Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Biochim Biophys Acta Bioenerg ; 1865(4): 149492, 2024 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960080

RESUMEN

Mitochondrial DNA (mtDNA) mutations, including the m.3243A>G mutation that causes mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), are associated with secondary coenzyme Q10 (CoQ10) deficiency. We previously demonstrated that PPARGC1A knockdown repressed the expression of PDSS2 and several COQ genes. In the present study, we compared the mitochondrial function, CoQ10 status, and levels of PDSS and COQ proteins and genes between mutant cybrids harboring the m.3243A>G mutation and wild-type cybrids. Decreased mitochondrial energy production, defective respiratory function, and reduced CoQ10 levels were observed in the mutant cybrids. The ubiquinol-10:ubiquinone-10 ratio was lower in the mutant cybrids, indicating blockage of the electron transfer upstream of CoQ, as evident from the reduced ratio upon rotenone treatment and increased ratio upon antimycin A treatment in 143B cells. The mutant cybrids exhibited downregulation of PDSS2 and several COQ genes and upregulation of COQ8A. In these cybrids, the levels of PDSS2, COQ3-a isoform, COQ4, and COQ9 were reduced, whereas those of COQ3-b and COQ8A were elevated. The mutant cybrids had repressed PPARGC1A expression, elevated ATP5A levels, and reduced levels of mtDNA-encoded proteins, nuclear DNA-encoded subunits of respiratory enzyme complexes, MNRR1, cytochrome c, and DHODH, but no change in TFAM, TOM20, and VDAC1 levels. Alterations in the CoQ10 level in MELAS may be associated with mitochondrial energy deficiency and abnormal gene regulation. The finding of a reduction in the ubiquinol-10:ubiquinone-10 ratio in the MELAS mutant cybrids differs from our previous discovery that cybrids harboring the m.8344A>G mutation exhibit a high ubiquinol-10:ubiquinone-10 ratio.


Asunto(s)
ADN Mitocondrial , Metabolismo Energético , Mitocondrias , Mutación , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/deficiencia , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Metabolismo Energético/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Ataxia/genética , Ataxia/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Línea Celular Tumoral , Debilidad Muscular , Enfermedades Mitocondriales
2.
J Genet ; 1032024.
Artículo en Inglés | MEDLINE | ID: mdl-39080983

RESUMEN

The COQ7 gene is one of the causative genes for primary COQ10 deficiency-related disorders. OMIM-related phenotypes include severe encephalo-myo-nephrocardiopathy and distal hereditary motor neuronopathy. In the present study, we performed the exome sequencing analysis on the proband of a single family with two siblings affected by hereditary spastic paraparesis (HSP). Segregation analysis was conducted on the affected siblings and parents using the Sanger sequencing. In silico secondary and tertiary pre-mRNA structure analysis and protein modelling were carried out. Exome sequencing identified a homozygous splice site variant in the COQ7 gene (NM_016138.5: c.367+G>A) in the proband. Sanger sequencing confirmed the homozygous status in the affected sibling and heterozygous status in both parents, consistent with autosomal recessive inheritance. In silico secondary and tertiary premRNA structure analysis and protein modelling predicted the deleterious nature of the variant. This case highlights a distinct intermediate phenotype of COQ7 related disorders comprising early-onset spastic paraparesis due to a novel splice site variant in the COQ7 gene. This expands the spectrum of clinical manifestations associated with COQ7 deficiency and underscores the importance of considering COQ7 gene mutations in the differential diagnosis of HSP.


Asunto(s)
Mutación , Paraparesia Espástica , Linaje , Fenotipo , Sitios de Empalme de ARN , Hermanos , Humanos , Masculino , Femenino , Paraparesia Espástica/genética , Sitios de Empalme de ARN/genética , Secuenciación del Exoma , Ubiquinona/genética , Ubiquinona/deficiencia , Homocigoto
3.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928470

RESUMEN

Coenzyme Q10 (CoQ10) plays a key role in many aspects of cellular metabolism. For CoQ10 to function normally, continual interconversion between its oxidised (ubiquinone) and reduced (ubiquinol) forms is required. Given the central importance of this ubiquinone-ubiquinol redox cycle, this article reviews what is currently known about this process and the implications for clinical practice. In mitochondria, ubiquinone is reduced to ubiquinol by Complex I or II, Complex III (the Q cycle) re-oxidises ubiquinol to ubiquinone, and extra-mitochondrial oxidoreductase enzymes participate in the ubiquinone-ubiquinol redox cycle. In clinical terms, the outcome of deficiencies in various components associated with the ubiquinone-ubiquinol redox cycle is reviewed, with a particular focus on the potential clinical benefits of CoQ10 and selenium co-supplementation.


Asunto(s)
Oxidación-Reducción , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/deficiencia , Humanos , Mitocondrias/metabolismo , Animales , Selenio/metabolismo , Ataxia , Debilidad Muscular , Enfermedades Mitocondriales
4.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38928331

RESUMEN

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder currently affecting the ageing population. Although the aetiology of PD has yet to be fully elucidated, environmental factors such as exposure to the naturally occurring neurotoxin rotenone has been associated with an increased risk of developing PD. Rotenone inhibits mitochondrial respiratory chain (MRC) complex I activity as well as induces dopaminergic neuronal death. The aim of the present study was to investigate the underlying mechanisms of rotenone-induced mitochondrial dysfunction and oxidative stress in an in vitro SH-SY5Y neuronal cell model of PD and to assess the ability of pre-treatment with Coenzyme Q10 (CoQ10) to ameliorate oxidative stress in this model. Spectrophotometric determination of the mitochondrial enzyme activities and fluorescence probe studies of reactive oxygen species (ROS) production was assessed. Significant inhibition of MRC complex I and II-III activities was observed, together with a significant loss of neuronal viability, CoQ10 status, and ATP synthesis. Additionally, significant increases were observed in intracellular and mitochondrial ROS production. Remarkably, CoQ10 supplementation was found to reduce ROS formation. These results have indicated mitochondrial dysfunction and increased oxidative stress in a rotenone-induced neuronal cell model of PD that was ameliorated by CoQ10 supplementation.


Asunto(s)
Mitocondrias , Neuronas , Estrés Oxidativo , Rotenona , Ubiquinona , Humanos , Ataxia , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales , Debilidad Muscular/metabolismo , Debilidad Muscular/inducido químicamente , Debilidad Muscular/patología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/etiología , Especies Reactivas de Oxígeno/metabolismo , Rotenona/toxicidad , Rotenona/efectos adversos , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/deficiencia
5.
Nephrology (Carlton) ; 29(9): 612-616, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38838054

RESUMEN

Primary coenzyme Q10 deficiency-1, caused by COQ2 disease-causing variants, is an autosomal recessive disorder, and genetic testing is the gold standard for diagnosing this condition. A Chinese boy with steroid-resistant nephrotic syndrome, focal segmental glomerulosclerosis, and progressive kidney insufficiency was included in the study. Electron microscopy revealed the glomerular basement membrane with irregular thickness and lamellation with diffuse effacement of foot processes in the podocytes, and swollen mitochondria with abnormal cristae in the podocytes. Coenzyme Q10 supplementation started about 3 weeks after the onset of mild kidney dysfunction did not improve the proband's kidney outcome. Proband-only whole-exome sequencing and Sanger sequencing revealed two heteroallelic COQ2 variants: a maternally inherited novel variant c.1013G > A[p.(Gly338Glu)] in exon 6 and a variant of unknown origin c.1159C > T[p.(Arg387*)] in exon 7. Subsequent long-read sequencing demonstrated these two variants were located on different alleles. Our report extends the phenotypic and genotypic spectrum of COQ2 glomerulopathy.


Asunto(s)
Membrana Basal Glomerular , Glomeruloesclerosis Focal y Segmentaria , Síndrome Nefrótico , Ubiquinona , Humanos , Masculino , Síndrome Nefrótico/genética , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/patología , Membrana Basal Glomerular/ultraestructura , Membrana Basal Glomerular/patología , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Fenotipo , Predisposición Genética a la Enfermedad , Ataxia/genética , Secuenciación del Exoma , Debilidad Muscular/genética , Biopsia , Mutación , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Transferasas Alquil y Aril
6.
Eur J Hum Genet ; 32(8): 938-946, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38702428

RESUMEN

COQ7 pathogenetic variants cause primary CoQ10 deficiency and a clinical phenotype of encephalopathy, peripheral neuropathy, or multisystemic disorder. Early diagnosis is essential for promptly starting CoQ10 supplementation. Here, we report novel compound heterozygous variants in the COQ7 gene responsible for a prenatal onset (20 weeks of gestation) of hypertrophic cardiomyopathy and intestinal dysmotility in a Bangladesh consanguineous family with two affected siblings. The main clinical findings were dysmorphisms, recurrent intestinal occlusions that required ileostomy, left ventricular non-compaction cardiomyopathy, ascending aorta dilation, arterial hypertension, renal dysfunction, diffuse skin desquamation, axial hypotonia, neurodevelopmental delay, and growth retardation. Exome sequencing revealed compound heterozygous rare variants in the COQ7 gene, c.613_617delGCCGGinsCAT (p.Ala205HisfsTer48) and c.403A>G (p.Met135Val). In silico analysis and functional in vitro studies confirmed the pathogenicity of the variants responsible for abolished activities of complexes I + III and II + III in muscle homogenate, severe decrease of CoQ10 levels, and reduced basal and maximal respiration in patients' fibroblasts. The first proband deceased at 14 months of age, whereas supplementation with a high dose of CoQ10 (30 mg/kg/day) since the first days of life modified the clinical course in the second child, showing a recovery of milestones acquirement at the last follow-up (18 months of age). Our study expands the clinical spectrum of primary CoQ10 deficiency due to COQ7 gene defects and highlights the essential role of multidisciplinary and combined approaches for a timely diagnosis.


Asunto(s)
Enfermedades Mitocondriales , Ubiquinona , Femenino , Humanos , Lactante , Masculino , Ataxia/genética , Ataxia/patología , Ataxia/diagnóstico , Cardiomiopatías/genética , Cardiomiopatías/patología , Cardiomiopatías/diagnóstico , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/patología , Cardiomiopatía Hipertrófica/diagnóstico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/diagnóstico , Debilidad Muscular/genética , Debilidad Muscular/patología , Mutación , Oftalmoplejía/genética , Oftalmoplejía/patología , Oftalmoplejía/diagnóstico , Linaje , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Ubiquinona/genética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
7.
Cell Rep ; 43(5): 114148, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38697100

RESUMEN

Coenzyme Q (CoQ) deficiency syndrome is conventionally treated with limited efficacy using exogenous CoQ10. Poor outcomes result from low absorption and bioavailability of CoQ10 and the clinical heterogenicity of the disease. Here, we demonstrate that supplementation with 4-hydroxybenzoic acid (4HB), the precursor of the benzoquinone ring in the CoQ biosynthetic pathway, completely rescues multisystemic disease and perinatal lethality in a mouse model of CoQ deficiency. 4HB stimulates endogenous CoQ biosynthesis in tissues of Coq2 mutant mice, normalizing mitochondrial function and rescuing cardiac insufficiency, edema, and neurodevelopmental delay. In contrast, exogenous CoQ10 supplementation falls short in fully restoring the phenotype. The treatment is translatable to human use, as proven by in vitro studies in skin fibroblasts from patients with pathogenic variants in COQ2. The therapeutic approach extends to other disorders characterized by deficiencies in the production of 4HB and early steps of CoQ biosynthesis and instances of secondary CoQ deficiency.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Mitocondriales , Parabenos , Ubiquinona , Animales , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/metabolismo , Parabenos/farmacología , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/metabolismo , Ubiquinona/deficiencia , Ratones , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Humanos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Ratones Endogámicos C57BL , Debilidad Muscular/tratamiento farmacológico , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Ataxia/tratamiento farmacológico , Ataxia/patología , Ataxia/metabolismo
8.
Basic Res Cardiol ; 119(4): 673-689, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38724619

RESUMEN

Succinate accumulates during myocardial ischemia and is rapidly oxidized during reperfusion, leading to reactive oxygen species (ROS) production through reverse electron transfer (RET) from mitochondrial complex II to complex I, and favoring cell death. Given that connexin 43 (Cx43) modulates mitochondrial ROS production, we investigated whether Cx43 influences RET using inducible knock-out Cx43Cre-ER(T)/fl mice. Oxygen consumption, ROS production, membrane potential and coenzyme Q (CoQ) pool were analyzed in subsarcolemmal (SSM, expressing Cx43) and interfibrillar (IFM) cardiac mitochondria isolated from wild-type Cx43fl/fl mice and Cx43Cre-ER(T)/fl knock-out animals treated with 4-hydroxytamoxifen (4OHT). In addition, infarct size was assessed in isolated hearts from these animals submitted to ischemia-reperfusion (IR), and treated or not with malonate, a complex II inhibitor attenuating RET. Succinate-dependent ROS production and RET were significantly lower in SSM, but not IFM, from Cx43-deficient animals. Mitochondrial membrane potential, a RET driver, was similar between groups, whereas CoQ pool (2.165 ± 0.338 vs. 4.18 ± 0.55 nmol/mg protein, p < 0.05) and its reduction state were significantly lower in Cx43-deficient animals. Isolated hearts from Cx43Cre-ER(T)/fl mice treated with 4OHT had a smaller infarct size after IR compared to Cx43fl/fl, despite similar concentration of succinate at the end of ischemia, and no additional protection by malonate. Cx43 deficiency attenuates ROS production by RET in SSM, but not IFM, and was associated with a decrease in CoQ levels and a change in its redox state. These results may partially explain the reduced infarct size observed in these animals and their lack of protection by malonate.


Asunto(s)
Conexina 43 , Ratones Noqueados , Mitocondrias Cardíacas , Especies Reactivas de Oxígeno , Ubiquinona , Animales , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/metabolismo , Ubiquinona/deficiencia , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/efectos de los fármacos , Conexina 43/metabolismo , Conexina 43/genética , Especies Reactivas de Oxígeno/metabolismo , Ratones , Transporte de Electrón/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/genética , Masculino
9.
J Biol Chem ; 300(5): 107269, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588811

RESUMEN

Coenzyme Q10 (CoQ10) is an important cofactor and antioxidant for numerous cellular processes, and its deficiency has been linked to human disorders including mitochondrial disease, heart failure, Parkinson's disease, and hypertension. Unfortunately, treatment with exogenous CoQ10 is often ineffective, likely due to its extreme hydrophobicity and high molecular weight. Here, we show that less hydrophobic CoQ species with shorter isoprenoid tails can serve as viable substitutes for CoQ10 in human cells. We demonstrate that CoQ4 can perform multiple functions of CoQ10 in CoQ-deficient cells at markedly lower treatment concentrations, motivating further investigation of CoQ4 as a supplement for CoQ10 deficiencies. In addition, we describe the synthesis and evaluation of an initial set of compounds designed to target CoQ4 selectively to mitochondria using triphenylphosphonium. Our results indicate that select versions of these compounds can successfully be delivered to mitochondria in a cell model and be cleaved to produce CoQ4, laying the groundwork for further development.


Asunto(s)
Ataxia , Mitocondrias , Enfermedades Mitocondriales , Debilidad Muscular , Ubiquinona , Humanos , Mitocondrias/enzimología , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Debilidad Muscular/enzimología , Debilidad Muscular/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Células Hep G2
11.
Eur J Hum Genet ; 32(4): 426-434, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38316953

RESUMEN

GEMIN5 exerts key biological functions regulating pre-mRNAs intron removal to generate mature mRNAs. A series of patients were reported harboring mutations in GEMIN5. No treatments are currently available for this disease. We treated two of these patients with oral Coenzyme Q10 (CoQ10), which resulted in neurological improvements, although MRI abnormalities remained. Whole Exome Sequencing demonstrated compound heterozygosity at the GEMIN5 gene in both cases: Case one: p.Lys742* and p.Arg1016Cys; Case two: p.Arg1016Cys and p.Ser411Hisfs*6. Functional studies in fibroblasts revealed a decrease in CoQ10 biosynthesis compared to controls. Supplementation with exogenous CoQ10 restored it to control intracellular CoQ10 levels. Mitochondrial function was compromised, as indicated by the decrease in oxygen consumption, restored by CoQ10 supplementation. Transcriptomic analysis of GEMIN5 patients compared with controls showed general repression of genes involved in CoQ10 biosynthesis. In the rigor mortis defective flies, CoQ10 levels were decreased, and CoQ10 supplementation led to an improvement in the adult climbing assay performance, a reduction in the number of motionless flies, and partial restoration of survival. Overall, we report the association between GEMIN5 dysfunction and CoQ10 deficiency for the first time. This association opens the possibility of oral CoQ10 therapy, which is safe and has no observed side effects after long-term therapy.


Asunto(s)
Ataxia , Enfermedades Mitocondriales , Debilidad Muscular , Ubiquinona , Ubiquinona/deficiencia , Adulto , Humanos , Ubiquinona/genética , Ubiquinona/uso terapéutico , Ubiquinona/metabolismo , Estudios de Seguimiento , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Mutación , Proteínas del Complejo SMN/genética
12.
Free Radic Biol Med ; 214: 158-170, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364943

RESUMEN

This study examined the effects of hypoxia on coenzyme Q (Q) levels and mitochondrial function in EA. hy926 endothelial cells, shedding light on their responses to changes in oxygen levels. Chronic hypoxia during endothelial cell culture reduced Q synthesis by reducing hydroxy-methylglutaryl-CoA reductase (HMGCR) levels via hypoxia-inducible factor 1α (HIF1α), leading to severe Q deficiency. In endothelial mitochondria, hypoxia led to reorganization of the respiratory chain through upregulation of supercomplexes (I+III2+IV), forming a complete mitochondrial Q (mQ)-mediated electron transfer pathway. Mitochondria of endothelial cells cultured under hypoxic conditions showed reduced respiratory rates and membrane potential, as well as increased production of mitochondrial reactive oxygen species (mROS) as a result of increased mQ reduction levels (mQH2/mQtot). Anoxia/reoxygenation (A/R) in vitro caused impairment of endothelial mitochondria, manifested by reduced maximal respiration, complex III activity, membrane potential, coupling parameters, and increased mQ reduction and mROS production. Weaker A/R-induced changes compared to control mitochondria indicated better tolerance of A/R stress by the mitochondria of hypoxic cells. Moreover, in endothelial mitochondria, hypoxia-induced increases in uncoupling protein 3 (UCP3) and mitochondrial large-conductance Ca2+-activated potassium channel (mitoBKCa) levels and activities appear to have alleviated reoxygenation injury after A/R. These results not only highlight hypoxia-induced changes in mQ redox homeostasis and related mitochondrial function, but also indicate that chronic hypoxia during endothelial cell culture leads to mitochondrial adaptations that help mitochondria better withstand subsequent oxygen fluctuations.


Asunto(s)
Ataxia , Células Endoteliales , Enfermedades Mitocondriales , Debilidad Muscular , Ubiquinona/deficiencia , Humanos , Transporte de Electrón , Mitocondrias , Hipoxia , Oxígeno
13.
J Pediatr Endocrinol Metab ; 37(3): 260-270, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38353291

RESUMEN

OBJECTIVES: Primary Coenzyme Q10 Deficiency-7 (OMIM 616276) results from bi-allelic pathogenic variants in the COQ4 gene. Common clinical findings include hypotonia, seizures, respiratory distress, and cardiomyopathy. In this report, we present two patients diagnosed with Primary Coenzyme Q10 Deficiency-7 along with a review of previously published cases, with the aim being to provide a better understanding of the clinical and laboratory manifestations of the disease. CASE PRESENTATION: A 3-month-and-22-day-old male was admitted to our outpatient clinic due to poor feeding and restlessness. He was born following an uneventful pregnancy to a nonconsanguineous marriage. A physical examination revealed hypotonia, a dolichocephaly, periorbital edema, and long eyelashes. Blood tests revealed metabolic acidosis and elevated serum lactate levels, while the genetic analysis revealed a variant previously reported as pathogenic, c.437T>G (p.Phe146Cys), in the COQ4 gene. Genetic tests were also conducted on both mother and father, and it revealed heterozygous variant, 0.437T>G (p.Phe146Cys), in the COQ4 gene. As a result of these findings, the patient was diagnosed with neonatal encephalomyopathy-cardiomyopathy-respiratory distress syndrome (Primary Coenzyme Q10 Deficiency-7). A 1-year-old male was admitted to our clinic with complaints of hypotonia, seizures, and feeding difficulties. He was born following an uneventful pregnancy to a nonconsanguineous marriage. On his first day of life, he was admitted to the neonatal intensive care unit due to poor feeding and hypotonia. A physical examination revealed microcephaly, a high palate, poor feeding, weak crying, hypotonia, bilateral horizontal nystagmus, and inability to maintain eye contact. Laboratory findings were within normal limits, while a whole exome sequencing analysis revealed a homozygous variant previously reported as pathogenic, c.458C>T (p.A153V), in the COQ4 gene. The patient was diagnosed with Primary Coenzyme Q10 Deficiency-7. CONCLUSIONS: Primary Coenzyme Q10 Deficiency-7 should be considered in the differential diagnosis of infants presenting with neurological and dysmorphic manifestations.


Asunto(s)
Ataxia , Cardiomiopatías , Enfermedades Mitocondriales , Debilidad Muscular , Ubiquinona/deficiencia , Lactante , Recién Nacido , Embarazo , Femenino , Humanos , Masculino , Hipotonía Muscular/etiología , Hipotonía Muscular/genética , Enfermedades Mitocondriales/patología , Ubiquinona/genética , Convulsiones/complicaciones , Cardiomiopatías/complicaciones
14.
Epilepsy Behav ; 149: 109498, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37948995

RESUMEN

Coenzyme Q10 (CoQ10) is one of the essential substances for mitochondrial energy synthesis and extra-mitochondrial vital function. Primary CoQ10 deficiency is a rare disease resulting from interruption of CoQ10 biosynthetic pathway and biallelic COQ4 variants are one of the genetic etiologies recognized in this hereditary disorder. The clinical heterogenicity is broad with wide onset age from prenatal period to adulthood. The typical manifestations include early pharmacoresistant seizure, severe cognition and/or developmental delay, dystonia, ataxia, and spasticity. Patients may also have multisystemic involvements such as cardiomyopathy, lactic acidosis or gastro-esophageal regurgitation disease. Oral CoQ10 supplement is the major therapeutic medication currently. Among those patients, c.370G > A variant is the most common pathogenic variant detected, especially in Asian population. This phenomenon also suggests that this specific allele may be the founder variants in Asia. In this article, we report two siblings with infantile onset seizures, developmental delay, cardiomyopathy, and diffuse brain atrophy. Genetic analysis of both two cases revealed homozygous COQ4 c.370G > A (p.Gly124Ser) variants. We also review the clinical manifestations of primary CoQ10 deficiency patients and possible treatment categories, which are still under survey. As oral CoQ10 supplement may improve or stabilize disease severity, early precise diagnosis of primary CoQ10 deficiency and early treatment are the most important issues. This review article helps to further understand clinical spectrum and treatment categories of primary CoQ10 deficiency with COQ4 variant.


Asunto(s)
Cardiomiopatías , Epilepsia , Enfermedades Mitocondriales , Femenino , Humanos , Embarazo , Ataxia/tratamiento farmacológico , Ataxia/genética , Epilepsia/diagnóstico , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Debilidad Muscular/genética , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Mutación/genética , Ubiquinona/deficiencia , Ubiquinona/metabolismo
15.
Nat Commun ; 13(1): 6061, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229432

RESUMEN

Overexposure to manganese disrupts cellular energy metabolism across species, but the molecular mechanism underlying manganese toxicity remains enigmatic. Here, we report that excess cellular manganese selectively disrupts coenzyme Q (CoQ) biosynthesis, resulting in failure of mitochondrial bioenergetics. While respiratory chain complexes remain intact, the lack of CoQ as lipophilic electron carrier precludes oxidative phosphorylation and leads to premature cell and organismal death. At a molecular level, manganese overload causes mismetallation and proteolytic degradation of Coq7, a diiron hydroxylase that catalyzes the penultimate step in CoQ biosynthesis. Coq7 overexpression or supplementation with a CoQ headgroup analog that bypasses Coq7 function fully corrects electron transport, thus restoring respiration and viability. We uncover a unique sensitivity of a diiron enzyme to mismetallation and define the molecular mechanism for manganese-induced bioenergetic failure that is conserved across species.


Asunto(s)
Enfermedades Mitocondriales , Ubiquinona , Ataxia , Humanos , Manganeso/toxicidad , Enfermedades Mitocondriales/metabolismo , Oxigenasas de Función Mixta , Debilidad Muscular , Ubiquinona/deficiencia , Ubiquinona/metabolismo
16.
Mov Disord ; 37(10): 2147-2153, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36047608

RESUMEN

BACKGROUND: COQ4 codes for a mitochondrial protein required for coenzyme Q10 (CoQ10 ) biosynthesis. Autosomal recessive COQ4-associated CoQ10 deficiency leads to an early-onset mitochondrial multi-organ disorder. METHODS: In-house exome and genome datasets (n = 14,303) were screened for patients with bi-allelic variants in COQ4. Work-up included clinical characterization and functional studies in patient-derived cell lines. RESULTS: Six different COQ4 variants, three of them novel, were identified in six adult patients from four different families. Three patients had a phenotype of hereditary spastic paraparesis, two sisters showed a predominant cerebellar ataxia, and one patient had mild signs of both. Studies in patient-derived fibroblast lines revealed significantly reduced amounts of COQ4 protein, decreased CoQ10 concentrations, and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION: We report bi-allelic variants in COQ4 causing an adult-onset ataxia-spasticity spectrum phenotype and a disease course much milder than previously reported. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Ataxia Cerebelosa , Proteínas Mitocondriales , Ubiquinona , Ataxia/genética , Ataxia Cerebelosa/genética , Humanos , Enfermedades Mitocondriales , Proteínas Mitocondriales/genética , Espasticidad Muscular , Debilidad Muscular , Mutación/genética , Ubiquinona/deficiencia , Ubiquinona/genética , Ubiquinona/metabolismo
17.
Biomed Res Int ; 2022: 5250254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36124066

RESUMEN

Primary coenzyme Q10 (CoQ10) deficiency refers to a group of mitochondrial cytopathies caused by genetic defects in CoQ10 biosynthesis. Primary coenzyme Q10 deficiency-6 (COQ10D6) is an autosomal recessive disorder attributable to biallelic COQ6 variants; the cardinal phenotypes are steroid-resistant nephrotic syndrome (SRNS), which inevitably progresses to kidney failure, and sensorineural hearing loss (SNHL). Here, we describe the phenotypes and genotypes of 12 children with COQ10D6 from 11 unrelated Korean families and quantitatively explore the beneficial effects of CoQ10 replacement therapy on SNHL. A diagnosis of SRNS generally precedes SNHL documentation. COQ10D6 is associated with progressive SNHL. Four causative COQ6 variants were identified in either homozygotes or compound heterozygotes: c.189_191delGAA, c.484C>T, c.686A>C, and c.782C>T. The response rate (no further hearing loss or improvement) was 42.9%; CoQ10 replacement therapy may thus limit and even improve hearing loss. Notably, the audiological benefit appeared to be genotype-specific, suggesting a genotype-phenotype correlation. The results of cochlear implantation were generally favorable, and the effects were sustained over time. Our results thus propose the beneficial effects of CoQ10 replacement therapy on hearing loss. Our work with COQ10D6 patients is a good example of personalized, genetically tailored, audiological rehabilitation of patients with syndromic deafness.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Síndrome Nefrótico , Ataxia , Sordera/genética , Pérdida Auditiva Sensorineural/complicaciones , Pérdida Auditiva Sensorineural/tratamiento farmacológico , Pérdida Auditiva Sensorineural/genética , Humanos , Enfermedades Mitocondriales , Debilidad Muscular , Síndrome Nefrótico/genética , Esteroides , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia
18.
J Cell Mol Med ; 26(17): 4635-4644, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35985679

RESUMEN

Coenzyme Q10 (CoQ10 ) is necessary for mitochondrial electron transport. Mutations in CoQ10 biosynthetic genes cause primary CoQ10 deficiency (PCoQD) and manifest as mitochondrial disorders. It is often stated that PCoQD patients can be treated by oral CoQ10 supplementation. To test this, we compiled all studies describing PCoQD patients up to May 2022. We excluded studies with no data on CoQ10 treatment, or with insufficient description of effectiveness. Out of 303 PCoQD patients identified, we retained 89 cases, of which 24 reported improvements after CoQ10 treatment (27.0%). In five cases, the patient's condition was reported to deteriorate after halting of CoQ10 treatment. 12 cases reported improvement in the severity of ataxia and 5 cases in the severity of proteinuria. Only a subjective description of improvement was reported for 4 patients described as responding. All reported responses were partial improvements of only some symptoms. For PCoQD patients, CoQ10 supplementation is replacement therapy. Yet, there is only very weak evidence for the efficacy of the treatment. Our findings, thus, suggest a need for caution when seeking to justify the widespread use of CoQ10 for the treatment of any disease or as dietary supplement.


Asunto(s)
Enfermedades Mitocondriales , Ubiquinona , Ataxia/tratamiento farmacológico , Ataxia/genética , Humanos , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Debilidad Muscular/tratamiento farmacológico , Debilidad Muscular/genética , Ubiquinona/deficiencia , Ubiquinona/uso terapéutico
19.
Clin Genet ; 102(4): 350-351, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35791803

RESUMEN

We report a 19-month-old patient with cardiomyopathy as the first presenting feature of primary COQ10 deficiency-6. This case expands the phenotypic spectrum of this disorder. Furthermore, it shows that genetic testing for primary COQ10 deficiency should be considered in patients with pediatric-onset cardiomyopathy as it can guide treatment options.


Asunto(s)
Cardiomiopatías , Enfermedades Mitocondriales , Ataxia/genética , Cardiomiopatías/diagnóstico , Cardiomiopatías/genética , Humanos , Lactante , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Debilidad Muscular , Mutación , Ubiquinona/deficiencia
20.
Parkinsonism Relat Disord ; 99: 91-95, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35642996

RESUMEN

INTRODUCTION: Primary coenzyme Q10 (CoQ10) deficiency, a recessive disorder associated with various defects of CoQ10 biosynthesis and widely varying clinical presentation, is customarily managed by oral Q10 supplementation but the benefit is debated. METHODS: To address this question, we mapped individual responses in two patients with COQ8A-related ataxia following coenzyme Q10 supplementation using noninvasive imaging. Metabolic 31phosphorus magnetic resonance spectroscopy imaging (31P-MRSI) and volumetric cerebellar neuroimaging were performed to quantify the individual treatment response in two patients with COQ8A-related ataxia, each compared with eight age- and gender-matched healthy control subjects. RESULTS: Post-treatment change in energy metabolite levels differed in the two patients, with higher energy levels and improved dysarthria and leg coordination in one, and decreased energy levels without clinical benefit in the other. CONCLUSIONS: Our results suggest that the cerebellar bioenergetic state may predict treatment response in COQ8A-related ataxia and highlight the potential of pathophysiology-orientated neuroimaging evidence to inform treatment decisions.


Asunto(s)
Ataxia Cerebelosa , Enfermedades Mitocondriales , Ataxia/complicaciones , Ataxia/diagnóstico por imagen , Ataxia/tratamiento farmacológico , Ataxia Cerebelosa/complicaciones , Ataxia Cerebelosa/diagnóstico por imagen , Ataxia Cerebelosa/tratamiento farmacológico , Metabolismo Energético , Humanos , Enfermedades Mitocondriales/complicaciones , Debilidad Muscular/complicaciones , Ubiquinona/deficiencia , Ubiquinona/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...