Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 673
Filtrar
1.
Planta ; 259(6): 137, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683389

RESUMEN

MAIN CONCLUSION: Self-incompatibility studies have revealed a potential use of Tunisian apple resources for crop improvement and modern breeding programs and a likely correlation between the pollen tube growth and flowering period. Apples [Malus domestica. Borkh] exhibit an S-RNase-based gametophytic self-incompatibility (GSI) system. Four primer combinations were used to S-genotype eighteen Tunisian local apple accessions and twelve introduced accessions that served as references. Within the Tunisian local accessions, S2, S3, S7, and S28 S-alleles were the most frequent and were assigned to 14 S-genotypes; among them, S7S28, S3S7, S2S5, and S2S3 were the most abundant. PCA plot showed that population structuring was affected by the S-alleles frequencies and revealed a modern origin of the Tunisian varieties rather than being ancient ones. Nonetheless, the results obtained with 17 SSR markers showed a separate grouping of local Tunisian accessions that calls into question the hypothesis discussed. Pollination experiments showed that the pollen started to germinate within 24 h of pollination but 48 h after pollination in the "El Fessi" accession. The first pollen tubes arrived in the styles within 36 h of pollination in two early flowering accessions known as "Arbi" and "Bokri", and after 72 h of pollination in late flowering "El Fessi" and 48 h after pollination in remaining accessions. The first pollen tube arrests were observed in accessions "Arbi" and "Bokri" within 84 h of pollination, within 108 h of pollination in "El Fessi" and within 108 h of pollination in remaining accessions. In the apple accession called "Boutabgaya," the pollen tubes reached the base of the style within 120 h of pollination without being aborted. Nevertheless, the self-compatible nature of "Boutabgaya" needs more studies to be confirmed. However, our results revealed the malfunction of the female component of the GSI in this accession. To conclude, this work paved the path for further studies to enhance the insight (i) into the relation between the flowering period and the pollen tube growth, (ii) self-compatible nature of "Boutabgaya", and (iii) the origin of the Tunisian apple.


Asunto(s)
Genotipo , Malus , Tubo Polínico , Polinización , Autoincompatibilidad en las Plantas con Flores , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/fisiología , Tubo Polínico/genética , Malus/genética , Malus/crecimiento & desarrollo , Malus/fisiología , Túnez , Autoincompatibilidad en las Plantas con Flores/genética , Alelos , Polen/genética , Polen/fisiología , Polen/crecimiento & desarrollo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Flores/crecimiento & desarrollo , Flores/genética , Flores/fisiología
2.
Science ; 383(6686): eadh0755, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422152

RESUMEN

Genome duplication (generating polyploids) is an engine of novelty in eukaryotic evolution and a promising crop improvement tool. Yet newly formed polyploids often have low fertility. Here we report that a severe fertility-compromising defect in pollen tube tip growth arises in new polyploids of Arabidopsis arenosa. Pollen tubes of newly polyploid A. arenosa grow slowly, have aberrant anatomy and disrupted physiology, often burst prematurely, and have altered gene expression. These phenotypes recover in evolved polyploids. We also show that gametophytic (pollen tube) genotypes of two tip-growth genes under selection in natural tetraploid A. arenosa are strongly associated with pollen tube performance in the tetraploid. Our work establishes pollen tube tip growth as an important fertility challenge for neo-polyploid plants and provides insights into a naturally evolved multigenic solution.


Asunto(s)
Arabidopsis , Tubo Polínico , Polinización , Poliploidía , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Tetraploidía , Duplicación de Gen , Polinización/genética , Polinización/fisiología
3.
Plant Physiol ; 195(1): 343-355, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38270530

RESUMEN

Flowering plants contain tightly controlled pollen-pistil interactions required for promoting intraspecific fertilization and preventing interspecific hybridizations. In Arabidopsis (Arabidopsis thaliana), several receptor kinases (RKs) are known to regulate the later stages of intraspecific pollen tube growth and ovular reception in the pistil, but less is known about RK regulation of the earlier stages. The Arabidopsis RECEPTOR-LIKE KINASE IN FLOWERS1 (RKF1)/RKF1-LIKE (RKFL) 1-3 cluster of 4 leucine-rich repeat malectin (LRR-MAL) RKs was previously found to function in the stigma to promote intraspecific pollen hydration. In this study, we tested additional combinations of up to 7 Arabidopsis LRR-MAL RK knockout mutants, including RKF1, RKFL1-3, LysM RLK1-INTERACTING KINASE1, REMORIN-INTERACTING RECEPTOR1, and NEMATODE-INDUCED LRR-RLK2. These LRR-MAL RKs were discovered to function in the female stigma to support intraspecific Arabidopsis pollen tube growth and to establish a prezygotic interspecific barrier against Capsella rubella pollen. Thus, this study uncovered additional biological functions for this poorly understood group of RKs in regulating the early stages of Arabidopsis sexual reproduction.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flores , Tubo Polínico , Polen , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/fisiología , Polen/genética , Polen/fisiología , Polen/crecimiento & desarrollo , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Polinización/fisiología , Capsella/genética , Capsella/fisiología , Capsella/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Repetidas Ricas en Leucina
5.
Plant Cell ; 36(5): 1673-1696, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38142229

RESUMEN

Autocrine signaling pathways regulated by RAPID ALKALINIZATION FACTORs (RALFs) control cell wall integrity during pollen tube germination and growth in Arabidopsis (Arabidopsis thaliana). To investigate the role of pollen-specific RALFs in another plant species, we combined gene expression data with phylogenetic and biochemical studies to identify candidate orthologs in maize (Zea mays). We show that Clade IB ZmRALF2/3 mutations, but not Clade III ZmRALF1/5 mutations, cause cell wall instability in the sub-apical region of the growing pollen tube. ZmRALF2/3 are mainly located in the cell wall and are partially able to complement the pollen germination defect of their Arabidopsis orthologs AtRALF4/19. Mutations in ZmRALF2/3 compromise pectin distribution patterns leading to altered cell wall organization and thickness culminating in pollen tube burst. Clade IB, but not Clade III ZmRALFs, strongly interact as ligands with the pollen-specific Catharanthus roseus RLK1-like (CrRLK1L) receptor kinases Z. mays FERONIA-like (ZmFERL) 4/7/9, LORELEI-like glycosylphosphatidylinositol-anchor (LLG) proteins Z. mays LLG 1 and 2 (ZmLLG1/2), and Z. mays pollen extension-like (PEX) cell wall proteins ZmPEX2/4. Notably, ZmFERL4 outcompetes ZmLLG2 and ZmPEX2 outcompetes ZmFERL4 for ZmRALF2 binding. Based on these data, we suggest that Clade IB RALFs act in a dual role as cell wall components and extracellular sensors to regulate cell wall integrity and thickness during pollen tube growth in maize and probably other plants.


Asunto(s)
Pared Celular , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Tubo Polínico , Transducción de Señal , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Pared Celular/metabolismo , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/genética , Tubo Polínico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mutación , Filogenia , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pectinas/metabolismo , Germinación/genética
6.
Science ; 382(6671): 719-725, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37943924

RESUMEN

Assembly of cell wall polysaccharides into specific patterns is required for plant growth. A complex of RAPID ALKALINIZATION FACTOR 4 (RALF4) and its cell wall-anchored LEUCINE-RICH REPEAT EXTENSIN 8 (LRX8)-interacting protein is crucial for cell wall integrity during pollen tube growth, but its molecular connection with the cell wall is unknown. Here, we show that LRX8-RALF4 complexes adopt a heterotetrametric configuration in vivo, displaying a dendritic distribution. The LRX8-RALF4 complex specifically interacts with demethylesterified pectins in a charge-dependent manner through RALF4's polycationic surface. The LRX8-RALF4-pectin interaction exerts a condensing effect, patterning the cell wall's polymers into a reticulated network essential for wall integrity and expansion. Our work uncovers a dual structural and signaling role for RALF4 in pollen tube growth and in the assembly of complex extracellular polymers.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Pared Celular , Pectinas , Tubo Polínico , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Pectinas/química , Pectinas/metabolismo , Péptidos/metabolismo , Tubo Polínico/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo
7.
Planta ; 258(1): 1, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208536

RESUMEN

MAIN CONCLUSION: Arabidopsis GR1 and NTRA function in pollen tube penetrating the stigma into the transmitting tract during pollination. During pollination, recognition between pollen (tube) and stigma mediates the hydration and germination of pollen, as well as the growth of the pollen tube on the stigma. Arabidopsis glutathione reductase 1 (GR1) and NADPH-dependent thioredoxin reductase A (NTRA) are involved in regulating cell redox hemostasis. Both GR1 and NTRA are expressed in pollen, but their roles in pollen germination and the growth of the pollen tube need further investigation. In this study, we performed pollination experiments and found that the Arabidopsis gr1/ + ntra/- and gr1/- ntra/ + double mutation compromised the transmission of male gametophytes. Pollen morphology and viability of the mutants did not show obvious abnormalities. Additionally, the pollen hydration and germination of the double mutants on solid pollen germination medium were comparable to those of the wild type. However, the pollen tubes with gr1 ntra double mutation were unable to penetrate the stigma and enter the transmitting tract when they grew on the surface of the stigma. Our results indicate that GR1 and NTRA play a role in regulating the interaction between the pollen tube and the stigma during pollination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ciclo Celular , Tubo Polínico , Reductasa de Tiorredoxina-Disulfuro , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glutatión Reductasa/metabolismo , Tubo Polínico/crecimiento & desarrollo , Polinización , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
8.
Plant Physiol ; 193(1): 140-155, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36974907

RESUMEN

Pollen germination is a process of polarity establishment, through which a single and unique growth axis is established. Although most of the intracellular activities associated with pollen germination are controlled by RHO OF PLANTs (ROPs) and increased ROP activation accompanies pollen germination, a critical role of ROPs in this process has not yet been demonstrated. Here, by genomic editing of all 4 Arabidopsis (Arabidopsis thaliana) ROPs that are preferentially expressed in pollen, we showed that ROPs are essential for polarity establishment during pollen germination. We further identified and characterized 2 ROP effectors in pollen germination (REGs) through genome-wide interactor screening, boundary of ROP domain (BDR) members BDR8 and BDR9, whose functional loss also resulted in no pollen germination. BDR8 and BDR9 were distributed in the cytosol and the vegetative nucleus of mature pollen grains but redistributed to the plasma membrane (PM) of the germination site and to the apical PM of growing pollen tubes. We demonstrated that the PM redistribution of BDR8 and BDR9 during pollen germination relies on ROPs but not vice versa. Furthermore, enhanced expression of BDR8 partially restored germination of rop1 pollen but had no effects on that of the quadruple rop pollen, supporting their genetic epistasis. Results presented here demonstrate an ROP signaling route essential for pollen germination, which supports evolutionarily conserved roles of Rho GTPases in polarity establishment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tubo Polínico , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Germinación , Tubo Polínico/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Infertilidad Vegetal , Epistasis Genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Polen/citología , Polen/metabolismo
9.
Sci Rep ; 13(1): 611, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635467

RESUMEN

Mango flowering is highly sensitive to temperature changes. In this research, the maximum values of pollen germination rate (PGR), pollen tube length (PTL) and their cardinal temperatures (Tmin, Topt and Tmax) were estimated by using quadratic equation and modified bilinear model under the conditions of 14-36 °C. The pollen germination rate in four mango varieties ranged from 29.1% ('Apple mango') to 35.5% ('Renong No. 1'); the length of pollen tube ranged from 51.2 µm ('Deshehari') to 56.6 µm ('Jinhuang'). The cardinal temperatures ranges (Tmin, Topt and Tmax) of pollen germination were 20.3-22.8 °C, 26.7-30.6 °C and 30.4-34.3 °C, respectively; similarly, cardinal temperatures (Tmin, Topt and Tmax) of pollen tube growth were 20.3-21.2 °C, 27.9-32.1 °C and 30.2-34.4 °C respectively. Of those, 'Renong No. 1' could maintain relatively high pollen germination rate even at 30 °C, however, 'Deshehari' had the narrowest adaptive temperature range. These results were further confirmed by changes of superoxide dismutase, catalase activity and malondialdehyde content. These results showed that mango flowering was highly sensitive to temperature changes and there were significant differences in pollen germination rate and pollen tube length among different varieties. Current research results were of great significance for the introduction of new mango varieties in different ecological regions, the cultivation and management of mango at the flowering stage and the breeding of new mango varieties.


Asunto(s)
Germinación , Respuesta al Choque Térmico , Calor , Mangifera , Tubo Polínico , Genotipo , Mangifera/anatomía & histología , Mangifera/genética , Mangifera/crecimiento & desarrollo , Fitomejoramiento , Tubo Polínico/anatomía & histología , Tubo Polínico/crecimiento & desarrollo
10.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35163795

RESUMEN

Although pollen structure and morphology evolved toward the optimization of stability and fertilization efficiency, its performance is affected by harsh environmental conditions, e.g., heat, cold, drought, pollutants, and other stressors. These phenomena are expected to increase in the coming years in relation to predicted environmental scenarios, contributing to a rapid increase in the interest of the scientific community in understanding the molecular and physiological responses implemented by male gametophyte to accomplish reproduction. Here, after a brief introduction summarizing the main events underlying pollen physiology with a focus on polyamine involvement in its development and germination, we review the main effects that environmental stresses can cause on pollen. We report the most relevant evidence in the literature underlying morphological, cytoskeletal, metabolic and signaling alterations involved in stress perception and response, focusing on the final stage of pollen life, i.e., from when it hydrates, to pollen tube growth and sperm cell transport, with these being the most sensitive to environmental changes. Finally, we hypothesize the molecular mechanisms through which polyamines, well-known molecules involved in plant development, stress response and adaptation, can exert a protective action against environmental stresses in pollen by decoding the essential steps and the intersection between polyamines and pollen tube growth mechanisms.


Asunto(s)
Tubo Polínico/crecimiento & desarrollo , Poliaminas/metabolismo , Fertilidad , Germinación , Tubo Polínico/metabolismo , Tubo Polínico/fisiología , Transducción de Señal , Estrés Fisiológico
11.
BMC Plant Biol ; 22(1): 24, 2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-34998378

RESUMEN

BACKGROUND: Pollen development in the anther in angiosperms depends on complicated cellular interactions associated with the expression of gametophytic and sporophytic genes which control fundamental processes during microsporo/gametogenesis, such as exo/endocytosis, intracellular transport, cell signaling, chromatin remodeling, and cell division. Most if not all of these cellular processes depend of local concentration of calcium ions (Ca2+). Work from our laboratory and others provide evidence that calreticulin (CRT), a prominent Ca2+-binding/buffering protein in the endoplasmic reticulum (ER) of eukaryotic cells, may be involved in pollen formation and function. Here, we show for the first time the expression pattern of the PhCRT1 gene and CRT accumulation in relation to exchangeable Ca2+ in Petunia hybrida developing anther, and discuss probable roles for this protein in the male gametophyte development. RESULTS: Using northern hybridization, western blot analysis, fluorescent in situ hybridization (FISH), immunocytochemistry, and potassium antimonate precipitation, we report that PhCRT1 is highly expressed in the anther and localization pattern of the CRT protein correlates with loosely bound (exchangeable) Ca2+ during the successive stages of microsporo/gametogenesis. We confirmed a permanent presence of both CRT and exchangeable Ca2+ in the germ line and tapetal cells, where these factors preferentially localized to the ER which is known to be the most effective intracellular Ca2+ store in eukaryotic cells. In addition, our immunoblots revealed a gradual increase in CRT level from the microsporocyte stage through the meiosis and the highest CRT level at the microspore stage, when both microspores and tapetal cells show extremely high secretory activity correlated with the biogenesis of the sporoderm. CONCLUSION: Our present data provide support for a key role of CRT in developing anther of angiosperms - regulation of Ca2+ homeostasis during pollen grains formation. This Ca2+-buffering chaperone seems to be essential for pollen development and maturation since a high rate of protein synthesis and protein folding within the ER as well as intracellular Ca2+ homeostasis are strictly required during the multi-step process of pollen development.


Asunto(s)
Calcio/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Petunia/crecimiento & desarrollo , Petunia/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Petunia/metabolismo , Tubo Polínico/metabolismo
12.
Plant J ; 109(3): 598-614, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34775642

RESUMEN

Pollen tube integrity, growth and guidance are crucial factors in plant sexual reproduction. Members of the plant Skewed5 (SKU5) Similar (SKS) family show strong similarity to multicopper oxidases (MCOs), but they lack conserved histidines in MCO active sites. The functions of most SKS family members are unknown. Here, we show that Arabidopsis pollen-expressed SKS11 and SKS12 play important roles in pollen tube integrity, growth and guidance. The sks11sks12 mutant exhibited significantly reduced male fertility. Most of the pollen from sks11sks12 plants burst when germinated, and the pollen tubes grew slowly and exhibited defective growth along the funiculus and micropyle. SKS11-GFP and SKS12-mCherry were detected at the cell wall in pollen tubes. The contents of several cell wall polysaccharides and arabinogalactans were decreased in the pollen tube cell walls of sks11sks12 plants. Staining with a reactive oxygen species (ROS)-sensitive dye and use of the H2 O2 sensor HyPer revealed that the ROS content in the pollen tubes of sks11sks12 plants was remarkably reduced. SKS11444His-Ala , in which the last conserved histidine was mutated, could restore the mutant phenotypes of sks11sks12. Thus, SKS11/12 are required for pollen tube integrity, growth and guidance possibly by regulating the ROS level and cell wall polysaccharide deposition or remodeling in pollen tubes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Glicoproteínas de Membrana/metabolismo , Tubo Polínico/efectos de los fármacos , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Fenotipo
13.
Plant Physiol ; 187(4): 2361-2380, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34601610

RESUMEN

Sexual reproduction in flowering plants takes place without an aqueous environment. Sperm are carried by pollen through air to reach the female gametophyte, though the molecular basis underlying the protective strategy of the male gametophyte is poorly understood. Here we compared the published transcriptomes of Arabidopsis thaliana pollen, and of heat-responsive genes, and uncovered insights into how mature pollen (MP) tolerates desiccation, while developing and germinating pollen are vulnerable to heat stress. Germinating pollen expresses molecular chaperones or "heat shock proteins" in the absence of heat stress. Furthermore, pollen tubes that grew through pistils at basal temperature showed induction of the endoplasmic reticulum (ER) stress response, which is a characteristic of stressed vegetative tissues. Recent studies show MP contains mRNA-protein (mRNP) aggregates that resemble "stress" granules triggered by heat or other stresses to protect cells. Based on these observations, we postulate that mRNP particles are formed in maturing pollen in response to developmentally programmed dehydration. Dry pollen can withstand harsh conditions as it is dispersed in air. We propose that, when pollen lands on a compatible pistil and hydrates, mRNAs stored in particles are released, aided by molecular chaperones, to become translationally active. Pollen responds to osmotic, mechanical, oxidative, and peptide cues that promote ER-mediated proteostasis and membrane trafficking for tube growth and sperm discharge. Unlike vegetative tissues, pollen depends on stress-protection strategies for its normal development and function. Thus, heat stress during reproduction likely triggers changes that interfere with the normal pollen responses, thereby compromising male fertility. This holistic perspective provides a framework to understand the basis of heat-tolerant strains in the reproduction of crops.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Retículo Endoplásmico/metabolismo , Fertilidad/genética , Respuesta al Choque Térmico/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Chaperonas Moleculares/metabolismo , Transcriptoma
14.
Plant J ; 108(4): 1145-1161, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34559914

RESUMEN

The movement of organelles and vesicles in pollen tubes depends on F-actin. However, the molecular mechanism through which plant myosin XI drives the movement of organelles is still controversial, and the relationship between myosin XI and vesicle movement in pollen tubes is also unclear. In this study, we found that the siliques of the myosin xi-b/e mutant were obviously shorter than those of the wild-type (WT) and that the seed set of the mutant was severely deficient. The pollen tube growth of myosin xi-b/e was significantly inhibited both in vitro and in vivo. Fluorescence recovery after photobleaching showed that the velocity of vesicle movement in the pollen tube tip of the myosin xi-b/e mutant was lower than that of the WT. It was also found that peroxisome movement was significantly inhibited in the pollen tubes of the myosin xi-b/e mutant, while the velocities of the Golgi stack and mitochondrial movement decreased relatively less in the pollen tubes of the mutant. The endoplasmic reticulum streaming in the pollen tube shanks was not significantly different between the WT and the myosin xi-b/e mutant. In addition, we found that myosin XI-B-GFP colocalized obviously with vesicles and peroxisomes in the pollen tubes of Arabidopsis. Taken together, these results indicate that myosin XI-B may bind mainly to vesicles and peroxisomes, and drive their movement in pollen tubes. These results also suggest that the mechanism by which myosin XI drives organelle movement in plant cells may be evolutionarily conserved compared with other eukaryotic cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Miosinas/metabolismo , Orgánulos/metabolismo , Actinas/genética , Actinas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Retículo Endoplásmico/metabolismo , Genes Reporteros , Aparato de Golgi/metabolismo , Mitocondrias/metabolismo , Mutación , Miosinas/genética , Peroxisomas/metabolismo , Fenotipo , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Vesículas Secretoras/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo
15.
FEBS Lett ; 595(20): 2593-2607, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34427925

RESUMEN

Proline-rich extensin-like receptor kinases (PERKs) belong to the hydroxyproline-rich glycoprotein (HRGP) superfamily known to be involved in many plant developmental processes. Here, we characterized two pollen-expressed PERKs from Arabidopsis thaliana, PERK5 and PERK12. Pollen tube growth was impaired in single and double perk5-1 perk12-1 loss of function mutants, with an impact on seed production. When the segregation was analysed, a male gametophytic defect was found, indicating that perk5-1 and perk12-1 mutants carry deficient pollen transmission. Furthermore, perk5-1 perk12-1 displayed an excessive accumulation of pectins and cellulose at the cell wall of the pollen tubes. Our results indicate that PERK5 and PERK12 are necessary for proper pollen tube growth, highlighting their role in cell wall assembly and reactive oxygen species homeostasis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Tubo Polínico/crecimiento & desarrollo , Prolina/metabolismo , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
16.
Science ; 373(6554): 586-590, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34326243

RESUMEN

In animals, PIEZOs are plasma membrane-localized cation channels involved in diverse mechanosensory processes. We investigated PIEZO function in tip-growing cells in the moss Physcomitrium patens and the flowering plant Arabidopsis thaliana PpPIEZO1 and PpPIEZO2 redundantly contribute to the normal growth, size, and cytoplasmic calcium oscillations of caulonemal cells. Both PpPIEZO1 and PpPIEZO2 localized to vacuolar membranes. Loss-of-function, gain-of-function, and overexpression mutants revealed that moss PIEZO homologs promote increased complexity of vacuolar membranes through tubulation, internalization, and/or fission. Arabidopsis PIEZO1 also localized to the tonoplast and is required for vacuole tubulation in the tips of pollen tubes. We propose that in plant cells the tonoplast has more freedom of movement than the plasma membrane, making it a more effective location for mechanosensory proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Bryopsida/metabolismo , Canales Iónicos/metabolismo , Proteínas de Plantas/metabolismo , Vacuolas/ultraestructura , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Bryopsida/crecimiento & desarrollo , Bryopsida/ultraestructura , Calcio/metabolismo , Señalización del Calcio , Citoplasma/metabolismo , Membranas Intracelulares/metabolismo , Canales Iónicos/genética , Proteínas de Plantas/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Tubo Polínico/ultraestructura , Vacuolas/metabolismo
17.
Plant Cell ; 33(8): 2637-2661, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34124761

RESUMEN

Increasing evidence suggests that posttranscriptional regulation is a key player in the transition between mature pollen and the progamic phase (from pollination to fertilization). Nonetheless, the actors in this messenger RNA (mRNA)-based gene expression reprogramming are poorly understood. We demonstrate that the evolutionarily conserved RNA-binding protein LARP6C is necessary for the transition from dry pollen to pollen tubes and the guided growth of pollen tubes towards the ovule in Arabidopsis thaliana. In dry pollen, LARP6C binds to transcripts encoding proteins that function in lipid synthesis and homeostasis, vesicular trafficking, and polarized cell growth. LARP6C also forms cytoplasmic granules that contain the poly(A) binding protein and possibly represent storage sites for translationally silent mRNAs. In pollen tubes, the loss of LARP6C negatively affects the quantities and distribution of storage lipids, as well as vesicular trafficking. In Nicotiana benthamiana leaf cells and in planta, analysis of reporter mRNAs designed from the LARP6C target MGD2 provided evidence that LARP6C can shift from a repressor to an activator of translation when the pollen grain enters the progamic phase. We propose that LARP6C orchestrates the timely posttranscriptional regulation of a subset of mRNAs in pollen during the transition from the quiescent to active state and along the progamic phase to promote male fertilization in plants.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Tubo Polínico/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 5' , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Sitios de Unión , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Lípidos/biosíntesis , Lípidos/genética , Plantas Modificadas Genéticamente , Tubo Polínico/citología , Tubo Polínico/crecimiento & desarrollo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Nicotiana/genética
18.
Plant Cell ; 33(9): 3042-3056, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34125904

RESUMEN

In eukaryotes, homotypic fusion and vacuolar protein sorting (HOPS) as well as class C core vacuole/endosome tethering (CORVET) are evolutionarily conserved membrane tethering complexes that play important roles in lysosomal/vacuolar trafficking. Whether HOPS and CORVET control endomembrane trafficking in pollen tubes, the fastest growing plant cells, remains largely elusive. In this study, we demonstrate that the four core components shared by the two complexes, Vacuole protein sorting 11 (VPS11), VPS16, VPS33, and VPS18, are all essential for pollen tube growth in Arabidopsis thaliana and thus for plant reproduction success. We used VPS18 as a representative core component of the complexes to show that the protein is localized to both multivesicular bodies (MVBs) and the tonoplast in a growing pollen tube. Mutant vps18 pollen tubes grew more slowly in vivo, resulting in a significant reduction in male transmission efficiency. Additional studies revealed that membrane fusion from MVBs to vacuoles is severely compromised in vps18 pollen tubes, corroborating the function of VPS18 in late endocytic trafficking. Furthermore, vps18 pollen tubes produce excessive exocytic vesicles at the apical zone and excessive amounts of pectin and pectin methylesterases in the cell wall. In conclusion, this study establishes an additional conserved role of HOPS/CORVET in homotypic membrane fusion during vacuole biogenesis in pollen tubes and reveals a feedback regulation of HOPS/CORVET in the secretion of cell wall modification enzymes of rapidly growing plant cells.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Pectinas/metabolismo , Tubo Polínico/crecimiento & desarrollo , Proteínas de Transporte Vesicular/genética , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cuerpos Multivesiculares/enzimología , Tubo Polínico/genética , Proteínas de Transporte Vesicular/metabolismo
19.
J Plant Physiol ; 263: 153417, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34102568

RESUMEN

Pollen fertility is an important factor affecting the seed setting rate and seed yield of plants. The Arabidopsis thaliana enolase gene ENO2 (AtENO2) can affect the pollen morphology, germination, and pollen tube growth. AtENO2 encodes two proteins AtENO2 and AtMBP-1. To examine the effect of AtENO2 protein on pollen development, the 2nd ATG of the AtENO2 coding sequence for AtMBP-1 was mutated by site-directed mutagenesis, and transgenic plants expressing only AtENO2 but not AtMBP-1 were obtained. Phenotypic analysis indicated that AtENO2 was essential in the pollen development. The mechanisms of AtENO2 on pollen development were analyzed. AtENO2 can affect development of the pollen intine, and the mechanism may be that AtENO2 regulated the methyl esterification of pectin in pollen intine through ARF3 and AtPMEI-pi. The -734 ∼ -573 sequence of AtENO2 promoter is the main transcriptional regulatory region of AtENO2 affecting pollen development. The functional cis-acting element may be GTGANTG10(GTGA), and the trans-acting factors may be KAN, AS2 and ARF3/ETT. Moreover, the deletion of AtENO2 can cause significant difference in the expression of multiple genes related to pollen exine development. These results are useful for further studying the function of AtENO2 and exploring the mechanism of plant pollen development.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Genes de Plantas , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/genética , Polen/crecimiento & desarrollo , Polen/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genotipo , Mutación , Plantas Modificadas Genéticamente
20.
Peptides ; 142: 170572, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34004266

RESUMEN

In angiosperm sexual reproduction, the male pollen tube undergoes a series of interactions with female tissues. For efficient growth and precise guidance, the pollen tube perceives extracellular ligands. In recent decades, various types of secreted cysteine-rich peptides (CRPs) have been identified as peptide ligands that regulate diverse angiosperm reproduction processes, including pollen tube germination, growth, guidance, and rupture. Notably, in two distant core eudicot plants, multiple LURE-type CRPs were found to be secreted from egg-accompanying synergid cells, and these CRPs act as a cocktail of pollen tube attractants for the final step of pollen tube guidance. LURE-type CRPs have species-preferential activity, even among close relatives, and exhibit remarkably divergent molecular evolution with conserved cysteine frameworks, demonstrating that they play a key role in species recognition in pollen tube guidance. In this review, I focus on "reproductive CRPs," particularly LURE-type CRPs, which underlie common but species-specific mechanisms in angiosperm sexual reproduction, and discuss their action, functional regulation, receptors, and evolution.


Asunto(s)
Cisteína/metabolismo , Péptidos/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/crecimiento & desarrollo , Polinización , Reproducción , Tubo Polínico/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA