Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 947
Filtrar
1.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39237458

RESUMEN

AIMS: Evaluate the in vitro efficacy of the essential oils derived from Aloysia citrodora (Verbenaceae), Cymbopogon winterianus (Poaceae), and Ocimum gratissimum (Lamiaceae) against Acanthamoeba polyphaga trophozoites. Additionally, microemulsions formulated with these essential oils, along with their major components, were analyzed. METHODS AND RESULTS: The prepared microemulsions were characterized using polarized light microscopy and rheological techniques. The amoebicidal activity was determined by measuring the inhibitory concentration (IC50). Flow cytometry was employed to detect membrane damage and alterations in trophozoites size. The results revealed transparent and thermodynamically stable microemulsions. The essential oil from O. gratissimum exhibited a lower IC50, with values of 280.66 and 47.28 µg ml-1 after 24 and 48 h, respectively. When microemulsions containing essential oils were tested, the IC50 values exhibited a reduction of over 80% after 24 h. Particularly, eugenol, a constituent of the O. gratissimum essential oil, displayed higher amoebicidal activity. The essential oils also caused damage to the cell membrane, resulting in the subsequent death of the trophozoites. CONCLUSIONS: The EOs of A. citrodora, C. winterianus, and O. gratissimum and their microemulsions showed antiparasitic effect against A. polyphaga trophozoites, representing promising alternatives for the treatment of diseases caused by this protozoan.


Asunto(s)
Acanthamoeba , Cymbopogon , Emulsiones , Ocimum , Aceites Volátiles , Trofozoítos , Verbenaceae , Aceites Volátiles/farmacología , Aceites Volátiles/química , Cymbopogon/química , Ocimum/química , Emulsiones/farmacología , Trofozoítos/efectos de los fármacos , Acanthamoeba/efectos de los fármacos , Verbenaceae/química , Amebicidas/farmacología , Aceites de Plantas/farmacología , Extractos Vegetales/farmacología
2.
Arch Razi Inst ; 79(1): 218-225, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39192963

RESUMEN

The current experimental study is designed to examine the in vitro and in vivo effects of green synthesized silver nanoparticles (AgNPs) against Giardia lamblia, a major cause of parasitic diarrhea. The precipitation method was employed for the green synthesis of AgNPs by Astragalus ecbatanus aqueous extract. In the, in vitro, Giardia lamblia cysts and trophozoites were exposed to AgNPs at 10, 20, and 40 mg/mL for 10-360 min. The effects of AgNPs on trophozoite plasma membrane and their cytotoxic effects on normal and colon cancer cells were evaluated using Sytox green and MTT assay for cell viability. The in vivo assay included BALB/c mice, infected by Giardia, treated with AgNPs at 10, 15, and 20 mg/kg/day for one week. On the 8th day post-infection, stool examination was conducted to assess the presence of Giardia cysts and the reduction rate. The size distribution of AgNPs ranged between 5 and 80 nm, with the maximum particle size observed at 40-60 nm. AgNPs significantly (P<0.001) increased the mortality of Giardia lamblia trophozoites in a dose-dependent manner. Specifically, AgNPs at concentrations of 200 and 300 µg/mL destroyed Giardia lamblia cysts after 4 and 2 h, respectively. Trophozoites of Giardia lamblia showed more sensitivity to AgNPs compared to cysts. At concentrations of 100, 200, and 300 µg/mL, AgNPs eliminated all trophozoites after 4, 2, and 1 h of treatment, respectively. AgNPs dose-dependently reduced (P<0.001) the parasite load and viability of Giardia lamblia cysts. Exposure of Giardia lamblia trophozoites to AgNPs dose-dependently increased the plasma membrane permeability as indicated by rise in the exposed fluorescence. The CC50 value AgNPs for colon cancer and normal cell lines was 402.3 µg/mL and 819.6 µg/mL, respectively. The selectivity value greater than 2 (2.04), suggests that these AgNPs are safe for normal cells in comparison with cancer cells. This experimental study showed that AgNPs green synthesized by Astragalus ecbatanus exhibited significant in vitro and in vivo anti-Giardia activity, positioning them as potential candidates for Giardia infection treatment. Nevertheless, further research on the precise mechanisms of action and comprehensive exploration of all toxicity aspects associated with this type of AgNPs need to be considered.


Asunto(s)
Giardia lamblia , Giardiasis , Nanopartículas del Metal , Ratones Endogámicos BALB C , Plata , Animales , Plata/farmacología , Plata/química , Giardiasis/tratamiento farmacológico , Nanopartículas del Metal/química , Giardia lamblia/efectos de los fármacos , Ratones , Tecnología Química Verde , Humanos , Trofozoítos/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiprotozoarios/farmacología , Antiprotozoarios/química
3.
PLoS Pathog ; 20(8): e1012435, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39172749

RESUMEN

Entamoeba histolytica is a protozoan parasite belonging to the phylum Amoebozoa that causes amebiasis, a global public health problem. E. histolytica alternates its form between a proliferative trophozoite and a dormant cyst. Trophozoite proliferation is closely associated with amebiasis symptoms and pathogenesis whereas cysts transmit the disease. Drugs are available for clinical use; however, they have issues of adverse effects and dual targeting of disease symptoms and transmission remains to be improved. Development of new drugs is therefore urgently needed. An untargeted lipidomics analysis recently revealed structural uniqueness of the Entamoeba lipidome at different stages of the parasite's life cycle involving very long (26-30 carbons) and/or medium (8-12 carbons) acyl chains linked to glycerophospholipids and sphingolipids. Here, we investigated the physiology of this unique acyl chain diversity in Entamoeba, a non-photosynthetic protist. We characterized E. histolytica fatty acid elongases (EhFAEs), which are typically components of the fatty acid elongation cycle of photosynthetic protists and plants. An approach combining genetics and lipidomics revealed that EhFAEs are involved in the production of medium and very long acyl chains in E. histolytica. This approach also showed that the K3 group herbicides, flufenacet, cafenstrole, and fenoxasulfone, inhibited the production of very long acyl chains, thereby impairing Entamoeba trophozoite proliferation and cyst formation. Importantly, none of these three compounds showed toxicity to a human cell line; therefore, EhFAEs are reasonable targets for developing new anti-amebiasis drugs and these compounds are promising leads for such drugs. Interestingly, in the Amoebazoan lineage, gain and loss of the genes encoding two different types of fatty acid elongase have occurred during evolution, which may be relevant to parasite adaptation. Acyl chain diversity in lipids is therefore a unique and indispensable feature for parasitic adaptation of Entamoeba.


Asunto(s)
Entamoeba histolytica , Elongasas de Ácidos Grasos , Elongasas de Ácidos Grasos/metabolismo , Elongasas de Ácidos Grasos/genética , Humanos , Entamoeba histolytica/efectos de los fármacos , Entamoeba histolytica/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Entamoeba/efectos de los fármacos , Entamoeba/metabolismo , Amebiasis/tratamiento farmacológico , Amebiasis/parasitología , Entamebiasis/parasitología , Entamebiasis/tratamiento farmacológico , Entamebiasis/metabolismo , Trofozoítos/efectos de los fármacos , Trofozoítos/metabolismo , Antiprotozoarios/farmacología , Ácidos Grasos/metabolismo
4.
J Parasitol ; 110(4): 360-374, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39134068

RESUMEN

Naegleria fowleri is a protozoan that causes primary amebic meningoencephalitis (PAM). The infection occurs when the trophozoites enter the nasal cavity, adhere to the nasal mucosa, invade the epithelium, and migrate until they reach the olfactory bulb. Like other pathogens, there is evidence that the adhesion of N. fowleri to host cells is an important factor in the process of cytopathogenicity and disease progression. However, the factors involved in the adhesion of the pathogen to the cells of the nasal epithelium have not been characterized. The objective of this study was to identify a protein on the surface of N. fowleri, which could act as adhesin to the mouse nasal epithelium in the PAM model. The interaction between proteins of extracts of N. fowleri and cells of the nasal epithelium of BALB/c mice was analyzed using overlay and Western blot assays. A 72-kDa band of N. fowleri interacted directly with epithelial cell proteins, this polypeptide band was purified and analyzed by mass spectrometry. Analysis revealed that polypeptide bands of 72 kDa contained peptides that matched the membrane protein, actin 1 and 2, and Hsp70. Moreover, the N. fowleri extracts resolved in 2D-SDS-PAGE showed that 72-kDa spot interacted with proteins of mouse epithelial cells, which include characteristics of the theoretical data of molecular weight and pH obtained in the analysis by mass spectrometry. Immunofluorescence tests showed that this protein is located on the surface of trophozoites and plays an important role in the adhesion of amoeba either in vitro or in vivo assays, suggesting that this protein contributes during the N. fowleri invasion and migration to the brain, causing primary amoebic meningoencephalitis.


Asunto(s)
Infecciones Protozoarias del Sistema Nervioso Central , Ratones Endogámicos BALB C , Naegleria fowleri , Mucosa Nasal , Proteínas Protozoarias , Trofozoítos , Animales , Ratones , Mucosa Nasal/parasitología , Proteínas Protozoarias/metabolismo , Infecciones Protozoarias del Sistema Nervioso Central/parasitología , Western Blotting , Adhesión Celular , Femenino , Amebiasis/parasitología
5.
J Vis Exp ; (208)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38975778

RESUMEN

All ribosomal genes of Naegleria trophozoites are maintained in a closed circular extrachromosomal ribosomal DNA (rDNA) containing element (CERE). While little is known about the CERE, a complete genome sequence analysis of three Naegleria species clearly demonstrates that there are no rDNA cistrons in the nuclear genome. Furthermore, a single DNA origin of replication has been mapped in the N. gruberi CERE, supporting the hypothesis that CERE replicates independently of the nuclear genome. This CERE characteristic suggests that it may be possible to use engineered CERE to introduce foreign proteins into Naegleria trophozoites. As the first step in exploring the use of a CERE as a vector in Naegleria, we developed a protocol to transfect N. gruberi with a molecular clone of the N. gruberi CERE cloned into pGEM7zf+ (pGRUB). Following transfection, pGRUB was readily detected in N. gruberi trophozoites for at least seven passages, as well as through encystment and excystment. As a control, trophozoites were transfected with the backbone vector, pGEM7zf+, without the N. gruberi sequences (pGEM). pGEM was not detected after the first passage following transfection into N. gruberi, indicating its inability to replicate in a eukaryotic organism. These studies describe a transfection protocol for Naegleria trophozoites and demonstrate that the bacterial plasmid sequence in pGRUB does not inhibit successful transfection and replication of the transfected CERE clone. Furthermore, this transfection protocol will be critical in understanding the minimal sequence of the CERE that drives its replication in trophozoites, as well as identifying regulatory regions in the non-ribosomal sequence (NRS).


Asunto(s)
ADN Ribosómico , Naegleria , Transfección , Naegleria/genética , Transfección/métodos , ADN Ribosómico/genética , Trofozoítos , ADN Protozoario/genética , Clonación Molecular/métodos
6.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062867

RESUMEN

Entamoeba histolytica is the protozoan causative of human amoebiasis. The EhADH adhesin (687 aa) is a protein involved in tissue invasion, phagocytosis and host-cell lysis. EhADH adheres to the prey and follows its arrival to the multivesicular bodies. It is an accessory protein of the endosomal sorting complexes required for transport (ESCRT) machinery. Here, to study the role of different parts of EhADH during virulence events, we produced trophozoites overexpressing the three domains of EhADH, Bro1 (1-400 aa), Linker (246-446 aa) and Adh (444-687 aa) to evaluate their role in virulence. The TrophozBro11-400 slightly increased adherence and phagocytosis, but these trophozoites showed a higher ability to destroy cell monolayers, augment the permeability of cultured epithelial cells and mouse colon, and produce more damage to hamster livers. The TrophozLinker226-446 also increased the virulence properties, but with lower effect than the TrophozBro11-400. In addition, this fragment participates in cholesterol transport and GTPase binding. Interestingly, the TrophozAdh444-687 produced the highest effect on adherence and phagocytosis, but it poorly influenced the monolayers destruction; nevertheless, they augmented the colon and liver damage. To identify the protein partners of each domain, we used recombinant peptides. Pull-down assays and mass spectrometry showed that Bro1 domain interplays with EhADH, Gal/GalNAc lectin, EhCPs, ESCRT machinery components and cytoskeleton proteins. While EhADH, ubiquitin, EhRabB, EhNPC1 and EhHSP70 were associated to the Linker domain, and EhADH, EhHSP70, EhPrx and metabolic enzymes interacted to the Adh domain. The diverse protein association confirms that EhADH is a versatile molecule with multiple functions probably given by its capacity to form distinct molecular complexes.


Asunto(s)
Entamoeba histolytica , Proteínas Protozoarias , Entamoeba histolytica/patogenicidad , Entamoeba histolytica/metabolismo , Animales , Ratones , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Humanos , Virulencia , Fagocitosis , Dominios Proteicos , Entamebiasis/parasitología , Entamebiasis/metabolismo , Cricetinae , Trofozoítos/metabolismo
7.
Molecules ; 29(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38893461

RESUMEN

Metronidazole (MTZ) is the most common drug used against Trichomonas vaginalis (T. vaginalis) infections; however, treatment failures and high rates of recurrence of trichomoniasis have been reported, suggesting the presence of resistance in T. vaginalis to MTZ. Therefore, research into new therapeutic options against T. vaginalis infections has become increasingly urgent. This study investigated the trichomonacidal activity of a series of five imidazole carbamate compounds (AGR-1, AGR-2, AGR-3, AGR-4, and AGR-5) through in vitro susceptibility assays to determine the IC50 value of each compound. All five compounds demonstrated potent trichomonacidal activity, with IC50 values in the nanomolar range and AGR-2 being the most potent (IC50 400 nM). To gain insight into molecular events related to AGR-induced cell death in T. vaginalis, we analyzed the expression profiles of some metabolic genes in the trophozoites exposed to AGR compounds and MTZ. It was found that both AGR and MTZ compounds reduced the expression of the glycolytic genes (CK, PFK, TPI, and ENOL) and genes involved in metabolism (G6PD, TKT, TALDO, NADHOX, ACT, and TUB), suggesting that disturbing these key metabolic genes alters the survival of the T. vaginalis parasite and that they probably share a similar mechanism of action. Additionally, the compounds showed low cytotoxicity in the Caco-2 and HT29 cell lines, and the results of the ADMET analysis indicated that these compounds have pharmacokinetic properties similar to those of MTZ. The findings offer significant insights that can serve as a basis for future in vivo studies of the compounds as a potential new treatment against T. vaginalis.


Asunto(s)
Carbamatos , Imidazoles , Trichomonas vaginalis , Trichomonas vaginalis/efectos de los fármacos , Trichomonas vaginalis/genética , Trichomonas vaginalis/crecimiento & desarrollo , Imidazoles/farmacología , Imidazoles/química , Humanos , Carbamatos/farmacología , Carbamatos/química , Metronidazol/farmacología , Metronidazol/química , Regulación de la Expresión Génica/efectos de los fármacos , Trofozoítos/efectos de los fármacos
8.
Front Cell Infect Microbiol ; 14: 1414135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863831

RESUMEN

Introduction: Acanthamoeba infection is a serious public health concern, necessitating the development of effective and safe anti-Acanthamoeba chemotherapies. Poly (ADP-ribose) polymerases (PARPs) govern a colossal amount of biological processes, such as DNA damage repair, protein degradation and apoptosis. Multiple PARP-targeted compounds have been approved for cancer treatment. However, repurposing of PARP inhibitors to treat Acanthamoeba is poorly understood. Methods: In the present study, we attempted to fill these knowledge gaps by performing anti-Acanthamoeba efficacy assays, cell biology experiments, bioinformatics, and transcriptomic analyses. Results: Using a homology model of Acanthamoeba poly (ADP-ribose) polymerases (PARPs), molecular docking of approved drugs revealed three potential inhibitory compounds: olaparib, venadaparib and AZ9482. In particular, venadaparib exhibited superior docking scores (-13.71) and favorable predicted binding free energy (-89.28 kcal/mol), followed by AZ9482, which showed a docking score of -13.20 and a binding free energy of -92.13 kcal/mol. Notably, the positively charged cyclopropylamine in venadaparib established a salt bridge (through E535) and a hydrogen bond (via N531) within the binding pocket. For comparison, AZ9482 was well stacked by the surrounding aromatic residues including H625, Y652, Y659 and Y670. In an assessment of trophozoites viability, AZ9482 exhibited a dose-and time-dependent anti-trophozoite effect by suppressing Acanthamoeba PARP activity, unlike olaparib and venadaparib. An Annexin V-fluorescein isothiocyanate/propidium iodide apoptosis assay revealed AZ9482 induced trophozoite necrotic cell death rather than apoptosis. Transcriptomics analyses conducted on Acanthamoeba trophozoites treated with AZ9482 demonstrated an atlas of differentially regulated proteins and genes, and found that AZ9482 rapidly upregulates a multitude of DNA damage repair pathways in trophozoites, and intriguingly downregulates several virulent genes. Analyzing gene expression related to DNA damage repair pathway and the rate of apurinic/apyrimidinic (AP) sites indicated DNA damage efficacy and repair modulation in Acanthamoeba trophozoites following AZ9482 treatment. Discussion: Collectively, these findings highlight AZ9482, as a structurally unique PARP inhibitor, provides a promising prototype for advancing anti-Acanthamoeba drug research.


Asunto(s)
Simulación del Acoplamiento Molecular , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Humanos , Piperazinas/farmacología , Ftalazinas/farmacología , Ftalazinas/química , Reposicionamiento de Medicamentos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Acanthamoeba/efectos de los fármacos , Biología Computacional , Apoptosis/efectos de los fármacos , Perfilación de la Expresión Génica , Antiprotozoarios/farmacología , Trofozoítos/efectos de los fármacos
9.
Parasites Hosts Dis ; 62(2): 169-179, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38835258

RESUMEN

Naegleria fowleri invades the brain and causes a fatal primary amoebic meningoencephalitis (PAM). Despite its high mortality rate of approximately 97%, an effective therapeutic drug for PAM has not been developed. Approaches with miltefosine, amphotericin B, and other antimicrobials have been clinically attempted to treat PAM, but their therapeutic efficacy remains unclear. The development of an effective and safe therapeutic drug for PAM is urgently needed. In this study, we investigated the anti-amoebic activity of Pinus densiflora leaf extract (PLE) against N. fowleri. PLE induced significant morphological changes in N. fowleri trophozoites, resulting in the death of the amoeba. The IC50 of PLE on N. fowleri was 62.3±0.95 µg/ml. Alternatively, PLE did not significantly affect the viability of the rat glial cell line C6. Transcriptome analysis revealed differentially expressed genes (DEGs) between PLE-treated and non-treated amoebae. A total of 5,846 DEGs were identified, of which 2,189 were upregulated, and 3,657 were downregulated in the PLE-treated amoebae. The DEGs were categorized into biological process (1,742 genes), cellular component (1,237 genes), and molecular function (846 genes) based on the gene ontology analysis, indicating that PLE may have dramatically altered the biological and cellular functions of the amoeba and contributed to their death. These results suggest that PLE has anti-N. fowleri activity and may be considered as a potential candidate for the development of therapeutic drugs for PAM. It may also be used as a supplement compound to enhance the therapeutic efficacy of drugs currently used to treat PAM.


Asunto(s)
Naegleria fowleri , Pinus , Extractos Vegetales , Hojas de la Planta , Naegleria fowleri/efectos de los fármacos , Naegleria fowleri/genética , Extractos Vegetales/farmacología , Pinus/química , Hojas de la Planta/química , Animales , Ratas , Antiprotozoarios/farmacología , Línea Celular , Trofozoítos/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/parasitología , Encéfalo/metabolismo , Encéfalo/patología , Perfilación de la Expresión Génica , Infecciones Protozoarias del Sistema Nervioso Central/tratamiento farmacológico , Infecciones Protozoarias del Sistema Nervioso Central/parasitología , Concentración 50 Inhibidora , Supervivencia Celular/efectos de los fármacos
10.
Sci Rep ; 14(1): 13610, 2024 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871751

RESUMEN

Natural products play a significant role in providing the current demand as antiparasitic agents, which offer an attractive approach for the discovery of novel drugs. The present study aimed to evaluate in vitro the potential impact of seaweed Padina pavonica (P. pavonica) extract in combating Acanthamoeba castellanii (A. castellanii). The phytochemical constituents of the extract were characterized by Gas chromatography-mass spectrometry. Six concentrations of the algal extract were used to evaluate its antiprotozoal activity at various incubation periods. Our results showed that the extract has significant inhibition against trophozoites and cysts viability, with complete inhibition at the high concentrations. The IC50 of P. pavonica extract was 4.56 and 4.89 µg/mL for trophozoites and cysts, respectively, at 24 h. Morphological alterations of A. castellanii trophozoites/cysts treated with the extract were assessed using inverted and scanning electron microscopes and showed severe damage features upon treatment with the extract at different concentrations. Molecular Docking of extracted compounds against Acanthamoeba cytochrome P450 monooxygenase (AcCYP51) was performed using Autodock vina1.5.6. A pharmacokinetic study using SwissADME was also conducted to investigate the potentiality of the identified bioactive compounds from Padina extract to be orally active drug candidates. In conclusion, this study highlights the in vitro amoebicidal activity of P. pavonica extract against A. castellanii adults and cysts and suggests potential AcCYP51 inhibition.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba castellanii , Simulación del Acoplamiento Molecular , Extractos Vegetales , Acanthamoeba castellanii/efectos de los fármacos , Queratitis por Acanthamoeba/tratamiento farmacológico , Queratitis por Acanthamoeba/parasitología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiprotozoarios/farmacología , Antiprotozoarios/química , Trofozoítos/efectos de los fármacos , Animales , Humanos
11.
PLoS Negl Trop Dis ; 18(6): e0012274, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900784

RESUMEN

The lack of disease models adequately resembling human tissue has hindered our understanding of amoebic brain infection. Three-dimensional structured organoids provide a microenvironment similar to human tissue. This study demonstrates the use of cerebral organoids to model a rare brain infection caused by the highly lethal amoeba Balamuthia mandrillaris. Cerebral organoids were generated from human pluripotent stem cells and infected with clinically isolated B. mandrillaris trophozoites. Histological examination showed amoebic invasion and neuron damage following coculture with the trophozoites. The transcript profile suggested an alteration in neuron growth and a proinflammatory response. The release of intracellular proteins specific to neuronal bodies and astrocytes was detected at higher levels postinfection. The amoebicidal effect of the repurposed drug nitroxoline was examined using the human cerebral organoids. Overall, the use of human cerebral organoids was important for understanding the mechanism of amoeba pathogenicity, identify biomarkers for brain injury, and in the testing of a potential amoebicidal drug in a context similar to the human brain.


Asunto(s)
Amebiasis , Balamuthia mandrillaris , Encéfalo , Organoides , Humanos , Organoides/parasitología , Balamuthia mandrillaris/efectos de los fármacos , Encéfalo/parasitología , Encéfalo/patología , Amebiasis/parasitología , Amebiasis/tratamiento farmacológico , Trofozoítos/efectos de los fármacos , Neuronas/parasitología , Células Madre Pluripotentes
12.
Ann Parasitol ; 70(1): 15-22, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38935775

RESUMEN

Representatives of the genus Acanthamoeba are among the most widespread protists in the environment. They have a ubiquitous distribution and can sometimes cause quite serious pathologies in humans. The treatment ofp rotozoal infections caused by free-living amoebae is currently limited and often unsuccessful. In the presented investigation, amebicidal activity was determined against both the trophozoites and cysts of Acanthamoeba spp., which were isolated during the microbiological examination of environmental objects. The inhibitory activity of drugs in vitro was determined using the authors' proposed method, which is based on the plaque formation phenomenon: this is initiated by free-living amoebae when cultured in agar containing the bacteria Cellulosimicrobium sp. strain bent-1. Based on a series of experimental studies, the paper proposes a reliable and inexpensive method for determining the anti-protozoal activity of medicinal agents, which will significantly complement the current screening method system when studying existing drugs, or new drugs during their development stage.


Asunto(s)
Acanthamoeba , Acanthamoeba/efectos de los fármacos , Antiprotozoarios/farmacología , Trofozoítos/efectos de los fármacos , Amebicidas/farmacología
13.
ACS Infect Dis ; 10(6): 2063-2073, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38757533

RESUMEN

Primary amoebic meningoencephalitis (PAM) is a rare and fulminant neurodegenerative disease caused by the free-living amoeba Naegleria fowleri. Currently, there is a lack of standardized protocols for therapeutic action. In response to the critical need for effective therapeutic agents, we explored the Global Health Priority Box, a collection of 240 compounds provided by the Medicines for Malaria Venture (MMV). From this pool, flucofuron emerged as a promising candidate, exhibiting high efficacy against trophozoites of both N. fowleri strains (ATCC 30808 IC50 : 2.58 ± 0.64 µM and ATCC 30215 IC50: 2.47 ± 0.38 µM), being even active against the resistant cyst stage (IC50: 0.88 ± 0.07 µM). Moreover, flucofuron induced diverse metabolic events that suggest the triggering of apoptotic cell death. This study highlights the potential of repurposing medications for treating challenging diseases, such as PAM.


Asunto(s)
Naegleria fowleri , Naegleria fowleri/efectos de los fármacos , Humanos , Trofozoítos/efectos de los fármacos , Antiprotozoarios/farmacología , Reposicionamiento de Medicamentos , Apoptosis/efectos de los fármacos , Infecciones Protozoarias del Sistema Nervioso Central/tratamiento farmacológico , Infecciones Protozoarias del Sistema Nervioso Central/parasitología , Amebiasis/tratamiento farmacológico , Amebiasis/parasitología
14.
Exp Parasitol ; 262: 108773, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723845

RESUMEN

Giardiasis is a prevalent parasitic diarrheal disease caused by Giardia lamblia, affecting people worldwide. Recently, the availability of several drugs for its treatment has highlighted issues such as multidrug resistance, limited effectiveness and undesirable side effects. Therefore, it is necessary to develop alternative new drugs and treatment strategies that can enhance therapeutic outcomes and effectively treat giardiasis. Natural compounds show promise in the search for more potent anti-giardial agents. Our investigation focused on the effect of Andrographolide (ADG), an active compound of the Andrographis paniculata plant, on Giardia lamblia, assessing trophozoite growth, morphological changes, cell cycle arrest, DNA damage and inhibition of gene expression associated with pathogenic factors. ADG demonstrated anti-Giardia activity almost equivalent to the reference drug metronidazole, with an IC50 value of 4.99 µM after 24 h of incubation. In cytotoxicity assessments and morphological examinations, it showed significant alterations in trophozoite shape and size and effectively hindered the adhesion of trophozoites. It also caused excessive ROS generation, DNA damage, cell cycle arrest and inhibited the gene expression related to pathogenesis. Our findings have revealed the anti-giardial efficacy of ADG, suggesting its potential as an agent against Giardia infections. This could offer a natural and low-risk treatment option for giardiasis, reducing the risk of side effects and drug resistance.


Asunto(s)
Antiprotozoarios , Puntos de Control del Ciclo Celular , Daño del ADN , Diterpenos , Giardia lamblia , Concentración 50 Inhibidora , Especies Reactivas de Oxígeno , Trofozoítos , Diterpenos/farmacología , Giardia lamblia/efectos de los fármacos , Giardia lamblia/crecimiento & desarrollo , Giardia lamblia/genética , Trofozoítos/efectos de los fármacos , Trofozoítos/crecimiento & desarrollo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Daño del ADN/efectos de los fármacos , Antiprotozoarios/farmacología , Humanos , Animales , Expresión Génica/efectos de los fármacos , Metronidazol/farmacología
15.
Drug Discov Ther ; 18(3): 178-187, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38777764

RESUMEN

In humans, Entamoeba histolytica is the main pathogen causing various amoebiases, while E. moshkovskii falls between being a pathogen and non-pathogen. The two species have similar behavior patterns but differ significantly in pathogenicity, with previous studies and clinical data indicating that E. moshkovskii has a low level of pathogenicity. Meaningfully, the biological characteristics of E. moshkovskii make it a potential model organism and a protein display platform for studying the functions of important Entamoeba proteins. Here, an Amoeba-pcDNA3.1 vector capable of overexpressing E. histolytica-sourced Igl-C protein was constructed and successfully transfected into E. moshkovskii. High levels of expression of the Igl-C, EGFP, and NeoR genes were identified in Igl-C-transfected trophozoites using qRT-PCR, and they were subsequently confirmed using immunoblotting. Transfection of Igl-C protein improved the adherence and phagocytosis of E. moshkovskii, demonstrating that E. histolytica Igl mediated amoebic adhesion. Moreover, as a manifestation of protein virulence, the ability of post-transfected trophozoites to induce inflammation in host macrophages was also enhanced. In conclusion, this study utilizing the characteristics of E. moshkovskii confirmed its potential to serve as a model organism. E. moshkovskii could replace E. histolytica as the target of gene editing, allowing more efficient study of amoebic pathogenicity.


Asunto(s)
Entamoeba histolytica , Entamoeba , Proteínas Protozoarias , Trofozoítos , Entamoeba/genética , Entamoeba/patogenicidad , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Entamoeba histolytica/genética , Entamoeba histolytica/patogenicidad , Entamoeba histolytica/metabolismo , Trofozoítos/metabolismo , Fagocitosis , Lectinas/metabolismo , Lectinas/genética , Humanos , Animales , Transfección , Virulencia/genética , Entamebiasis/parasitología , Ratones
16.
Invest Ophthalmol Vis Sci ; 65(5): 4, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691089

RESUMEN

Purpose: To investigate the adhesion of Acanthamoeba to scleral contact lens (ScCL) surface according to lens shape. Methods: Two strains of A. polyphaga (CDC:V062 and ATCC 30461) and one clinical Acanthamoeba isolate, were inoculated onto five contact lens (CL): one first-generation silicone hydrogel (SHCL; lotrafilcon B; adhesion control) containing plasma surface treatment; two ScCL (fluorosilicone acrylate) one containing surface treatment composed of plasma and the other containing plasma with Hydra-PEG, and two CL designed with a flat shape having the same material and surface treatments of the ScCL. Trophozoites that adhered to the lens's surfaces were counted by inverted optical light microscopy. Possible alterations of the lens surface that could predispose amoeba adhesion and Acanthamoeba attached to these lens surfaces were evaluated by scanning electron microscopy (SEM). Results: All strains revealed greater adhesion to the ScCL when compared with the flat lenses (P < 0.001). The clinical isolate and the ATCC 30461 had a higher adhesion (P < 0.001) when compared with the CDC:V062. A rough texture was observed on the surface of the lenses that have been examined by SEM. Also, SEM revealed that the isolates had a rounded appearance on the surface of the ScCL in contrast with an elongated appearance on the surface of the silicone hydrogel. Conclusions: The findings revealed that the curved shape of the ScCL favors amoeba adhesion.


Asunto(s)
Acanthamoeba , Microscopía Electrónica de Rastreo , Acanthamoeba/fisiología , Acanthamoeba/ultraestructura , Esclerótica , Humanos , Lentes de Contacto Hidrofílicos/parasitología , Adhesión Celular/fisiología , Lentes de Contacto/parasitología , Trofozoítos/ultraestructura , Trofozoítos/fisiología , Hidrogeles , Animales
17.
Acta Trop ; 255: 107201, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604329

RESUMEN

Reportedly, synthetic drugs such as metronidazole, furazolidone, tinidazole, and quinacrine are used for the treatment of giardiasis but are associated with adverse effects. In this study, we aimed to investigate the in vitro and in vivo effects of eucalyptol (ECT, 1,8 cineole) alone and in combination with metronidazole (MNZ) on Giardia lamblia. The effects of ECT on cell viability, plasma membrane permeability, and gene expression levels of adenylate cyclase (AK) and extracellular signal kinases 1 and 2 (ERK1 and ERK2) in trophozoites of G. lamblia were assessed. In vivo, the effects of ECT alone and in combination with MNZ were assessed on mice infected with G. lamblia. In addition, the gene expression of inflammatory genes (e.g., TNF-α, IL-1ß, and IL-10) and antioxidant genes (catalase (CAT), superoxide dismutase 1 (SOD1), glutathione peroxidase 2 (GPX2)) was determined by real-time PCR. The IC50 values of ECT, MNZ, and ECT+MNZ on trophozoites were 30.2 µg/mL, 21.6 µg/mL, and 8.5 µg/mL, respectively. The estimated Fractional inhibitory concentration index (FICI) values for ECT and MNZ were 0.28 and 0.39, respectively. The application of ECT on G. lamblia trophozoites resulted in a dose-dependent increase in plasma membrane permeability, particularly at concentrations of ½ IC50 and IC50 (P < 0.05). The treatment of infected mice with various doses of ECT, mainly in combination with MNZ for 7 days, resulted in a significant decrease (P < 0.001) in the average number and viability of cysts. ECT, especially when combined with MNZ, caused a significant (P < 0.001) reduction in the expression of TNF-α and IL-6 genes, and an increase (P < 0.05) in the expression of IL-10 genes. ECT alone and mainly in combination with MNZ leads to a significant (P < 0.001) increase in the gene expression of CAT, SOD, and GPX genes. These findings demonstrate that the use of ECT in these doses, even for 14 days, does not have any toxic effects on the function of vital liver and kidney tissues. The study findings confirmed the promising effects of ECT against G. lamblia infection both in vitro and in vivo. Considering the possible mechanisms, ECT increases plasma membrane permeability and reduces the expression levels of infectivity-related genes. In addition, ECT suppresses inflammation and oxidative stress, controlling giardiasis in mice. More studies are needed to clarify these findings.


Asunto(s)
Antiprotozoarios , Giardia lamblia , Giardiasis , Estrés Oxidativo , Animales , Giardia lamblia/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratones , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Giardiasis/tratamiento farmacológico , Giardiasis/parasitología , Inflamación/tratamiento farmacológico , Metronidazol/farmacología , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Permeabilidad de la Membrana Celular/efectos de los fármacos , Femenino , Trofozoítos/efectos de los fármacos , Ratones Endogámicos BALB C , Concentración 50 Inhibidora , Citocinas/metabolismo
18.
Eur J Protistol ; 94: 126086, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688045

RESUMEN

Acanthamoeba castellanii, a free-living amoeba, can be pathogenic to humans causing a corneal infection named Acanthamoeba keratitis (AK). The mannose-binding protein (MBP) is well established as the major factor related to Acanthamoeba pathogenesis. However, additional factors that participate in the adhesion process and protect trophozoites from cytolytic effects caused by host immune responses remain unknown. Ectonucleotidases, including 3'-nucleotidase/nuclease (3'-NT/NU), a bifunctional enzyme that was recently reported in A. castellanii, are frequently related to the establishment of parasitic infections. We verified that trophozoites can hydrolyze 3'-AMP, and this activity is similar to that observed in other protists. The addition of 3'-AMP increases the adhesion of trophozoites to LLC-MK2 epithelial cells, and this stimulation is completely reversed by DTT, an inhibitor of ecto-3'-nucleotidase activity. Lesions in corneal cells caused by AK infection may elevate the extracellular level of 3'-AMP. We believe that ecto-3'-nucleotidase activity can modulate the host immune response, thus facilitating the establishment of parasitic infection. This activity results from the generation of extracellular adenosine, which can bind to purinergic receptors present in host immune cells. Positive feedback may occur in this cascade of events once the ecto-3'-nucleotidase activity of trophozoites is increased by the adhesion of trophozoites to LLC-MK2 cells.


Asunto(s)
Acanthamoeba castellanii , Adenosina , Adhesión Celular , Trofozoítos , Acanthamoeba castellanii/enzimología , Adenosina/metabolismo , Línea Celular , Animales , Nucleotidasas/metabolismo , Células Epiteliales/parasitología
19.
Nanoscale ; 16(14): 7145-7153, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38502112

RESUMEN

The unicellular parasite Giardia duodenalis is the causative agent of giardiasis, a gastrointestinal disease with global spread. In its trophozoite form, G. duodenalis can adhere to the human intestinal epithelium and a variety of other, artificial surfaces. Its attachment is facilitated by a unique microtubule-based attachment organelle, the so-called ventral disc. The mechanical function of the ventral disc, however, is still debated. Earlier studies postulated that a dynamic negative pressure under the ventral disc, generated by persistently beating flagella, mediates the attachment. Later studies suggested a suction model based on structural changes of the ventral discs, substrate clutching or grasping, or unspecific contact forces. In this study, we aim to contribute to the understanding of G. duodenalis attachment by investigating detachment characteristics and determining adhesion forces of single trophozoites on a smooth glass surface (RMS = 1.1 ± 0.2 nm) by fluidic force microscopy (FluidFM)-based single-cell force spectroscopy (SCFS). Briefly, viable adherent trophozoites were approached with a FluidFM micropipette, immobilized to the micropipette aperture by negative pressure, and detached from the surface by micropipette retraction while retract force curves were recorded. These force curves displayed novel and so far undescribed characteristics for a microorganism, namely, gradual force increase on the pulled trophozoite, with localization of adhesion force shortly before cell detachment length. Respective adhesion forces reached 7.7 ± 4.2 nN at 1 µm s-1 pulling speed. Importantly, this unique force pattern was different from that of other eukaryotic cells such as Candida albicans or oral keratinocytes, considered for comparison in this study. The latter both displayed a force pattern with force peaks of different values or force plateaus (for keratinocytes) indicative of breakage of molecular bonds of cell-anchored classes of adhesion molecules or membrane components. Furthermore, the attachment mode of G. duodenalis trophozoites was mechanically resilient to tensile forces, when the pulling speeds were raised up to 10 µm s-1 and adhesion forces increased to 28.7 ± 10.5 nN. Taken together, comparative SCSF revealed novel and unique retract force curve characteristics for attached G. duodenalis, suggesting a ligand-independent suction mechanism, that differ from those of other well described eukaryotes.


Asunto(s)
Giardia lamblia , Giardiasis , Animales , Humanos , Giardia lamblia/metabolismo , Trofozoítos/metabolismo , Giardiasis/metabolismo , Orgánulos , Análisis Espectral
20.
Parasitol Res ; 123(3): 153, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446221

RESUMEN

This study describes dehydration of agar containing cysts as a novel and inexpensive method for long-term storage of Acanthamoeba spp. collections at room temperature. Five hundred microliters of axenically cultured Acanthamoeba spp. trophozoites (106 cells/mL) in PYG media or 150 µl of amoeba suspension (106 cells or cysts/mL) from monoxenic plate culture was spread onto the surface of non-nutritive agar (NNA, 2-3-mm thick) without or with a layer of heat-inactivated Escherichia coli, respectively. The plates were sealed and incubated at 30 °C. After the encystment, the Parafilm® was removed, and the plates were kept at the same temperature until the NNA was completely dehydrated. The dehydrated cyst-containing NNA was cut in rectangles and stored in airtight tubes at room temperature for up to 3 years. Cyst viability was assessed by inoculating them in fresh NNA with a layer of E. coli and in PYG followed by incubation at 30 °C. One hundred percent of samples from all specimens (19) stored over the 3 years allowed new cultures to be re-established; however, two strains showed reduced viability, at 66.7% and 62.5%, after 2 years of room temperature storage. One hundred percent of the cyst samples produced axenically and maintained in dry NNA allowed the re-establishment of axenic cultures through direct incubation in PYG, with excystment occurring within 24 or 48 h. For the first time, we report the dehydration of cyst-containing agar as an economical and effective method for the long-term storage of Acanthamoeba spp. collections at room temperature. It enables the creation of large collections using reduced space and economical transport of Acanthamoeba strains, in addition to allowing better organization of the collection.


Asunto(s)
Acanthamoeba , Quistes , Animales , Agar , Deshidratación , Escherichia coli , Temperatura , Trofozoítos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...