematodes of amphibians, birds, mammals, and their snail intermediate hosts, with the goal of providing a tool kit on how to study trematodes of wildlife. We provide a brief introduction to each group of wildlife trematodes, followed by some examples of the challenges each group of trematodes has relative to the goal of their identification and understanding of the biology and interactions these organisms have with their wildlife hosts.


Asunto(s)
Animales Salvajes , Aves , Interacciones Huésped-Parásitos , Trematodos , Infecciones por Trematodos , Animales , Trematodos/fisiología , Trematodos/clasificación , Animales Salvajes/parasitología , Infecciones por Trematodos/parasitología , Infecciones por Trematodos/veterinaria , Aves/parasitología , Anfibios/parasitología , Caracoles/parasitología , Mamíferos/parasitología , Estadios del Ciclo de Vida
3.
Adv Exp Med Biol ; 1454: 323-347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008270

RESUMEN

Amphistomes, commonly referred to as 'stomach' or 'rumen' flukes because of the localization of these flukes in the stomach of ruminants, are digenetic trematodes distinguished by the absence of an oral sucker and the position of the ventral sucker or acetabulum at the posterior end of the body. The body is characterized by a leaf-like fleshy structure, pink or red with a large posterior sucker. Amphistomes are an important group of parasites since they cause 'amphistomiasis' (variously known as paramphistomosis/amphistomosis), a serious disease of great economic importance in ruminants worldwide. These parasites have a broad spectrum of definitive hosts together with a wide geographical distribution. Though they form a continuous evolutional lineage from fishes to mammals, amphistomes mainly inhabit the rumen and reticulum of ruminant mammals, while some species occur in the large intestine or parenteric sites of ruminants, pigs, equines and man.


Asunto(s)
Infecciones por Trematodos , Animales , Infecciones por Trematodos/parasitología , Infecciones por Trematodos/veterinaria , Rumiantes/parasitología , Paramphistomatidae/fisiología , Paramphistomatidae/aislamiento & purificación , Rumen/parasitología , Humanos , Trematodos/clasificación , Trematodos/fisiología
4.
Adv Exp Med Biol ; 1454: 3-45, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008262

RESUMEN

This review covers the general aspects of the anatomy and physiology of the major body systems in digenetic trematodes, with an emphasis on new knowledge of the area acquired since the publication of the second edition of this book in 2019. In addition to reporting on key recent advances in the morphology and physiology of tegumentary, sensory, neuromuscular, digestive, excretory, and reproductive systems, and their roles in host-parasite interactions, this edition includes a section discussing the known and putative roles of bacteria in digenean biology and physiology. Furthermore, a brief discussion of current trends in the development of novel treatment and control strategies based on a better understanding of the trematode body systems and associated bacteria is provided.


Asunto(s)
Interacciones Huésped-Parásitos , Trematodos , Trematodos/fisiología , Animales , Interacciones Huésped-Parásitos/fisiología , Bacterias , Infecciones por Trematodos/parasitología , Humanos
5.
Adv Exp Med Biol ; 1454: 107-155, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008265

RESUMEN

Trematodes of the order Diplostomida are well known as serious pathogens of man, and both farm and wild animals; members of the genus Schistosoma (Schistosomatidae) are responsible for human schistosomosis (schistosomiasis) affecting more than 200 million people in tropical and subtropical countries, and infections of mammals and birds by animal schistosomes are of great veterinary importance. The order Diplostomida is also rich in species parasitizing other major taxa of vertebrates. The "Aporocotylidae" sensu lato are pathogenic in fish, "Spirorchiidae" sensu lato in reptiles. All these flukes have two-host life cycles, with asexually reproducing larvae usually in mollusks and occasionally in annelids, and adults usually live in the blood vessels of their vertebrate hosts. Pathology is frequently associated with inflammatory reactions to eggs trapped in various tissues/organs. On the other hand, the representatives of Diplostomidae and Strigeidae have three- or four-host life cycles in which vertebrates often serve not only as definitive but also as intermediate or paratenic hosts. Pathology is usually associated with migration of metacercariae and mesocercariae within the host tissues. The impact of these trematode infections on both farm and wild animals may be significant.


Asunto(s)
Infecciones por Trematodos , Animales , Humanos , Infecciones por Trematodos/parasitología , Infecciones por Trematodos/veterinaria , Trematodos/fisiología , Trematodos/patogenicidad , Estadios del Ciclo de Vida , Interacciones Huésped-Parásitos , Schistosomatidae/genética
6.
Adv Exp Med Biol ; 1454: 285-322, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008269

RESUMEN

Intestinal trematodes are among the most common types of parasitic worms. About 76 species belonging to 14 families have been recorded infecting humans. Infection commonly occurs when humans eat raw or undercooked foods that contain the infective metacercariae. These parasites are diverse in regard to their morphology, geographical distribution and life cycle, which make it difficult to study the parasitic diseases that they cause. Many of these intestinal trematodes have been considered as endemic parasites in the past. However, the geographical limits and the population at risk are currently expanding and changing in relation to factors such as growing international markets, improved transportation systems, new eating habits in developed countries and demographic changes. These factors make it necessary to better understand intestinal trematode infections. This chapter describes the main features of human intestinal trematodes in relation to their biology, epidemiology, host-parasite relationships, pathogenicity, clinical aspects, diagnosis, treatment and control.


Asunto(s)
Parasitosis Intestinales , Trematodos , Infecciones por Trematodos , Animales , Infecciones por Trematodos/epidemiología , Infecciones por Trematodos/parasitología , Humanos , Parasitosis Intestinales/parasitología , Parasitosis Intestinales/epidemiología , Trematodos/patogenicidad , Trematodos/fisiología , Interacciones Huésped-Parásitos , Equinostomiasis/parasitología , Equinostomiasis/epidemiología , Echinostoma/fisiología , Echinostoma/patogenicidad
7.
BMC Genomics ; 25(1): 608, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886647

RESUMEN

BACKGROUND: Gastropods of the genus Biomphalaria (Family Planorbidae) are exploited as vectors by Schistosoma mansoni, the most common causative agent of human intestinal schistosomiasis. Using improved genomic resources, overviews of how Biomphalaria responds to S. mansoni and other metazoan parasites can provide unique insights into the reproductive, immune, and other systems of invertebrate hosts, and their responses to parasite challenges. RESULTS: Using Illumina-based RNA-Seq, we compared the responses of iM line B. glabrata at 2, 8, and 40 days post-infection (dpi) to single infections with S. mansoni, Echinostoma paraensei (both digenetic trematodes) or Daubaylia potomaca (a nematode parasite of planorbid snails). Responses were compared to unexposed time-matched control snails. We observed: (1) each parasite provoked a distinctive response with a predominance of down-regulated snail genes at all time points following exposure to either trematode, and of up-regulated genes at 8 and especially 40dpi following nematode exposure; (2) At 2 and 8dpi with either trematode, several snail genes associated with gametogenesis (particularly spermatogenesis) were down-regulated. Regarding the phenomenon of trematode-mediated parasitic castration in molluscs, we define for the first time a complement of host genes that are targeted, as early as 2dpi when trematode larvae are still small; (3) Differential gene expression of snails with trematode infection at 40dpi, when snails were shedding cercariae, was unexpectedly modest and revealed down-regulation of genes involved in the production of egg mass proteins and peptide processing; and (4) surprisingly, D. potomaca provoked up-regulation at 40dpi of many of the reproduction-related snail genes noted to be down-regulated at 2 and 8dpi following trematode infection. Happening at a time when B. glabrata began to succumb to D. potomaca, we hypothesize this response represents an unexpected form of fecundity compensation. We also document expression patterns for other Biomphalaria gene families, including fibrinogen domain-containing proteins (FReDs), C-type lectins, G-protein coupled receptors, biomphalysins, and protease and protease inhibitors. CONCLUSIONS: Our study is relevant in identifying several genes involved in reproduction that are targeted by parasites in the vector snail B. glabrata and that might be amenable to manipulation to minimize their ability to serve as vectors of schistosomes.


Asunto(s)
Biomphalaria , Schistosoma mansoni , Transcriptoma , Animales , Biomphalaria/parasitología , Biomphalaria/genética , Schistosoma mansoni/genética , Schistosoma mansoni/fisiología , Interacciones Huésped-Parásitos/genética , Trematodos/fisiología , Trematodos/genética , Vectores de Enfermedades , Perfilación de la Expresión Génica
8.
Ecology ; 105(7): e4325, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38859696

RESUMEN

Ecological interactions among hosts are critical to consider when predicting disease dynamics. Most theory predicts that intraguild predation (IGP) and cannibalism negatively impact parasite populations, but this is based primarily on assumptions of simple or single-host life cycles. Here we investigate the effects of cannibalism in a size-structured host population on two digenean trematodes that have complex, multihost life cycles. A high incidence of cannibalism among paratenic hosts produced higher parasite infection loads and abundance, whereas cannibalism among obligate hosts reduced parasite abundances. We attributed this difference to trophic transmission aggregating parasites in larger, potentially fitter hosts and also to transmission among paratenic hosts via cannibalism. Moreover, we found evidence of indirect competitive interactions between parasites that can also increase infections at small scales. Our results show there are multiple mechanisms through which high cannibalism environments can benefit parasites that use paratenic hosts and trophic transfer to complete their life cycles.


Asunto(s)
Canibalismo , Interacciones Huésped-Parásitos , Animales , Trematodos/fisiología , Cadena Alimentaria , Enfermedades de los Peces/parasitología
9.
Parasitol Res ; 123(6): 228, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819616

RESUMEN

A number of studies have been conducted on monogenean seasonality, though primarily in continental regions with wide annual temperatures ranges. We investigated seasonal changes in the prevalence and intensity of Salsuginus seculus infesting sexually dimorphic western mosquitofish (Gambusia affinis) in New Zealand. This represents the first examination of seasonality for this species globally, and the first seasonal assessment of any monogenean population in New Zealand, a temperate country with a mild oceanic climate. Prevalence and intensity of S. seculus with respect to fish size and sex was also examined. Prevalence of S. seculus changed temporally, peaking in summer, and was strongly positively correlated with algal concentrations. This relationship may be associated with increasing food levels, leading to an increase in fish courting and mating, resulting in high numbers and close physical associations of G. affinis individuals, facilitating transmission of the monogeneans. Thus, biotic factors may be important in determining temporal changes in S. seculus prevalence in New Zealand. Female G. affinis had a significantly higher prevalence and mean intensity of S. seculus than males. Longer fish had a higher mean intensity and prevalence of S. seculus. Female G. affinis likely host disproportionately more monogeneans as they are larger than males. Alternatively, females may have a compromised immune response during reproductive periods. Overall, seasonal change was observed in S. seculus prevalence and intensity under New Zealand's mild climatic conditions, and the larger female G. affinis in this dimorphic species supported a greater prevalence and intensity of infestation than males.


Asunto(s)
Ciprinodontiformes , Enfermedades de los Peces , Estaciones del Año , Animales , Nueva Zelanda/epidemiología , Masculino , Femenino , Prevalencia , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/epidemiología , Ciprinodontiformes/parasitología , Factores Sexuales , Tamaño Corporal , Trematodos/aislamiento & purificación , Trematodos/clasificación , Trematodos/fisiología
10.
Parasitol Res ; 123(6): 229, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819740

RESUMEN

The intricate relationships between parasites and hosts encompass a wide range of levels, from molecular interactions to population dynamics. Parasites influence not only the physiological processes in the host organism, but also the entire ecosystem, affecting mortality of individuals, the number of offspring through parasitic castration, and matter and energy cycles. Understanding the molecular mechanisms that govern host-parasite relationships and their impact on host physiology and environment remains challenging. In this study, we analyzed how infection with Microphallus trematodes affects the metabolome of two Littorina snail species inhabiting different intertidal zone shore levels. We applied non-targeted GC-MS-based metabolomics to analyze biochemical shifts induced by trematode infection in a host organism. We have identified changes in energy, amino acid, sugar, and lipid metabolism. In particular, we observed intensified amino acid catabolism and nitrogenous catabolites (glutamine, urea) production. These changes primarily correlated with infection and interspecies differences of the hosts rather than shore level. The changes detected in the host metabolism indicate that other aspects of life may have been affected, both within the host organism and at a supra-organismal level. Therefore, we explored changes in microbiota composition, deviations in the host molluscs behavior, and acetylcholinesterase activity (ACE, an enzyme involved in neuromuscular transmission) in relation to infection. Infected snails displayed changes in their microbiome composition. Decreased ACE activity in snails was associated with reduced mobility, but whether it is associated with trematode infection remains unclear. The authors suggest a connection between the identified biochemical changes and the deformation of the shell of molluscs, changes in their behavior, and the associated microbiome. The role of parasitic systems formed by microphallid trematodes and Littorina snails in the nitrogen cycle at the ecosystem level is also assumed.


Asunto(s)
Interacciones Huésped-Parásitos , Caracoles , Trematodos , Animales , Trematodos/fisiología , Trematodos/metabolismo , Caracoles/parasitología , Metaboloma , Metabolómica , Cromatografía de Gases y Espectrometría de Masas
11.
Fish Shellfish Immunol ; 149: 109613, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710341

RESUMEN

Aporocotylids (Trematoda: Digenea), also known as fish blood flukes infect the circulatory system of fish leading to serious health problems and mortality. Aporocotylids are a particular concern for farmed fish as infection intensity can increase within the farming environment and lead to mortalities. In the context of managing these infections, one of the most crucial aspects to consider is the host response of the infected fish against these blood flukes. Understanding the response is essential to improving current treatment strategies that are largely based on the use of anthelmintic praziquantel to manage infections in aquaculture. This review focuses on the current knowledge of farmed fish host responses against the different life stages of aporocotylids. New treatment strategies that are able to provide protection against reinfections should be a long-term goal and is not possible without understanding the fish response to infection and the interactions between host and parasite.


Asunto(s)
Acuicultura , Enfermedades de los Peces , Peces , Trematodos , Infecciones por Trematodos , Animales , Infecciones por Trematodos/veterinaria , Infecciones por Trematodos/inmunología , Infecciones por Trematodos/parasitología , Infecciones por Trematodos/tratamiento farmacológico , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/parasitología , Trematodos/fisiología , Peces/inmunología , Peces/parasitología , Interacciones Huésped-Parásitos , Antihelmínticos/uso terapéutico , Antihelmínticos/farmacología
12.
Adv Parasitol ; 124: 1-55, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38754926

RESUMEN

Intestinal trematodes constitute a major group of helminths that parasitize humans and animals with relevant morbidity and mortality. Despite the importance of the intestinal trematodes in medical and veterinary sciences, immunology and pathology of these helminth infections have been neglected for years. Apart from the work focused on the members of the family Echnistomatidae, there are only very isolated and sporadic studies on the representatives of other families of digeneans, which makes a compilation of all these studies necessary. In the present review, the most salient literature on the immunology and pathology of intestinal trematodes in their definitive hosts in examined. Emphasis will be placed on members of the echinostomatidae family, since it is the group in which the most work has been carried out. However, we also review the information on selected species of the families Brachylaimidae, Diplostomidae, Gymnophallidae, and Heterophyidae. For most of these families, coverage is considered under the following headings: (i) Background; (ii) Pathology of the infection; (iii) Immunology of the infection; and (iv) Human infections.


Asunto(s)
Parasitosis Intestinales , Trematodos , Infecciones por Trematodos , Animales , Humanos , Trematodos/fisiología , Trematodos/inmunología , Infecciones por Trematodos/parasitología , Infecciones por Trematodos/inmunología , Infecciones por Trematodos/veterinaria , Parasitosis Intestinales/inmunología , Parasitosis Intestinales/parasitología , Intestinos/parasitología , Intestinos/patología , Intestinos/inmunología , Interacciones Huésped-Parásitos/inmunología
13.
Parasit Vectors ; 17(1): 234, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38773521

RESUMEN

BACKGROUND: Snail-borne trematodes afflict humans, livestock, and wildlife. Recognizing their zoonotic potential and possible hybridization, a One Health approach is essential for effective control. Given the dearth of knowledge on African trematodes, this study aimed to map snail and trematode diversity, focusing on (i) characterizing gastropod snail species and their trematode parasites, (ii) determining infection rates of snail species as intermediate hosts for medically, veterinary, and ecologically significant trematodes, and (iii) comparing their diversity across endemic regions. METHODS: A cross-sectional study conducted in 2021 in Chiredzi and Wedza districts in Zimbabwe, known for high human schistosomiasis prevalence, involved malacological surveys at 56 sites. Trematode infections in snails were detected through shedding experiments and multiplex rapid diagnostic polymerase chain reactions (RD-PCRs). Morphological and molecular analyses were employed to identify snail and trematode species. RESULTS: Among 3209 collected snail specimens, 11 species were identified, including schistosome and fasciolid competent snail species. We report for the first time the invasive exotic snail Tarebia granifera in Zimbabwe, which was highly abundant, mainly in Chiredzi, occurring at 29 out of 35 sites. Shedding experiments on 1303 snails revealed a 2.24% infection rate, with 15 trematode species identified through molecular genotyping. Five species were exclusive to Chiredzi: Bolbophorus sp., Schistosoma mansoni, Schistosoma mattheei, Calicophoron sp., and Uvulifer sp. Eight were exclusive to Wedza, including Trichobilharzia sp., Stephanoprora amurensis, Spirorchid sp., and Echinostoma sp. as well as an unidentified species of the Plagiorchioidea superfamily. One species, Tylodelphys mashonensis, was common to both regions. The RD-PCR screening of 976 non-shedding snails indicated a 35.7% trematode infection rate, including the presence of schistosomes (1.1%) Fasciola nyanzae (0.6%). In Chiredzi, Radix natalensis had the highest trematode infection prevalence (33.3%), while in Wedza, R. natalensis (55.4%) and Bulinus tropicus (53.2%) had the highest infection prevalence. CONCLUSIONS: Our xenomonitoring approach unveiled 15 trematode species, including nine new records in Zimbabwe. Schistosoma mansoni persists in the study region despite six mass deworming rounds. The high snail and parasite diversity, including the presence of exotic snail species that can impact endemic species and biomedically important trematodes, underscores the need for increased monitoring.


Asunto(s)
Agua Dulce , Especies Introducidas , Caracoles , Trematodos , Animales , Zimbabwe/epidemiología , Caracoles/parasitología , Trematodos/genética , Trematodos/clasificación , Trematodos/aislamiento & purificación , Trematodos/fisiología , Estudios Transversales , Agua Dulce/parasitología , Salud Única , Humanos , Infecciones por Trematodos/parasitología , Infecciones por Trematodos/veterinaria , Infecciones por Trematodos/epidemiología , Biodiversidad , Prevalencia , Esquistosomiasis/epidemiología , Esquistosomiasis/parasitología , Esquistosomiasis/veterinaria
14.
J Invertebr Pathol ; 204: 108112, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631556

RESUMEN

Trematodes of the genus Leucochloridium exhibit an unusual transmission strategy among mollusks (intermediate host). The fully developed sporocyst, housing encysted metacercariae, displays vivid coloration and rhythmic activity in the snail's tentacle, mimicking insect larvae. These strategies attract insectivorous birds, their final hosts, thereby increasing the chances of completing their life cycle. In South America, the reports of adults and larval stages of Leucochloridium are scarce. Brown-banded broodsac of Leucochloridium sp. were obtained from Omalonyx unguis collected in a shallow lake from Corrientes Province, Argentina. Here, we morphologically characterized the larval stages (broodsac and metacercaria), identified the parasite through DNA sequences from nuclear 28S-rRNA (28S) and the mitochondrial cytochrome c oxidase I (COI) genes, and explored its evolutionary affinities with the Leucochloridium species available in GenBank. The present broodsac displays brown bands, with a yellowish background in the first two-thirds and yellowish-white in the last third. Based on morphological comparisons, the broodsac and metacercaria described in this study could not be conclusively categorized under any known South American species of Leucochloridium. In relation to the phylogenetic reconstructions, Leucochloridium sp. consistently clustered with L. perturbatum, and species delimitation analyses resulted in recognized Leucochloridium sp. from Argentina as a distinct species. The DNA sequences obtained in this study constitute the first genetic data generated for sporocyst broodsacs in South America. Future studies, incorporating morphology, genetic, and biological data, will be essential for both species identification and the elucidation of leucochloridiid diversity in the region.


Asunto(s)
Trematodos , Animales , Argentina , Trematodos/genética , Trematodos/fisiología , Trematodos/anatomía & histología , Metacercarias , Filogenia , Gastrópodos/parasitología , ARN Ribosómico 28S/genética , ARN Ribosómico 28S/análisis
15.
J Invertebr Pathol ; 204: 108116, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679367

RESUMEN

Freshwater snails are integral to local ecosystems as a primary food source for various vertebrate species, thereby contributing significantly to ecological food webs. However, their role as intermediate hosts also makes them pivotal in the transmission of parasites. In Australia, research on freshwater snails has predominantly focused on their role as intermediate hosts for livestock parasites, while there has been limited exploration of the impact of these parasites on snail health and population dynamics. The aim of this study was to determine parasitic infection in freshwater snails. This study was conducted in the south-eastern region of Australia, in 2022. A total of 163 freshwater snails from four different species were collected and examined in the Murrumbidgee catchment area in the southeastern part of Australia during the Southern Hemisphere summer and autumn months (February to May). The species included Isidorella hainesii, Glyptophysa novaehollandica, Bullastra lessoni (endemic species), and Physella acuta (an introduced species). Through the analysis of sequence data from the various regions of the nuclear ribosomal DNA, we determined that the Digenea species in this study belonged to three distinct species, including Choanocotyle hobbsi, Petasiger sp. and an unidentified species belonging to Plagiorchioidea. Additionally, analysis of the sequences from Nematoda found in this study, revealed they could be categorized into two separate taxa, including Krefftascaris sp. and an unidentified nematode closely associated with plant and soil nematodes. This research holds significant implications for the future understanding and conservation of Australian freshwater ecosystems. Most parasites found in the present study complete their life cycle in snails and turtles. As many of freshwater snail and turtle species in Australia are endemic and face population threats, exploring the potential adverse impacts of parasitic infections on snail and turtle health, is crucial for advancing our understanding of these ecosystems and also paving the way for future research and conservation efforts. While none of the native snail species in the present study have been listed as endangered or threatened, this may simply be attributed to the absence of regular population surveys.


Asunto(s)
Agua Dulce , Caracoles , Trematodos , Animales , Caracoles/parasitología , Australia , Trematodos/fisiología , Trematodos/genética , Agua Dulce/parasitología , Nematodos/fisiología
16.
Oecologia ; 205(1): 95-106, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38689180

RESUMEN

Parasites represent a ubiquitous threat for most organisms, requiring potential hosts to invest in a range of strategies to defend against infection-these include both behavioural and physiological mechanisms. Avoidance is an essential first line of defence, but this behaviour may show a trade-off with host investment in physiological immunity. Importantly, while environmental stressors can lead to elevated hormones in vertebrates, such as glucocorticoids, that can reduce physiological immunity in certain contexts, behavioural defences may also be compromised. Here, we investigate anti-parasite behaviour and immune responses against a trematode (flatworm) parasite by larval amphibians (tadpoles) exposed or not to a simulated general stressor in the form of exogenous corticosterone. Tadpoles that were highly active in the presence of the trematode infectious stage (cercariae) had lower infection loads, and parasite loads from tadpoles treated only with dechlorinated water were significantly lower than those exposed to corticosterone or the solvent control. However, treatment did not affect immunity as measured through white blood-cell profiles, and there was no relationship between the latter and anti-parasite behaviour. Our results suggest that a broad range of stressors could increase host susceptibility to infection through altered anti-parasite behaviours if they elevate endogenous glucocorticoids, irrespective of physiological immunity effects. How hosts defend themselves against parasitism in the context of multiple challenges represents an important topic for future research, particularly as the risk posed by infectious diseases is predicted to increase in response to ongoing environmental change.


Asunto(s)
Corticosterona , Interacciones Huésped-Parásitos , Larva , Animales , Trematodos/fisiología , Conducta Animal , Glucocorticoides
17.
Int J Parasitol ; 54(7): 333-355, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38452965

RESUMEN

There are several species of gymnophallid digeneans in the genus Parvatrema that are unique in developing metacercariae that reproduce by parthenogenesis in the second intermediate host. Transmission of these digeneans takes place in coastal ecosystems of the North Pacific and North Atlantic seas. The first intermediate hosts are bivalves, the second ones are gastropods, and the definitive hosts are migratory birds. We integrated data accumulated over 25 years of research and differentiated a complex of five closely related species. They differ in the molluscan second intermediate hosts, distribution ranges, and life cycles patterns. The type I life cycle includes two generations of parthenogenetic metacercariae, followed by development of metacercariae which are invasive for the definitive host. In the type II life cycle, the number of generations of parthenogenetic metacercariae is unlimited, and they can also produce cercariae. These cercariae emerge into the environment and can infect new individuals of the second intermediate host. We conclude that the type I life cycle is a derived option that has evolved as a better fit to transmission in the unstable conditions in the intertidal zone. Another evolutionary trend in Parvatrema is transition from inhabiting the extrapallial space of the gastropod second intermediate host to endoparasitism in its mantle and internal organs. rDNA sequence analysis highlighted that Parvatrema spp. with parthenogenetic metacercariae form a monophyletic clade and suggested the Pacific origin of the group, with two transfers to the North Atlantic and colonisation of new second intermediate host species. Apparently the group formed in the late Pliocene-Pleistocene and diversified as a result of recurrent isolation in inshore refugia during glacial periods. We argue that parthenogenetic metacercariae in Parvatrema may serve as a model for early digenean evolution, demonstrating the first steps of adopting the molluscan first intermediate host and becoming tissue parasites.


Asunto(s)
Especificidad del Huésped , Metacercarias , Trematodos , Infecciones por Trematodos , Animales , Trematodos/genética , Trematodos/fisiología , Trematodos/clasificación , Trematodos/crecimiento & desarrollo , Metacercarias/fisiología , Metacercarias/genética , Metacercarias/crecimiento & desarrollo , Infecciones por Trematodos/parasitología , Infecciones por Trematodos/veterinaria , Infecciones por Trematodos/transmisión , Filogenia , Partenogénesis , Estadios del Ciclo de Vida , Aves/parasitología , Biodiversidad , Bivalvos/parasitología
18.
Parasitol Res ; 123(1): 28, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38082123

RESUMEN

Snails are fascinating molluscs with unique morphological and physiological adaptive features to cope with various environments. They have traditionally been utilized as food and feed sources in many regions of the world. The future exploitation of alternative nutrient sources, like snails, is likely to increase further. Snails, however, also serve as an intermediate host for several zoonotic parasites. A category of parasitic infections, known as snail-transmitted parasitic diseases (STPDs), is harmful to humans and animals and is mainly driven by various trematodes, cestodes, and nematodes. The environment plays a crucial role in transmitting these parasites, as suitable habitats and conditions can facilitate their growth and proliferation in snails. In light of diverse environmental settings and biologically categorized snail species, this review evaluates the dynamics of significant STPDs of zoological importance. Additionally, possible diagnostic approaches for the prevention of STPDs are highlighted. One-health measures must be considered when employing snails as an alternative food or feed source to ensure the safety of snail-based products and prevent any adverse effects on humans, animals, and the environment.


Asunto(s)
Salud Única , Parásitos , Enfermedades Parasitarias , Trematodos , Animales , Humanos , Trematodos/fisiología , Ecosistema
19.
J Helminthol ; 97: e102, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38130206

RESUMEN

Age dynamics of the ability of cercariae of two digenean species, Himasthla elongata (Himasthlidae) and Renicola parvicaudatus (Renicolidae), to infect the second intermediate host (SIH), mussels (Mytilus edulis), was investigated experimentally. This is the first study of this kind made on cercariae transmitted in the intertidal of the northern seas. The larvae of all tested ages (from 0.5 to 6 hr) were equally successful in infecting mussels. This finding disagrees with the literature data on cercariae of several freshwater digeneans, which are practically incapable of infecting the SIH during the first 1-3 hr of life. The presence of a time delay before the attainment of the maximum infectivity (TDMI) may be associated with the need for physiological maturation of cercariae in the very beginning of their life in the environment, the need for their broad dispersion, and the prevention of superinfection of the downstream host. The absence of TDMI in the cercariae examined in our study could be associated with the instability of environmental factors in the marine intertidal (wave impact, tidal currents). These factors promote a broad dispersion of cercariae in the intertidal biotope and prevent superinfection of potential SIHs. Biological and behavioural features may also play a role. We hypothesize that the presence or absence of TDMI does not depend on the taxonomic affiliation of the cercariae but is determined by the transmission conditions.


Asunto(s)
Mytilus edulis , Sobreinfección , Trematodos , Animales , Ecosistema , Trematodos/fisiología , Cercarias
20.
Arch Microbiol ; 205(9): 314, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37603130

RESUMEN

Manipulative neuroparasites are a fascinating group of organisms that possess the ability to hijack the nervous systems of their hosts, manipulating their behavior in order to enhance their own survival and reproductive success. This review provides an overview of the different strategies employed by manipulative neuroparasites, ranging from viruses to parasitic worms and fungi. By examining specific examples, such as Toxoplasma gondii, Leucochloridium paradoxum, and Ophiocordyceps unilateralis, we highlight the complex mechanisms employed by these parasites to manipulate their hosts' behavior. We explore the mechanisms through which these parasites alter the neural processes and behavior of their hosts, including the modulation of neurotransmitters, hormonal pathways, and neural circuits. This review focuses less on the diseases that neuroparasites induce and more on the process of their neurological manipulation. We also investigate the fundamental mechanisms of host manipulation in the developing field of neuroparasitology, which blends neuroscience and parasitology. Finally, understanding the complex interaction between manipulative neuroparasites and their hosts may help us to better understand the fundamentals of behavior, neurology, and host-parasite relationships.


Asunto(s)
Hypocreales , Sistema Nervioso , Toxoplasma , Trematodos , Toxoplasma/crecimiento & desarrollo , Toxoplasma/fisiología , Trematodos/crecimiento & desarrollo , Trematodos/fisiología , Hypocreales/crecimiento & desarrollo , Hypocreales/fisiología , Virus de la Rabia/fisiología , Animales , Sistema Nervioso/microbiología , Sistema Nervioso/parasitología , Humanos , Interacciones Huésped-Patógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...