Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Ecotoxicol Environ Saf ; 282: 116732, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39018733

RESUMEN

Process affected water and other industrial wastewaters are a major environmental concern. During oil sands mining, large amounts of oil sands process affected water (OSPW) are generated and stored in ponds until reclaimed and ready for surface water discharge. While much research has focused on organics in process waters, trace metals at high concentrations may also pose environmental risks. Phytoremediation is a cost effective and sustainable approach that employs plants to extract and reduce contaminants in water. The research was undertaken in mesocosm scale constructed wetlands with plants exposed to OSPW for 60 days. The objective was to screen seven native emergent wetland species for their ability to tolerate high metal concentrations (arsenic, cadmium, copper, chromium, copper, nickel, selenium, zinc), and then to evaluate the best performing species for OSPW phytoremediation. All native plant species, except Glyceria grandis, tolerated and grew in OSPW. Carex aquatilis (water sedge), Juncus balticus (baltic rush), and Typha latifolia (cattail) had highest survival and growth, and had high metal removal efficiencies for arsenic (81-87 %), chromium (78-86 %), and cadmium (74-84 %), relative to other metals; and greater than 91 % of the dissolved portions were removed. The native plant species were efficient accumulators of all metals, as demonstrated by high root and shoot bioaccumulation factors; root accumulation was greater than shoot accumulation. Translocation factor values were greater than one for Juncus balticus (chromium, zinc) and Carex aquatilis (cadmium, chromium, cobalt, nickel). The results demonstrate the potential suitability of these species for phytoremediation of a number of metals of concern and could provide an effective and environmentally sound remediation approach for wastewaters.


Asunto(s)
Biodegradación Ambiental , Aguas Residuales , Contaminantes Químicos del Agua , Humedales , Contaminantes Químicos del Agua/metabolismo , Aguas Residuales/química , Metales Pesados/metabolismo , Yacimiento de Petróleo y Gas , Minería , Arsénico/metabolismo , Cadmio/metabolismo , Residuos Industriales , Typhaceae/metabolismo , Plantas/metabolismo , Metales/metabolismo
2.
Environ Microbiol Rep ; 16(3): e13302, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38852938

RESUMEN

Boreal freshwaters go through four seasons, however, studies about the decomposition of terrestrial and plastic compounds often focus only on summer. We compared microbial decomposition of 13C-polyethylene, 13C-polystyrene, and 13C-plant litter (Typha latifolia) by determining the biochemical fate of the substrate carbon and identified the microbial decomposer taxa in humic lake waters in four seasons. For the first time, the annual decomposition rate including separated seasonal variation was calculated for microplastics and plant litter in the freshwater system. Polyethylene decomposition was not detected, whereas polystyrene and plant litter were degraded in all seasons. In winter, decomposition rates of polystyrene and plant litter were fivefold and fourfold slower than in summer, respectively. Carbon from each substrate was mainly respired in all seasons. Plant litter was utilized efficiently by various microbial groups, whereas polystyrene decomposition was limited to Alpha- and Gammaproteobacteria. The decomposition was not restricted only to the growth season, highlighting that the decomposition of both labile organic matter and extremely recalcitrant microplastics continues throughout the seasons.


Asunto(s)
Biodegradación Ambiental , Lagos , Microbiota , Estaciones del Año , Lagos/microbiología , Lagos/química , Plásticos/metabolismo , Plásticos/química , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Sustancias Húmicas/análisis , Typhaceae/microbiología , Typhaceae/metabolismo , Typhaceae/química , Microplásticos/metabolismo , Polietileno/metabolismo , Polietileno/química , Carbono/metabolismo , Poliestirenos/química , Poliestirenos/metabolismo
3.
Chemosphere ; 360: 142409, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782135

RESUMEN

This study explored the effect stage number and plant type have on ammonia-nitrogen (NH3-N) removal kinetics in a two-stage pilot-scale vertical flow constructed wetland (VFCW) system treating landfill leachate. Half of the VFCW columns were planted with Typha latifolia and the other half Scirpus californicus, and half of the columns were loaded with municipal solid waste landfill leachate (diluted to 1 part leachate to 2 parts total) with the effluent from these columns was collected in two separate barrels. The remaining columns were loaded with the effluent collected from the first columns, creating a two-stage VFCW system with four unique pairs to be tested. The leachate used here experienced no prior pre-treatment, and average influent concentrations of NH3-N for the first- and second-stage VFCWs were 508 and 321 mg L-1, respectively- much higher than many other VFCW treatment systems. Some reduction in chemical oxygen demand was observed, as well as generation of nitrate and nitrite, evidence of nitrification. No apparent correlation between aboveground biomass and removal of NH3-N was observed. Overall removal efficiency of NH3-N through two stages of VFCWs was 53.7% for columns planted with T. latifolia and 58.3% for those planted with S. Californicus. Average NH3-N removal efficiencies for the first stage VFCWs were 32.7% and 34.3%, while those in the second stage were 31.3% and 36.5%; no significant difference was observed between the first and second stage, suggesting that stage number does not have a significant effect on the removal efficiency of NH3-N in the primary treatment of landfill leachate via VFCWs. However, average mass removal rates of NH3-N in the first stage were 166 and 175 mg L-1 d-1; the second stage was significantly lower at 99.4 and 112 mg L-1 d-1, indicating that the first stage removed more pollutants overall.


Asunto(s)
Amoníaco , Nitrógeno , Contaminantes Químicos del Agua , Humedales , Amoníaco/química , Cinética , Eliminación de Residuos Líquidos/métodos , Proyectos Piloto , Biodegradación Ambiental , Typhaceae/metabolismo , Cyperaceae/metabolismo , Análisis de la Demanda Biológica de Oxígeno , Nitrificación , Instalaciones de Eliminación de Residuos , Biomasa
4.
Ecotoxicol Environ Saf ; 279: 116416, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38749195

RESUMEN

Wetland plants play a crucial role in regulating soil geochemistry, influencing heavy metal (HM) speciation, bioavailability, and uptake, thus impacting phytoremediation potential. We hypothesized that variations in HM biogeochemistry within estuarine soils are controlled by distinct estuarine plant species. We evaluated the soils (pH, redox potential, rhizosphere pH, HM total concentration, and geochemical fractionation), plant parts (shoot and root), and iron plaques of three plants growing in an estuary affected by Fe-rich mine tailings. Though the integration of multiple plant and soil analysis, this work emphasizes the importance of considering geochemical pools of HM for predicting their fate. Apart from the predominance of HM associated with Fe oxides, Typha domingensis accumulated the highest Cr and Ni contents in their shoots (> 100 mg kg-1). In contrast, Hibiscus tiliaceus accumulated more Cu and Pb in their roots (> 50 mg kg-1). The differences in rhizosphere soil conditions and root bioturbation explained the different potentials between the plants by altering the soil dynamics and HM's bioavailability, ultimately affecting their uptake. This study suggests that Eleocharis acutangula is not suitable for phytoextraction or phytostabilization, whereas Typha domingensis shows potential for Cr and Ni phytoextraction. In addition, we first showed Hibiscus tiliaceus as a promising wood species for Cu and Pb phytostabilization.


Asunto(s)
Biodegradación Ambiental , Estuarios , Metales Pesados , Contaminantes del Suelo , Suelo , Typhaceae , Humedales , Metales Pesados/metabolismo , Metales Pesados/análisis , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis , Typhaceae/metabolismo , Suelo/química , Rizosfera , Raíces de Plantas/metabolismo , Minería
5.
Sci Total Environ ; 927: 172296, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588732

RESUMEN

Constructed wetlands (CWs) are pivotal for wastewater treatment due to their high efficiency and numerous advantages. The impact of plant species and diversity on greenhouse gas (GHG) emissions from CWs requires a more comprehensive evaluation. Moreover, controversial perspectives persist about whether CWs function as carbon sinks or sources. In this study, horizontal subsurface flow (HSSF) CWs vegetated with Cyperus alternifolius, Typhae latifolia, Acorus calamus, and the mixture of these three species were constructed to evaluate pollutant removal efficiencies and GHG emissions, and estimate carbon budgets. Polyculture CWs can stably remove COD (86.79 %), NH4+-N (97.41 %), NO3--N (98.55 %), and TP (98.48 %). They also mitigated global warming potential (GWP) by suppressing N2O emissions compared with monoculture CWs. The highest abundance of the Pseudogulbenkiania genus, crucial for denitrification, was observed in polyculture CWs, indicating that denitrification dominated in nitrogen removal. While the highest nosZ copy numbers were observed in CWs vegetated with Cyperus alternifolius, suggesting its facilitation of denitrification-related microbes. Selecting Cyperus alternifolius to increase species diversity is proposed for simultaneously maintaining the water purification capacity and reducing GHG emissions. Carbon budget estimations revealed that all four types of HSSF CWs were carbon sinks after six months of operation, with carbon accumulation capacity of 4.90 ± 1.50 (Cyperus alternifolius), 3.31 ± 2.01 (Typhae latifola), 1.78 ± 1.30 (Acorus calamus), and 2.12 ± 0.88 (polyculture) kg C/m2/yr. This study implies that under these operation conditions, CWs function as carbon sinks rather than sources, aligning with carbon peak and neutrality objectives and presenting significant potential for carbon reduction efforts.


Asunto(s)
Gases de Efecto Invernadero , Eliminación de Residuos Líquidos , Humedales , Gases de Efecto Invernadero/análisis , Eliminación de Residuos Líquidos/métodos , Cyperus/metabolismo , Carbono/metabolismo , Aguas Residuales , Typhaceae/metabolismo , Acorus/metabolismo
6.
Eur J Med Chem ; 268: 116220, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387332

RESUMEN

Four new flavanone-diarylheptanoid hetero dimers, typhatifolins A-D (1-4), were separated from the pollen of a widely distributed medicinal plant Typha angustifolia. Structures of these rare hybrids were elucidated by detailed interpretation of spectroscopic data, and their absolute configurations were determined on the basis of Mosher's method and ECD analyses. All the four compounds showed moderate to significant cytotoxicities against a panel of tumor cell lines with IC50 values ranging from 0.67 to 12.48 µM. Further in vitro antitumor evaluation for typhatifolin B (TTB, 2) on two breast cancer cells (4T1 and MDA-MB231) revealed that it could remarkably induce cell apoptosis and G0/G1 cycle arrest, as well as block cell migration and invasion. Mechanistically, TTB could exert its antitumor effect via activating the TGF-ß1 (transforming growth factor beta 1) signaling pathway as evidenced by RNA-seq analysis and immunoblotting experiments, which was further corroborated by treating cancer cells with a TGF-ß signaling inhibitor. Lastly, the in vivo anti breast cancer activity was demonstrated by applying the mixture of typhatifolins A-D to a preclinical animal model.


Asunto(s)
Neoplasias , Typhaceae , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Typhaceae/metabolismo , Proteínas Smad/metabolismo , Transducción de Señal , Línea Celular Tumoral
7.
Int J Phytoremediation ; 26(7): 1133-1143, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38140944

RESUMEN

This study focused on assessing the effectiveness of vertical subsurface constructed wetlands (VSFCW) in purifying integrated poultry and aquaculture wastewater (PAW) in a tropical region. This evaluation encompassed the treatment of physico-chemical, heavy metal, and microbiological pollutants across three distinct climatic seasons and hydraulic retention time (HRT: 21 days). Parameters such as BOD (29.50 mg/L), COD (56.67 mg/L), Zn (2.97 mg/L), Cr (0.24 mg/L), Cu (1.78 mg/L), Pb (0.21 mg/L), total fecal coliform (866.67 cfu/mL), total coliform (1666.67 cfu/mL), E. coli (1133.33 cfu/mL), and Salmonella/Shigella (700 cfu/mL) exceeded the discharge limits for wastewater into nearby surface water bodies. Significant removal efficiencies were observed for all parameters tested in the CW planted with both Phragmites karka and Typha latifolia. The macrophytes showed similar removal efficiencies for all tested parameters, and there was no significant difference in the initial concentrations of the parameters based on the experimental season, except for microbial properties. This suggests that weather conditions did not significantly impact the concentration of physical and chemical properties in the wastewater. Consequently, this study successfully demonstrates the potential of using a VSFCW for effective treatment of PAW.


Leveraging the power of nature's green allies, Phragmites karka and Typha latifolia, a Sub-surface Constructed Wetland becomes a dynamic and efficient solution. This innovative strategy not only effectively addresses the wastewater challenge but also promotes sustainability and ecological balance. By harnessing the extraordinary capabilities of these wetland plants, the integrated system showcases its potential to transform waste into a valuable resource while minimizing the environmental footprint. In a world that demands sustainable solutions, this pioneering approach paves the way for a greener future in wastewater treatment for Integrated Poultry and Aquaculture industries.


Asunto(s)
Acuicultura , Biodegradación Ambiental , Poaceae , Aves de Corral , Typhaceae , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Humedales , Typhaceae/metabolismo , Animales , Poaceae/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Metales Pesados/metabolismo
8.
Int J Phytoremediation ; 25(13): 1819-1829, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035876

RESUMEN

Floating treatment wetlands (FTWs) are a cost-effective ecological engineering tool for the restoration of polluted water bodies. The aims of this work were to evaluate the removal of Cr(III) and Cr(VI) by FTWs using Typha domingensis, and to assess Cr accumulation and distribution in plant tissues and sediment. Treatments were 5 and 10 mg L-1 of Cr(III), and 5 and 10 mg L-1 of Cr(VI), with and without FTWs, and biological control (BC) with FTW without Cr addition. Both Cr species were efficiently removed from water in all treatments (Cr removal > 80%). Cr concentration in sediments of treatment without FTWs was significantly higher than in sediments of treatments with FTWs, indicating that T. domingensis was directly involved in Cr removal. In sediment, Cr was mainly bound to the organic matter in all treatments with a low risk of future release under FTW conditions. T. domingensis demonstrated tolerance to both Cr species at 5 and 10 mg L-1 with Cr accumulated mainly in the roots in all treatments. The use of FTWs planted with T. domingensis is a suitable tool to remediate water bodies contaminated with Cr.


This study evaluates the removal efficiency of Cr(III) and Cr(V) in Floating Treatment Wetlands planted with Typha domingensis in greenhouse experiments. Cr accumulation and distribution in plant tissues and different sediment fractions were also assessed.


Asunto(s)
Typhaceae , Contaminantes Químicos del Agua , Typhaceae/metabolismo , Humedales , Biodegradación Ambiental , Contaminantes Químicos del Agua/metabolismo , Plantas/metabolismo , Agua
9.
Int J Phytoremediation ; 25(1): 82-88, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35414315

RESUMEN

Micropollutants (MPs) include organic chemicals, for example, pharmaceuticals and personal care products. MPs have been detected in the aquatic environment at low concentrations (ng/L-µg/L), which may lead to negative impacts on the ecosystem and humans. Phytoremediation is a green clean-up technology, which utilizes plants and their associated rhizosphere microorganisms to remove pollutants. The selection of plant species is important for the effectiveness of the phytoremediation of MPs. The plant species Phragmites australis, Typha angustifolia, and Juncus effuses are often used for MP removal. In this study, batch experiments were conducted to select plant species with an optimal ability to remove MPs, study the effect of temperature on MP removal in plants and the phytotoxicity of MPs. This study also explored the degradation of a persistent MP propranolol in plants in more detail. Data show that all three investigated plant species removed most MPs efficiently (close to 100 %) at both 10 and 21.5 °C. The tested plant species showed a different ability to translocate and accumulate propranolol in plant tissues. Typha angustifolia and Juncus effuses had a higher tolerance to the tested MPs than Phragmites australis. Typha angustifolia and Juncus effuses are recommended to be applied for phytoremediation of MPs.Novelty statement The novelty of this study is the selection of Typha angustifolia and Juncus effuses as proper plant species for phytoremediation of micropollutants (MPs). These two plant species were selected due to their good ability to remove MPs, tolerate low temperature, and resist the toxicity of MPs. The outcomes from this study can also be applied for constructed wetlands in removing MPs from wastewater. This study demonstrates the uptake and degradation processes of persistent MP propranolol in plants in more detail. Understanding the degradation mechanisms of a MP in plants is significant not only for the application of phytoremediation on MP removal but also for the development of constructed wetland studies.


Asunto(s)
Typhaceae , Contaminantes Químicos del Agua , Humanos , Typhaceae/metabolismo , Ecosistema , Biodegradación Ambiental , Propranolol/metabolismo , Poaceae/metabolismo , Plantas/metabolismo , Humedales , Contaminantes Químicos del Agua/metabolismo
10.
Environ Sci Pollut Res Int ; 29(12): 17919-17931, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34677766

RESUMEN

Algae play an important role in ecological processes of aquatic ecosystems. Understanding the interactive effects of algae with invertebrates in litter decomposition is important for predicting the effects of global change on aquatic ecosystems. We manipulated Typha angustifolia litter to control exposure to shrimp fecal pellets and/or grazing, and the green alga Chlorella vulgaris were added to test their interactive effects on T. angustifolia litter decomposition. Our results showed that algae largely shortened microbial conditioning time and improved litter palatability (increasing litter quality), resulting in greater decomposition and higher fecal pellet production. Fecal pellets enhanced grazing effects on decomposition by increasing litter ash content. The effects of algae and especially fecal pellets on decomposition were dependent on or mediated by grazing. Without grazing, algae slightly promoted decomposition and marginally offset the negative effect of fecal pellets on litter decomposition. Shrimp grazing dramatically decreased microbial activity (extracellular enzyme activity and microbial respiration) at microbial conditioning stage while enhanced microbial activity after 84 days especially with both algae and fecal pellets present. Algae significantly upregulated N- and P-acquiring and slightly downregulated C-acquiring enzyme activity. Fecal pellets significantly depressed recalcitrant C-decomposition enzyme activity. Nevertheless, the three factors synergistically and significantly increased C loss and most enzyme activities, microbial respiration, and N immobilization, resulting in the decrease of litter C:N. Our results reveal the synergistic action of different trophic levels (autotrophs, heterotrophs, and primary consumers) in the complicated nutrient pathways of litter decomposition and provide support for predicting the effects of global changes (e.g., N deposition and CO2 enrichment), which have dramatically effects on alga dynamics and on ecological processes in aquatic ecosystems.


Asunto(s)
Chlorella vulgaris , Typhaceae , Chlorella vulgaris/metabolismo , Ecosistema , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Plantas/metabolismo , Typhaceae/metabolismo
11.
Biomacromolecules ; 22(6): 2451-2459, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34024108

RESUMEN

The present study aimed to purify, structurally characterize, and evaluate the anti-inflammatory activity of the polysaccharide extracted from Typha angustifolia. Two purified polysaccharides (PTA-1 and PTA-2) were obtained via DEAE-52 cellulose chromatography. Their structural characterizations and antioxidant activity were in vitro analyzed. To evaluate the anti-inflammatory activity of PTA-2, the levels of inflammatory cytokines, intracellular ROS production, and the inhibitory effects of the transcriptional activation of the nuclear factor kappa B (NF-κB) signaling pathway were determined. PTA-1 comprises glucose (100%) with α-(1 → 3) glycosidic bonds, and PTA-2 comprises glucose (66.7%) and rhamnose (33.3%) formed by ß-(1 → 3) glycosidic bonds. PTA-1 and PTA-2 showed strong antioxidant activity in vitro. Moreover, PTA-2 intervention (50, 100, and 200 µg/mL) suppressed the production of inflammatory cytokines, the activation of NF-κB signaling, and reactive oxygen species production significantly. The results identified PTA-2 as a natural product that could be applied in anti-inflammatory drugs.


Asunto(s)
Typhaceae , Antiinflamatorios/farmacología , Citocinas , Lipopolisacáridos/farmacología , FN-kappa B/genética , FN-kappa B/metabolismo , Polisacáridos/farmacología , Especies Reactivas de Oxígeno , Transducción de Señal , Typhaceae/metabolismo
12.
Ecotoxicol Environ Saf ; 210: 111890, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33440270

RESUMEN

The management of initial planting density can be a strategy to increase barium phytoextraction from soil, reducing the time required for soil decontamination. To delimit the ideal planting density for barium (Ba) phytoremediation using Typha domingensis, we conducted a 300-day experiment in an area accidentally contaminated with barite. Four initial planting densities were tested: 4, 8, 12, and 16 plantsm-2 (D4, D8, D12, and D16 treatments, respectively). Plant development was evaluated periodically, and the phytoextraction efficiency was determined at the end of the trial. The initial planting density affected Ba phytoremediation by T. domingensis monoculture. Phytoextraction potential was better represented by the mass-based translocation factor (mTF) than the concentration-based translocation factor. D16 promoted the highest final number of plants and biomass production, but the mass of Ba in the aerial part did not differ among D8, D12, and D16. D4 resulted in more Ba accumulated belowground than aboveground (6.3 times higher), whereas D12 and D16 achieved the greatest mTFs. Higher absorption of Ba from soil can be achieved using less T. domingensis individuals at the beginning of the treatment (D4 and D8) but with high accumulation in belowground tissues. We conclude that the D8 density is considered the most appropriate if considering the phytoextraction potential and field management facilitated using fewer plants.


Asunto(s)
Bario/metabolismo , Contaminantes del Suelo/metabolismo , Typhaceae/metabolismo , Biodegradación Ambiental , Biomasa , Inundaciones
13.
Environ Geochem Health ; 43(4): 1563-1581, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31312968

RESUMEN

The results of biogeochemical and bioindication studies on the resistance of natural populations of macrophyte plant-cattail (Typha australis Schum. & Thonn) on the coast of the Taganrog Bay of the Sea of Azov and the sea edge of the Don River delta with regard to local pollution zones are presented. Plant resistance has been assessed through manifestation of their protective functions in relation to heavy metals. An excess in the lithospheric Clarkes and MPC in Zn, Cd and Pb in Fluvisols has been found. The total index of soil pollution (Zc) has made it possible to identify areas with different categories of contamination within the study area exposed to human impact. High mobility of Zn, Cd, Pb, Cr and Ni in Fluvisols has been revealed, which is confirmed by the significant bioavailability of Zn, Cr and Cd that are accumulated in the macrophyte plant tissues. The absorption of heavy metals by cattail plants is allowed for both the soil and the water of the nearby reservoir, where aquatic systems are a kind of "biological filter" contributing to water purification from pollutants. The impact of the environmental stress factor has been found to be manifested not only in the features of heavy metal accumulation and distribution in plant tissues, but also at the morphological and anatomical level according to the type of prolification. Changes in the cell membranes as well as in main cytoplasmic organelles (mitochondria, plastids, pyroxis, etc.) of the root and leaf cells have been identified, the most significant changes in the ultrastructure being noted in the tissues of leaf chlorenchyma. It is assumed that the identified structural changes contribute to slowing down of the ontogenetic development of plants and reduction in their morphometric parameters when exposed to anthropogenic pollution. Therefore, cattails can be effectively used as biological indicators while determining environmental pressures.


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo/análisis , Typhaceae/efectos de los fármacos , Bahías , China , Monitoreo del Ambiente/métodos , Humanos , Metales Pesados/toxicidad , Hojas de la Planta/química , Ríos/química , Contaminantes del Suelo/toxicidad , Typhaceae/metabolismo
14.
Sci Rep ; 10(1): 15694, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973299

RESUMEN

The benefits of plant-microbe interactions have been exploited extensively for nutrient removal. Radial oxygen loss in aquatic macrophytes potentially promotes nitrification and accelerates nitrogen removal through coupled nitrification-denitrification process. Nitrification is likely the limiting activity for an effective nitrogen removal in wetlands. In this work, we have quantified the effect of radial oxygen losses in Typha angustifolia plants in environments of contrasting salinities, including a temporary lagoon, a constructed wetland, and a river estuary. In all sites, radial oxygen diffusion occurred mainly at a narrow band, from 1 to 5 cm from the root tip, and were almost absent at the tip and basal sections of the root (> 5 cm). Root sections with active oxygen diffusion tended to show higher bacterial and archaeal densities in the rhizoplane according to 16S rRNA gene abundance data, except at higher salinities. Archaeal amoA /bacterial amoA gene ratios were highly variable among sites. Archaeal nitrifiers were only favoured over bacteria on the root surface of Typha collected from the constructed wetland. Collectively, radial oxygen loss had little effect on the nitrifying microbial community at the smaller scale (differences according to root-section), and observed differences were more likely related to prevailing physicochemical conditions of the studied environments or to long-term effects of the root microenvironment (root vs sediment comparisons).


Asunto(s)
Amoníaco/metabolismo , Nitrificación/fisiología , Raíces de Plantas/metabolismo , Typhaceae/metabolismo , Microbiota , Oxígeno/metabolismo , ARN Ribosómico 16S/genética
15.
J Environ Sci Health B ; 55(12): 1021-1031, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32941097

RESUMEN

Sorption to roots is one of several mechanisms by which plant-assisted attenuation of antibiotics can be achieved. The objectives of this study were to (1) evaluate the sorption of sulfamethoxazole (SMX) by cattail and switchgrass roots, (2) determine the kinetics of SMX sorption by cattail and switchgrass roots, and (3) characterize the temperature-dependency of SMX sorption. A batch sorption experiment was conducted to measure SMX sorption by roots of the two plant species using five initial antibiotic concentrations (2.5, 5, 10, 15, and 20 µg L-1) and eight sampling times (0, 0.5, 1, 2, 4, 8, 12, and 24 h). Another batch experiment was conducted at three temperatures (5, 15, and 25 °C) to determine the effect of temperature on sorption kinetics. SMX sorption followed pseudo-second-order kinetics. The pseudo-second-order rate constant (k2) decreased with increasing temperature for both plant species. The rate constant followed the order: 5 °C = 15 °C > 25 °C for cattail and 5 °C > 15 °C = 25 °C for switchgrass. Results from this study show that switchgrass roots are more effective than cattail roots in the removal of SMX. Therefore, the use of switchgrass in systems designed for phytoremediation of contaminants might also provide an efficient removal of some antibiotics.


Asunto(s)
Antibacterianos/farmacocinética , Panicum/metabolismo , Sulfametoxazol/farmacocinética , Typhaceae/metabolismo , Adsorción , Biodegradación Ambiental , Panicum/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Contaminantes del Suelo/farmacocinética , Especificidad de la Especie , Temperatura , Typhaceae/efectos de los fármacos
16.
J Hazard Mater ; 394: 122542, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32240899

RESUMEN

This study investigated the effects of radial oxygen loss (ROL) of three different plants on nitrobenzene (NB) wastewater treatment and bioelectricity generation performance in constructed wetland-microbial fuel cell (CW-MFC). ROL and root biomass from wetland plants showed positive effects on NB wastewater compared to unplanted CW-MFC. Scirpus validus exhibited higher tolerance to NB than Typha orientalis and Iris pseudacorus at 20-200 mg/L NB. As NB concentration reached 200 mg/L, the CW-MFC with Scirpus validus had relatively high DO (2.57 ±â€¯0.17 mg/L) and root biomass (16.42 ±â€¯0.18 g/m2), which resulted in the highest power density and voltage (19.5 mW/m2, 590 mV) as well as NB removal efficiency (93.9 %) among four reactors. High-throughput sequencing results suggested that electrochemically active bacteria (EAB) (e.g., Geobacter, Ferruginibacter) and dominant NB-degrading bacteria (e.g., Comamonas, Pseudomonas) could be enhanced by wetland plants, especially in CW-MFC with Scirpus validus. Therefore, Scirpus validus was a good option for simultaneously treating NB wastewater and producing bioelectricity.


Asunto(s)
Fuentes de Energía Bioeléctrica , Nitrobencenos/metabolismo , Oxígeno/metabolismo , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos , Bacterias/metabolismo , Biodegradación Ambiental , Cyperaceae/metabolismo , Género Iris/metabolismo , Nitrobencenos/química , Oxidación-Reducción , Raíces de Plantas/metabolismo , Typhaceae/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Humedales
17.
Bull Environ Contam Toxicol ; 104(3): 358-365, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31975014

RESUMEN

Variations of phytoaccumulation and tolerance in different growth stages of plant are important factors for effective removal of pollutants in phytoremediation. The present work investigated arsenic (As) accumulation, As-tolerance and the physiological tolerance mechanisms of Typha angustifolia under different As-level during the seedling, fast-growing and breeding stages. The results showed that As mainly distributed in the underground part and total As accumulation increased with growth stages. Maximum growth rates under lower As occurred in seedling stage, whereas occurred in breeding stage under higher As. T. angustifolia exhibited the highest tolerance ability under 150 mg kg-1 As and tolerance index (TI) varied from seedling to breeding stages. During seedling stage, TI was affected by plant height (Hshoot) and net photosynthesis, which control biomass production. During fast-growing stage, Hshoot and root glutathione (GSH) co-regulated plant As-tolerance. During breeding stage, physiological metabolic processes, especially GSH-mediated processes, played a critical role in improving plant As-tolerance.


Asunto(s)
Aclimatación , Arsénico/análisis , Typhaceae/crecimiento & desarrollo , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Biomasa , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Typhaceae/metabolismo
18.
Ecotoxicol Environ Saf ; 189: 109959, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31787383

RESUMEN

The Phytotoxicity of and mechanism underlying selenite-mediated tolerance to Cd stress in Typha angustifolia were studied hydroponically with respect to metal uptake and translocation, photosynthesis-related parameters, contents of proline and O2•-, products of lipid peroxidation, cell viability, enzymatic and non-enzymatic antioxidants, glyoxalases and phytochelatins. T. angustifolia were exposed to 25, 50 and 100 µM of Cd alone and in conjunction with 5 mg L-1 of selenite in full-strength Hoagland's nutrient solution for 30 days. Results showed that Cd contents in T. angustifolia leaves and roots increased in a dose-dependent manner and were higher in roots, but those of BAC, BCF and TF changed in a contrary pattern. Addition of selenite to Cd-containing treatments further reduced Cd levels in T. angustifolia leaves and roots, as well as BAC, BCF and TF. A diphasic effect was found in T. angustifolia for the contents of total chlorophyll, GSH, PC and GSSG, as well as activities of CAT, POD, SOD and GR, in response to Cd stress alone and in conjunction with selenite supplementation, but the same effect was not observed for Pn, Cond, Tr, Ci, Fv/Fm and ϕPSII. In contrast, exogenous selenite supplementation enhanced the contents of total chlorophyll and the non-enzymatic antioxidants, as well as activities of enzymatic antioxidants, while the values of photosynthetic fluorescence parameters were rescued. Selenite addition decreased Cd-induced cell death. Proline contents and Gly I activities in T. angustifolia leaves kept increasing in a dose-dependent manner of Cd concentrations in the growth media and selenite addition further enhanced both parameters. Addition of selenite could quench Cd-mediated generation of MDA, O2•- and MG in T. angustifolia leaves and reduce Cd-induced Gly II activity. A U-shaped GSH/GSSG ratio in T. angustifolia leaves suggests a possible trade-off between PC synthesis and GR activity since both share the same substrate GSH. Therefore, confined BAC, BCF and TF were a mechanism that confers T. angustifolia tolerance to Cd stress, and that exogenous selenite supplementation could depress Cd-induced stress in T. angustifolia by rescuing the photosynthetic fluorescence, enhancing non-enzymatic and enzymatic antioxidants that scavenge O2•- and MG, and potentiating PC synthesis that chelates Cd.


Asunto(s)
Cadmio/toxicidad , Ácido Selenioso/farmacología , Typhaceae/efectos de los fármacos , Antioxidantes/metabolismo , Cadmio/metabolismo , Clorofila/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Fitoquelatinas/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Prolina/metabolismo , Typhaceae/metabolismo
19.
Chemosphere ; 240: 124915, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31563105

RESUMEN

In animal livestock heavy metals are widely used as feed additives to control enteric bacterial infections as well as to enhance the integrity of the immune system. As these metals are only partially adsorbed by animals, the content of heavy metals in manure and wastewaters causes soil and ground water contamination, with Zn2+ and Cu2+ being the most critical output from pig livestock. Phytoremediation is considered a valid strategy to improve the purity of wastewaters. This work studied the effect of Zn2+ and Cu2+ on the morphology and protein expression in Thelypteris palustris and Typha latifolia plants, cultured in a wetland pilot system. Despite the absence of macroscopic alterations, remodeling of cell walls and changes in carbohydrate metabolism were observed in the rhizomes of both plants and in leaves of Thelypteris palustris. However, similar modifications seemed to be determined by the alterations of different mechanisms in these plants. These data also suggested that marsh ferns are more sensitive to metals than monocots. Whereas toleration mechanisms seemed to be activated in Typha latifolia, in Thelypteris palustris the observed modifications appeared as slight toxic effects due to metal exposure. This study clearly indicates that both plants could be successfully employed in in situ phytoremediation systems, to remove Cu2+ and Zn2+ at concentrations that are ten times higher than the legal limits, without affecting plant growth.


Asunto(s)
Biodegradación Ambiental/efectos de los fármacos , Cobre/toxicidad , Tracheophyta/metabolismo , Typhaceae/metabolismo , Eliminación de Residuos Líquidos/métodos , Zinc/toxicidad , Animales , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Cobre/farmacocinética , Ganado , Estiércol , Proyectos Piloto , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas , Especificidad de la Especie , Porcinos , Tracheophyta/efectos de los fármacos , Typhaceae/efectos de los fármacos , Aguas Residuales/química , Aguas Residuales/toxicidad , Contaminantes Químicos del Agua/farmacocinética , Contaminantes Químicos del Agua/toxicidad , Humedales , Zinc/farmacocinética
20.
Artículo en Inglés | MEDLINE | ID: mdl-31653194

RESUMEN

Thermophilic anaerobic digestion (AD) of cattail followed by hydrothermal carbonization (HTC) was studied. The intent of the research was to develop agricultural waste-based biorefining technologies for bioenergy production along with value-added products. Cattail was anaerobically digested at 55 °C for 14 days and protein and cellulose components were partially degraded. The average methane yield was 230-280 mL/g volatile solids and the total solids decreased by 33-55%. When the particle size of cattail was reduced from 1 in. to 1 mm, the lag phase was shortened from 1.48 to 0 d. Following the AD process of cattail, the AD digestate was hydrothermally carbonized at 250 °C for 4 h, yielding approximately 6.7-7.5 wt % gaseous products, 64 wt % liquid products and 28 wt % hydrochar. The gaseous products contained >5000 ppm H2S and liquid products possessed fewer chemicals and higher ratio of phenolic compounds compared to the liquid products from HTC of original cattail. The hydrochar had a higher carbon content (76.8-79.8%) and a higher specific surface area (∼10 m2/g) than those of the feedstock. Hydrochar was further activated by using Na2CO3, NaHCO3 and NaCl. The activation process increased the carbon content and specific surface area to 84-93% and 250-630 m2/g, respectively.


Asunto(s)
Biocombustibles/análisis , Carbón Orgánico/química , Metano/biosíntesis , Typhaceae/metabolismo , Anaerobiosis , Celulosa/metabolismo , Gases/análisis , Proteínas de Plantas/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...