Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 757
Filtrar
2.
Clin Epigenetics ; 16(1): 75, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38845005

RESUMEN

BACKGROUND AND AIMS: Stroke is the leading cause of adult-onset disability. Although clinical factors influence stroke outcome, there is a significant variability among individuals that may be attributed to genetics and epigenetics, including DNA methylation (DNAm). We aimed to study the association between DNAm and stroke prognosis. METHODS AND RESULTS: To that aim, we conducted a two-phase study (discovery-replication and meta-analysis) in Caucasian patients with ischemic stroke from two independent centers (BasicMar [discovery, N = 316] and St. Pau [replication, N = 92]). Functional outcome was assessed using the modified Rankin Scale (mRS) at three months after stroke, being poor outcome defined as mRS > 2. DNAm was determined using the 450K and EPIC BeadChips in whole-blood samples collected within the first 24 h. We searched for differentially methylated positions (DMPs) in 370,344 CpGs, and candidates below p-value < 10-5 were subsequently tested in the replication cohort. We then meta-analyzed DMP results from both cohorts and used them to identify differentially methylated regions (DMRs). After doing the epigenome-wide association study, we found 29 DMPs at p-value < 10-5 and one of them was replicated: cg24391982, annotated to thrombospondin-2 (THBS2) gene (p-valuediscovery = 1.54·10-6; p-valuereplication = 9.17·10-4; p-valuemeta-analysis = 6.39·10-9). Besides, four DMRs were identified in patients with poor outcome annotated to zinc finger protein 57 homolog (ZFP57), Arachidonate 12-Lipoxygenase 12S Type (ALOX12), ABI Family Member 3 (ABI3) and Allantoicase (ALLC) genes (p-value < 1·10-9 in all cases). DISCUSSION: Patients with poor outcome showed a DMP at THBS2 and four DMRs annotated to ZFP57, ALOX12, ABI3 and ALLC genes. This suggests an association between stroke outcome and DNAm, which may help identify new stroke recovery mechanisms.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Humanos , Metilación de ADN/genética , Femenino , Pronóstico , Masculino , Estudio de Asociación del Genoma Completo/métodos , Anciano , Persona de Mediana Edad , Epigénesis Genética/genética , Epigenoma/genética , Accidente Cerebrovascular/genética , Islas de CpG/genética , Accidente Cerebrovascular Isquémico/genética , Trombospondinas/genética
3.
Sci Rep ; 14(1): 13810, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877292

RESUMEN

Fibrosis is an important complication in inflammatory bowel diseases. Previous studies suggest an important role of matrix Gla protein (MGP) and thrombospondin 2 (THBS2) in fibrosis in various organs. Our aim was to analyse their expression together with regulatory miRNAs in submucosal and subserosal fibroblasts in ulcerative colitis (UC) and Crohn's disease (CD) using immunohistochemistry and qPCR. Digital pathology was used to compare collagen fibre characteristics of submucosal and subserosal fibrosis. Immunohistochemistry showed expression of MGP, but not THBS2 in submucosa in UC and CD. In the subserosa, there was strong staining for both proteins in CD but not in UC. qPCR showed significant upregulation of THBS2 and MGP genes in CD subserosa compared to the submucosa. Digital pathology analysis revealed higher proportion of larger and thicker fibres that were more tortuous and reticulated in subserosal fibrosis compared to submucosal fibrosis. These results suggest distinct fibroblast populations in fibrostenosing CD, and are further supported by image analysis showing significant differences in the morphology and architecture of collagen fibres in submucosal fibrosis in comparison to subserosal fibrosis. Our study is the first to describe differences in submucosal and subserosal fibroblast populations, contributing to understanding of the pathogenesis of fibrostenosis in CD.


Asunto(s)
Proteínas de Unión al Calcio , Enfermedad de Crohn , Proteínas de la Matriz Extracelular , Fibroblastos , Fibrosis , Proteína Gla de la Matriz , Trombospondinas , Enfermedad de Crohn/patología , Enfermedad de Crohn/metabolismo , Humanos , Fibroblastos/metabolismo , Fibroblastos/patología , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Trombospondinas/metabolismo , Trombospondinas/genética , Masculino , Femenino , Adulto , Persona de Mediana Edad , Colitis Ulcerosa/patología , Colitis Ulcerosa/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Anciano , Inmunohistoquímica
4.
Sci Rep ; 14(1): 14757, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926599

RESUMEN

Muscular dystrophy is a group of genetic disorders that lead to muscle wasting and loss of muscle function. Identifying genetic modifiers that alleviate symptoms or enhance the severity of a primary disease helps to understand mechanisms behind disease pathology and facilitates discovery of molecular targets for therapy. Several muscular dystrophies are caused by genetic defects in the components of the dystrophin-glycoprotein adhesion complex (DGC). Thrombospondin-4 overexpression has been shown to mitigate dystrophic disease in mouse models for Duchenne muscular dystrophy (dystrophin deficiency) and limb-girdle muscular dystrophy type 2F (LGMD2F, δ-sarcoglycan deficiency), while deletion of the thrombospondin-4 gene exacerbated the diseases. Hence, thrombospondin-4 has been considered a candidate molecule for therapy of muscular dystrophies involving the DGC. We have investigated whether thrombospondin-4 could act as a genetic modifier for other DGC-associated diseases: limb-girdle muscular dystrophy type 2E (LGMD2E, ß-sarcoglycan deficiency) and laminin α2 chain-deficient muscular dystrophy (LAMA2-RD). Deletion of the thrombospondin-4 gene in mouse models for LGMD2E and LAMA2-RD, respectively, did not result in worsening of the dystrophic phenotype. Loss of thrombospondin-4 did not enhance sarcolemma damage and did not impair trafficking of transmembrane receptors integrin α7ß1 and dystroglycan in double knockout muscles. Our results suggest that thrombospondin-4 might not be a relevant therapeutic target for all muscular dystrophies involving the DGC. This data also demonstrates that molecular pathology between very similar diseases like LGMD2E and 2F can differ significantly.


Asunto(s)
Laminina , Ratones Noqueados , Sarcoglicanos , Trombospondinas , Animales , Laminina/metabolismo , Laminina/genética , Laminina/deficiencia , Sarcoglicanos/genética , Sarcoglicanos/deficiencia , Sarcoglicanos/metabolismo , Ratones , Trombospondinas/genética , Trombospondinas/metabolismo , Trombospondinas/deficiencia , Modelos Animales de Enfermedad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Eliminación de Gen , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología
5.
Sci Adv ; 10(20): eadm9326, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758792

RESUMEN

Intellectual disability (ID) affects ~2% of the population and ID-associated genes are enriched for epigenetic factors, including those encoding the largest family of histone lysine acetyltransferases (KAT5-KAT8). Among them is KAT6A, whose mutations cause KAT6A syndrome, with ID as a common clinical feature. However, the underlying molecular mechanism remains unknown. Here, we find that KAT6A deficiency impairs synaptic structure and plasticity in hippocampal CA3, but not in CA1 region, resulting in memory deficits in mice. We further identify a CA3-enriched gene Rspo2, encoding Wnt activator R-spondin 2, as a key transcriptional target of KAT6A. Deletion of Rspo2 in excitatory neurons impairs memory formation, and restoring RSPO2 expression in CA3 neurons rescues the deficits in Wnt signaling and learning-associated behaviors in Kat6a mutant mice. Collectively, our results demonstrate that KAT6A-RSPO2-Wnt signaling plays a critical role in regulating hippocampal CA3 synaptic plasticity and cognitive function, providing potential therapeutic targets for KAT6A syndrome and related neurodevelopmental diseases.


Asunto(s)
Cognición , Histona Acetiltransferasas , Vía de Señalización Wnt , Animales , Ratones , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Región CA3 Hipocampal/metabolismo , Región CA3 Hipocampal/patología , Trombospondinas/metabolismo , Trombospondinas/genética , Trombospondinas/deficiencia , Plasticidad Neuronal , Ratones Noqueados
6.
Int J Biol Macromol ; 269(Pt 2): 131805, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677673

RESUMEN

Endothelial repair is essential for restoring tissue fluid homeostasis following lung injury. R-spondin3 (RSPO3), a secreted protein mainly produced by endothelial cells (ECs), has shown its protective effect on endothelium. However, the specific mechanisms remain unknown. To explore whether and how RSPO3 regulates endothelial regeneration after inflammatory vascular injury, the role of RSPO3 in sepsis-induced pulmonary endothelial injury was investigated in EC-specific RSPO3 knockdown, inducible EC-specific RSPO3 deletion mice, EC-specific RSPO3 overexpression mice, systemic RSPO3-administration mice, in isolated mouse lung vascular endothelial cells (MLVECs), and in plasma from septic patients. Here we show that plasma RSPO3 levels are decreased in septic patients and correlated with endothelial injury markers and PaO2/FiO2 index. Both pulmonary EC-specific knockdown of RSPO3 and inducible EC-specific RSPO3 deletion inhibit pulmonary ECs proliferation and exacerbate ECs injury, whereas intra-pulmonary EC-specific RSPO3 overexpression promotes endothelial recovery and attenuates ECs injury during endotoxemia. We show that RSPO3 mediates pulmonary endothelial regeneration by a LGR4-dependent manner. Except for ß-catenin, integrin-linked kinase (ILK)/Akt is also identified as a novel downstream effector of RSPO3/LGR4 signaling. These results conclude that EC-derived RSPO3 mediates pulmonary endothelial regeneration by LGR4-dependent activation of ß-catenin and ILK signaling pathways after inflammatory vascular injury.


Asunto(s)
Células Endoteliales , Pulmón , Proteínas Serina-Treonina Quinasas , Receptores Acoplados a Proteínas G , Regeneración , Transducción de Señal , Trombospondinas , beta Catenina , Animales , Trombospondinas/metabolismo , Trombospondinas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , beta Catenina/metabolismo , beta Catenina/genética , Células Endoteliales/metabolismo , Pulmón/patología , Pulmón/metabolismo , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología , Proliferación Celular , Masculino , Sepsis/metabolismo , Inflamación/metabolismo , Inflamación/patología
7.
J Biol Chem ; 300(5): 107284, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614208

RESUMEN

Receptor-mediated cellular uptake of specific ligands constitutes an important step in the dynamic regulation of individual protein levels in extracellular fluids. With a focus on the inflammatory lung, we here performed a proteomics-based search for novel ligands regulated by the mannose receptor (MR), a macrophage-expressed endocytic receptor. WT and MR-deficient mice were exposed to lipopolysaccharide, after which the protein content in their lung epithelial lining fluid was compared by tandem mass tag-based mass spectrometry. More than 1200 proteins were identified in the epithelial lining fluid using this unbiased approach, but only six showed a statistically different abundance. Among these, an unexpected potential new ligand, thrombospondin-4 (TSP-4), displayed a striking 17-fold increased abundance in the MR-deficient mice. Experiments using exogenous addition of TSP-4 to MR-transfected CHO cells or MR-positive alveolar macrophages confirmed that TSP-4 is a ligand for MR-dependent endocytosis. Similar studies revealed that the molecular interaction with TSP-4 depends on both the lectin activity and the fibronectin type-II domain of MR and that a closely related member of the TSP family, TSP-5, is also efficiently internalized by the receptor. This was unlike the other members of this protein family, including TSPs -1 and -2, which are ligands for a close MR homologue known as urokinase plasminogen activator receptor-associated protein. Our study shows that MR takes part in the regulation of TSP-4, an important inflammatory component in the injured lung, and that two closely related endocytic receptors, expressed on different cell types, undertake the selective endocytosis of distinct members of the TSP family.


Asunto(s)
Lectinas Tipo C , Lesión Pulmonar , Receptor de Manosa , Lectinas de Unión a Manosa , Proteómica , Receptores de Superficie Celular , Trombospondinas , Animales , Ratones , Células CHO , Cricetulus , Endocitosis , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Ligandos , Lipopolisacáridos/toxicidad , Pulmón/metabolismo , Pulmón/patología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Lectinas de Unión a Manosa/metabolismo , Lectinas de Unión a Manosa/genética , Ratones Noqueados , Proteómica/métodos , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Trombospondinas/metabolismo , Trombospondinas/genética
8.
Exp Neurol ; 376: 114756, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38508482

RESUMEN

Overexpression of the Ube3a gene and the resulting increase in Ube3a protein are linked to autism spectrum disorder (ASD). However, the cellular and molecular processes underlying Ube3a-dependent ASD remain unclear. Using both male and female mice, we find that neurons in the somatosensory cortex of the Ube3a 2× Tg ASD mouse model display reduced dendritic spine density and increased immature filopodia density. Importantly, the increased gene dosage of Ube3a in astrocytes alone is sufficient to confer alterations in neurons as immature dendritic protrusions, as observed in primary hippocampal neuron cultures. We show that Ube3a overexpression in astrocytes leads to a loss of astrocyte-derived spinogenic protein, thrombospondin-2 (TSP2), due to a suppression of TSP2 gene transcription. By neonatal intraventricular injection of astrocyte-specific virus, we demonstrate that Ube3a overexpression in astrocytes in vivo results in a reduction in dendritic spine maturation in prelimbic cortical neurons, accompanied with autistic-like behaviors in mice. These findings reveal an astrocytic dominance in initiating ASD pathobiology at the neuronal and behavior levels. SIGNIFICANCE STATEMENT: Increased gene dosage of Ube3a is tied to autism spectrum disorders (ASDs), yet cellular and molecular alterations underlying autistic phenotypes remain unclear. We show that Ube3a overexpression leads to impaired dendritic spine maturation, resulting in reduced spine density and increased filopodia density. We find that dysregulation of spine development is not neuron autonomous, rather, it is mediated by an astrocytic mechanism. Increased gene dosage of Ube3a in astrocytes leads to reduced production of the spinogenic glycoprotein thrombospondin-2 (TSP2), leading to abnormalities in spines. Astrocyte-specific Ube3a overexpression in the brain in vivo confers dysregulated spine maturation concomitant with autistic-like behaviors in mice. These findings indicate the importance of astrocytes in aberrant neurodevelopment and brain function in Ube3a-depdendent ASD.


Asunto(s)
Trastorno del Espectro Autista , Espinas Dendríticas , Neuroglía , Ubiquitina-Proteína Ligasas , Animales , Ratones , Astrocitos/metabolismo , Astrocitos/patología , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Células Cultivadas , Espinas Dendríticas/patología , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/fisiología , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Corteza Somatosensorial/metabolismo , Corteza Somatosensorial/patología , Trombospondinas/metabolismo , Trombospondinas/genética , Trombospondinas/biosíntesis , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
Eur J Hum Genet ; 32(5): 550-557, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433265

RESUMEN

Ehlers-Danlos syndromes (EDS) are a group of connective tissue disorders caused by mutations in collagen and collagen-interacting genes. We delineate a novel form of EDS with vascular features through clinical and histopathological phenotyping and genetic studies of a three-generation pedigree, displaying an apparently autosomal dominant phenotype of joint hypermobility and frequent joint dislocations, atrophic scarring, prolonged bleeding time and age-related aortic dilatation and rupture. Coagulation tests as well as platelet counts and function were normal. Reticular dermis displayed highly disorganized collagen fibers and transmission electron microscopy (TEM) revealed abnormally shaped fibroblasts and endothelial cells, with high amount and irregular shape of extracellular matrix (ECM) substance, especially near blood vessels. Genetic analysis unraveled a heterozygous mutation in THBS2 (NM_003247.5:c.2686T>C, p.Cys896Arg). We generated CRISPR/Cas9 knock-in (KI) mice, bearing the heterozygous human mutation in the mouse ortholog. The KI mice demonstrated phenotypic traits correlating with those observed in the human subjects, as evidenced by morphologic, histologic, and TEM analyses, in conjunction with bleeding time assays. Our findings delineate a novel form of human EDS with classical-like elements combined with vascular features, caused by a heterozygous THBS2 missense mutation. We further demonstrate a similar phenotype in heterozygous THBS2Cys896Arg KI mice, in line with previous studies in Thbs2 homozygous null-mutant mice. Notably, THBS2 encodes Thrombospondin-2, a secreted homotrimeric matricellular protein that directly binds the ECM-shaping Matrix Metalloproteinase 2 (MMP2), mediating its clearance. THBS2 loss-of-function attenuates MMP2 clearance, enhancing MMP2-mediated proteoglycan cleavage, causing ECM abnormalities similar to those seen in the human and mouse disease we describe.


Asunto(s)
Síndrome de Ehlers-Danlos , Heterocigoto , Trombospondinas , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patología , Síndrome de Ehlers-Danlos/metabolismo , Animales , Trombospondinas/genética , Trombospondinas/metabolismo , Humanos , Ratones , Masculino , Femenino , Adulto , Fenotipo , Linaje , Persona de Mediana Edad , Mutación Missense
10.
Eur J Cell Biol ; 103(2): 151395, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38340499

RESUMEN

Pain is the most common symptom for which patients seek medical attention. Existing treatments for pain control are largely ineffective due to the lack of an accurate way to objectively measure pain intensity and a poor understanding of the etiology of pain. Thrombospondin 4(TSP4), a member of the thrombospondin gene family, is expressed in neurons and astrocytes and induces pain by interacting with the calcium channel alpha-2-delta-1 subunit (Cavα2δ1). In the present study we show that TSP4 expression level correlates positively with pain intensity, suggesting that TSP4 could be a novel candidate of pain indicator. Using RNAi-lentivirus (RNAi-LV) to knock down TSP4 both in vivo and in vitro, together with electrophysiological experiments involving paired patch-clamp recordings of evoked action potentials and post-synaptic currents in cultured neurons, we found that TSP4 contributes to the development of bone cancer pain, neuropathic pain, and inflammatory pain. This effect is mediated by regulation of neuron excitability via inhibition of synapsin I (Syn I) and modulation of excitatory and inhibitory presynaptic transmission via regulation of vesicular glutamate transporter 2(Vglut2), vesicular GABA transporter (VGAT), and glutamate decarboxylase (GAD) expression. The present study provides a replicable, predictive, valid indicator of pain and demonstrated the underlying molecular and electrophysiological mechanisms by which TSP4 contributes to pain.


Asunto(s)
Trombospondinas , Animales , Trombospondinas/metabolismo , Trombospondinas/genética , Masculino , Dolor/metabolismo , Neuronas/metabolismo , Ratones , Humanos , Femenino , Neoplasias Óseas/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/patología
11.
Biol Reprod ; 110(5): 985-999, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38376238

RESUMEN

Sry on the Y-chromosome upregulates Sox9, which in turn upregulates a set of genes such as Fgf9 to initiate testicular differentiation in the XY gonad. In the absence of Sry expression, genes such as Rspo1, Foxl2, and Runx1 support ovarian differentiation in the XX gonad. These two pathways antagonize each other to ensure the development of only one gonadal sex in normal development. In the B6.YTIR mouse, carrying the YTIR-chromosome on the B6 genetic background, Sry is expressed in a comparable manner with that in the B6.XY mouse, yet, only ovaries or ovotestes develop. We asked how testicular and ovarian differentiation pathways interact to determine the gonadal sex in the B6.YTIR mouse. Our results showed that (1) transcript levels of Sox9 were much lower than in B6.XY gonads while those of Rspo1 and Runx1 were as high as B6.XX gonads at 11.5 and 12.5 days postcoitum. (2) FOXL2-positive cells appeared in mosaic with SOX9-positive cells at 12.5 days postcoitum. (3) SOX9-positive cells formed testis cords in the central area while those disappeared to leave only FOXL2-positive cells in the poles or the entire area at 13.5 days postcoitum. (4) No difference was found at transcript levels of all genes between the left and right gonads up to 12.5 days postcoitum, although ovotestes developed much more frequently on the left than the right at 13.5 days postcoitum. These results suggest that inefficient Sox9 upregulation and the absence of Rspo1 repression prevent testicular differentiation in the B6.YTIR gonad.


Asunto(s)
Factor de Transcripción SOX9 , Procesos de Determinación del Sexo , Testículo , Trombospondinas , Regulación hacia Arriba , Animales , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Masculino , Femenino , Ratones , Trombospondinas/genética , Trombospondinas/metabolismo , Procesos de Determinación del Sexo/genética , Procesos de Determinación del Sexo/fisiología , Testículo/metabolismo , Gónadas/metabolismo , Ovario/metabolismo , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Diferenciación Sexual/genética , Ratones Endogámicos C57BL
12.
PLoS One ; 19(2): e0297135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38408093

RESUMEN

Age-related macular degeneration (AMD) is a vision threatening disease in older adults. Anti-VEGF treatment is effective for the majority of neovascular AMD (nAMD) patients, although approximately 30% of nAMD patients have an incomplete response for unknown reasons. Here we assessed the contribution of single nucleotide polymorphisms (SNPs) in key angioinflammatory regulatory genes in nAMD patients with an incomplete response compared to those responsive to anti-VEGF treatment. A total of 25 responsive and 30 nAMD patients with an incomplete response to anti-vascular endothelial growth factor (anti-VEGF) treatment were examined for known SNPs that impact the structure and function of thromobospondin-1 (TSP1), Bcl-2-interacting mediator of cell death (BIM) and complement factor H (CFH). Plasma levels of C-C motif chemokine ligand 2 (CCL2/MCP1), TSP1 and VEGF were assessed by ELISA. Patients responsive to anti-VEGF treatment showed a significant increase in the TSP1 rs2228262 AA allele and a trend for the BIM (rs724710) CT allele. Consistent with previous reports, 42% of the patients responsive to anti-VEGF expressed the CC allele for CFH rs1061170. Although the CFH TT allele had similarly low prevalence in both groups, the TC allele tended to be more prevalent in patients with an incomplete response. Patients with an incomplete response also had increased plasma CCL2/MCP1 levels, consistent with the role increased inflammation has in the pathogenesis of nAMD. Our studies point to new tools to assess the potential responsiveness of nAMD patients to anti-VEGF treatment and suggest the potential use of anti-CCL2 for treatment of nAMD patients with an incomplete response to anti-VEGF.


Asunto(s)
Inhibidores de la Angiogénesis , Degeneración Macular Húmeda , Humanos , Anciano , Factor H de Complemento/genética , Factor A de Crecimiento Endotelial Vascular/genética , Agudeza Visual , Polimorfismo de Nucleótido Simple , Trombospondinas/genética
13.
Matrix Biol ; 127: 8-22, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281553

RESUMEN

Lumbar spinal canal stenosis is primarily caused by ligamentum flavum hypertrophy (LFH), which is a significant pathological factor. Nevertheless, the precise molecular basis for the development of LFH remains uncertain. The current investigation observed a notable increase in thrombospondin-1 (THBS1) expression in LFH through proteomics analysis and single-cell RNA-sequencing analysis of clinical ligamentum flavum specimens. In laboratory experiments, it was demonstrated that THBS1 triggered the activation of Smad3 signaling induced by transforming growth factor ß1 (TGFß1), leading to the subsequent enhancement of COL1A2 and α-SMA, which are fibrosis markers. Furthermore, experiments conducted on a bipedal standing mouse model revealed that THBS1 played a crucial role in the development of LFH. Sestrin2 (SESN2) acted as a stress-responsive protein that suppressed the expression of THBS1, thus averting the progression of fibrosis in ligamentum flavum (LF) cells. To summarize, these results indicate that mechanical overloading causes an increase in THBS1 production, which triggers the TGFß1/Smad3 signaling pathway and ultimately results in the development of LFH. Targeting the suppression of THBS1 expression may present a novel approach for the treatment of LFH.


Asunto(s)
Ligamento Amarillo , Proteína smad3 , Trombospondinas , Factor de Crecimiento Transformador beta1 , Animales , Ratones , Fibrosis , Hipertrofia/metabolismo , Ligamento Amarillo/metabolismo , Ligamento Amarillo/patología , Transducción de Señal , Estrés Mecánico , Trombospondinas/genética , Trombospondinas/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo
14.
Immunology ; 171(2): 262-269, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37957948

RESUMEN

Fucosylation plays a critical role in cell-to-cell interactions and disease progression. However, the effects of fucosylation on splenocytes and their interactions with T cells remain unclear. In this study, we aimed to explore the transcriptome profiles of splenocytes deficient in fucosyltransferase (FUT) 1, an enzyme that mediates fucosylation, and investigate their impact on the proliferation and differentiation of T cells. We analysed and compared the transcriptomes of splenocytes isolated from Fut1 knockout (KO) mice and those from wild-type (WT) mice using RNA-seq. Additionally, we examined the effects of Fut1 KO splenocytes on CD4 T cell proliferation and differentiation, in comparison to WT splenocytes, and elucidated the mechanisms involved. The comparative analysis of transcriptomes between Fut1 KO and WT splenocytes revealed that thrombospondin-1, among the genes related to immune response and inflammation, was the most highly downregulated gene in Fut1 KO splenocytes. The reduced expression of thrombospondin-1 was further confirmed using qRT-PCR and flow cytometry. In coculture experiments, Fut1 KO splenocytes promoted the proliferation of CD4 T cells and drove their differentiation toward Th1 and Th17 cells, compared with WT splenocytes. Moreover, the levels of IL-2, IFN-γ and IL-17 were increased, while IL-10 was decreased, in T cells cocultured with Fut1 KO splenocytes compared with those with WT splenocytes. These effects of Fut1 KO splenocytes on T cells were reversed when thrombospondin-1 was replenished. Taken together, our results demonstrate that splenocytes with Fut1 deficiency promote CD4 T cell proliferation and Th1/Th17 differentiation at least in part through thrombospondin-1 downregulation.


Asunto(s)
Linfocitos T CD4-Positivos , Bazo , Animales , Ratones , Regulación hacia Abajo , Diferenciación Celular , Proliferación Celular , Trombospondinas/genética , Ratones Noqueados , Ratones Endogámicos C57BL
15.
Semin Cell Dev Biol ; 155(Pt B): 58-65, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423854

RESUMEN

Thrombospondins (TSPs) belong to a functional class of ECM proteins called matricellular proteins that are not primarily structural, but instead influence cellular interactions within the local extracellular environment. The 3D arrangement of TSPs allow interactions with other ECM proteins, sequestered growth factors, and cell surface receptors. They are expressed in mesenchymal condensations and limb buds during skeletal development, but they are not required for patterning. Instead, when absent, there are alterations in musculoskeletal connective tissue ECM structure, organization, and function, as well as altered skeletal cell phenotypes. Both functional redundancies and unique contributions to musculoskeletal tissue structure and physiology are revealed in mouse models with compound TSP deletions. Crucial roles of individual TSPs are revealed during musculoskeletal injury and regeneration. The interaction of TSPs with mesenchymal stem cells (MSC), and their influence on cell fate, function, and ultimately, musculoskeletal phenotype, suggest that TSPs play integral, but as yet poorly understood roles in musculoskeletal health. Here, unique and overlapping contributions of trimeric TSP1/2 and pentameric TSP3/4/5 to musculoskeletal cell and matrix physiology are reviewed. Opportunities for new research are also noted.


Asunto(s)
Proteínas de la Matriz Extracelular , Trombospondinas , Ratones , Animales , Trombospondinas/genética , Trombospondinas/metabolismo , Esqueleto/metabolismo , Fenómenos Fisiológicos Celulares
16.
Semin Cell Dev Biol ; 155(Pt B): 66-73, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37391348

RESUMEN

Thrombospondin-4 (TSP-4) belongs to the extracellular matrix glycoprotein family of thrombospondins (TSPs). The multidomain, pentameric structure of TSP-4 allows its interactions with numerous extracellular matrix components, proteins and signaling molecules that enable its modulation to various physiological and pathological processes. Characterization of TSP-4 expression under development and pathogenesis of disorders has yielded important insights into mechanisms underlying the unique role of TSP-4 in mediating various processes including cell-cell, cell-extracellular matrix interactions, cell migration, proliferation, tissue remodeling, angiogenesis, and synaptogenesis. Maladaptation of these processes in response to pathological insults and stress can accelerate the development of disorders including skeletal dysplasia, osteoporosis, degenerative joint disease, cardiovascular diseases, tumor progression/metastasis and neurological disorders. Overall, the diverse functions of TSP-4 suggest that it may be a potential marker or therapeutic target for prognosis, diagnosis, and treatment of various pathological conditions upon further investigations. This review article highlights recent findings on the role of TSP-4 in both physiological and pathological conditions with a focus on what sets it apart from other TSPs.


Asunto(s)
Enfermedades Cardiovasculares , Trombospondinas , Humanos , Trombospondinas/genética , Trombospondinas/química , Trombospondinas/metabolismo , Matriz Extracelular/metabolismo , Movimiento Celular , Morfogénesis , Enfermedades Cardiovasculares/metabolismo
17.
Semin Cell Dev Biol ; 155(Pt B): 12-21, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37202276

RESUMEN

Thrombospondins (TSPs) are multidomain, calcium-binding glycoproteins that have wide-ranging roles in vertebrates in cell interactions, extracellular matrix (ECM) organisation, angiogenesis, tissue remodelling, synaptogenesis, and also in musculoskeletal and cardiovascular functions. Land animals encode five TSPs, which assembly co-translationally either as trimers (subgroup A) or pentamers (subgroup B). The vast majority of research has focused on this canonical TSP family, which evolved through the whole-genome duplications that took place early in the vertebrate lineage. With benefit of the growth in genome- and transcriptome-predicted proteomes of a much wider range of animal species, examination of TSPs throughout metazoan phyla has revealed extensive conservation of subgroup B-type TSPs in invertebrates. In addition, these searches established that canonical TSPs are, in fact, one branch within a TSP superfamily that includes other clades designated mega-TSPs, sushi-TSPs and poriferan-TSPs. Despite the apparent simplicity of poriferans and cnidarians as organisms, these phyla encode a greater diversity of TSP superfamily members than vertebrates. We discuss here the molecular characteristics of the TSP superfamily members, current knowledge of their expression profiles and functions in invertebrates, and models for the evolution of this complex ECM superfamily.


Asunto(s)
Invertebrados , Trombospondinas , Animales , Trombospondinas/genética , Trombospondinas/química , Trombospondinas/metabolismo , Invertebrados/genética , Evolución Molecular
18.
Semin Cell Dev Biol ; 155(Pt B): 3-11, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37286406

RESUMEN

Many cancers begin with the formation of a small nest of transformed cells that can remain dormant for years. Thrombospondin-1 (TSP-1) initially promotes dormancy by suppressing angiogenesis, a key early step in tumor progression. Over time, increases in drivers of angiogenesis predominate, and vascular cells, immune cells, and fibroblasts are recruited to the tumor mass forming a complex tissue, designated the tumor microenvironment. Numerous factors, including growth factors, chemokine/cytokine, and extracellular matrix, participate in the desmoplastic response that in many ways mimics wound healing. Vascular and lymphatic endothelial cells, and cancer-associated pericytes, fibroblasts, macrophages and immune cells are recruited to the tumor microenvironment, where multiple members of the TSP gene family promote their proliferation, migration and invasion. The TSPs also affect the immune signature of tumor tissue and the phenotype of tumor-associated macrophages. Consistent with these observations, expression of some TSPs has been established to correlate with poor outcomes in specific types of cancer.


Asunto(s)
Neoplasias , Trombospondinas , Humanos , Trombospondinas/genética , Trombospondinas/metabolismo , Células Endoteliales/metabolismo , Microambiente Tumoral , Neoplasias/metabolismo , Matriz Extracelular/metabolismo
19.
FASEB J ; 38(1): e23321, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38031974

RESUMEN

Bypass graft failure occurs in 20%-50% of coronary and lower extremity bypasses within the first-year due to intimal hyperplasia (IH). TSP-2 is a key regulatory protein that has been implicated in the development of IH following vessel injury. In this study, we developed a biodegradable CLICK-chemistry gelatin-based hydrogel to achieve sustained perivascular delivery of TSP-2 siRNA to rat carotid arteries following endothelial denudation injury. At 21 days, perivascular application of TSP-2 siRNA embedded hydrogels significantly downregulated TSP-2 gene expression, cellular proliferation, as well as other associated mediators of IH including MMP-9 and VEGF-R2, ultimately resulting in a significant decrease in IH. Our data illustrates the ability of perivascular CLICK-gelatin delivery of TSP-2 siRNA to mitigate IH following arterial injury.


Asunto(s)
Gelatina , Lesiones del Sistema Vascular , Ratas , Animales , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Hiperplasia , Trombospondinas/genética , Proliferación Celular
20.
Kidney Int ; 104(5): 878-880, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37863634

RESUMEN

Much akin to the explosion in number of known target antigens in membranous nephropathy, there has been a rapid expansion in the availability of animal models involving the first 2 antigens discovered in adult disease, phospholipase A2 receptor and thrombospondin type 1 domain-containing 7A. In this issue, Tomas et al. describe a novel mouse model of phospholipase A2 receptor-associated membranous nephropathy that shows great promise for investigating molecular mechanisms of disease and as an experimental system for testing existing and emerging therapies.


Asunto(s)
Glomerulonefritis Membranosa , Animales , Ratones , Receptores de Fosfolipasa A2 , Modelos Animales de Enfermedad , Autoanticuerpos , Trombospondinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA