Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.126
Filtrar
1.
Cells ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38727276

RESUMEN

In mammals, hearing loss is irreversible due to the lack of the regenerative capacity of the auditory epithelium. However, stem/progenitor cells in mammalian cochleae may be a therapeutic target for hearing regeneration. The ubiquitin proteasome system plays an important role in cochlear development and maintenance. In this study, we investigated the role of ubiquitin C-terminal hydrolase L1 (UCHL1) in the process of the transdifferentiation of auditory supporting cells (SCs) into hair cells (HCs). The expression of UCHL1 gradually decreased as HCs developed and was restricted to inner pillar cells and third-row Deiters' cells between P2 and P7, suggesting that UCHL1-expressing cells are similar to the cells with Lgr5-positive progenitors. UCHL1 expression was decreased even under conditions in which supernumerary HCs were generated with a γ-secretase inhibitor and Wnt agonist. Moreover, the inhibition of UCHL1 by LDN-57444 led to an increase in HC numbers. Mechanistically, LDN-57444 increased mTOR complex 1 activity and allowed SCs to transdifferentiate into HCs. The suppression of UCHL1 induces the transdifferentiation of auditory SCs and progenitors into HCs by regulating the mTOR pathway.


Asunto(s)
Transdiferenciación Celular , Células Ciliadas Auditivas , Transducción de Señal , Serina-Treonina Quinasas TOR , Ubiquitina Tiolesterasa , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Transdiferenciación Celular/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Animales , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/citología , Ratones , Células Laberínticas de Soporte/metabolismo , Células Laberínticas de Soporte/citología , Indoles , Oximas
2.
Front Immunol ; 15: 1379586, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745648

RESUMEN

Objective: Choroidal neovascularization (CNV) represents the predominant form of advanced wet Age-related Macular Degeneration (wAMD). Macrophages play a pivotal role in the pathological progression of CNV. Meteorin-like (Metrnl), a novel cytokine known for its anti-inflammatory properties in macrophages, is the focus of our investigation into its mechanism of action and its potential to impede CNV progression. Methods: Cell viability was evaluated through CCK-8 and EdU assays following Metrnl treatment. Expression levels of inflammatory cytokines and proteins were assessed using quantitative reverse-transcription polymerase chain reaction(qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and western blot techniques. Protein-protein interactions were identified through protein mass spectrometry and co-immunoprecipitation (Co-IP). Additionally, in vivo and in vitro neovascularization models were employed to evaluate angiogenesis. Results: Our results revealed downregulated Metrnl levels in the choroid-sclera complex of CNV mice, the aqueous humor of wAMD patients, and activated macrophages. Metrnl overexpression demonstrated a reduction in pro-inflammatory cytokine production, influenced endothelial cell function, and suppressed angiogenesis in choroid explants and CNV models. Through protein mass spectrometry and Co-IP, we confirmed Metrnl binds to UCHL-1 to modulate the NF-κB signaling pathway. This interaction inhibited the transcription and expression of pro-inflammatory cytokines, ultimately suppressing angiogenesis. Conclusion: In summary, our findings indicate that Metrnl down-regulates macrophage pro-inflammatory cytokine secretion via the UCHL-1/NF-κB signaling pathway. This mechanism alleviates the inflammatory microenvironment and effectively inhibits choroidal neovascularization.


Asunto(s)
Neovascularización Coroidal , FN-kappa B , Transducción de Señal , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Neovascularización Coroidal/genética , Animales , Ratones , Humanos , FN-kappa B/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Macrófagos/inmunología , Coroides/metabolismo , Coroides/patología , Coroides/irrigación sanguínea , Masculino , Degeneración Macular Húmeda/metabolismo , Degeneración Macular Húmeda/genética , Degeneración Macular Húmeda/patología , Inflamación/metabolismo , Citocinas/metabolismo
3.
J Clin Invest ; 134(9)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38690732

RESUMEN

Epigenetic regulatory mechanisms are underappreciated, yet are critical for enteric nervous system (ENS) development and maintenance. We discovered that fetal loss of the epigenetic regulator Bap1 in the ENS lineage caused severe postnatal bowel dysfunction and early death in Tyrosinase-Cre Bap1fl/fl mice. Bap1-depleted ENS appeared normal in neonates; however, by P15, Bap1-deficient enteric neurons were largely absent from the small and large intestine of Tyrosinase-Cre Bap1fl/fl mice. Bowel motility became markedly abnormal with disproportionate loss of cholinergic neurons. Single-cell RNA sequencing at P5 showed that fetal Bap1 loss in Tyrosinase-Cre Bap1fl/fl mice markedly altered the composition and relative proportions of enteric neuron subtypes. In contrast, postnatal deletion of Bap1 did not cause enteric neuron loss or impaired bowel motility. These findings suggest that BAP1 is critical for postnatal enteric neuron differentiation and for early enteric neuron survival, a finding that may be relevant to the recently described human BAP1-associated neurodevelopmental disorder.


Asunto(s)
Diferenciación Celular , Sistema Nervioso Entérico , Proteínas Supresoras de Tumor , Ubiquitina Tiolesterasa , Animales , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/patología , Ratones , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Neuronas/metabolismo , Neuronas/patología , Ratones Noqueados , Femenino , Motilidad Gastrointestinal/genética , Humanos
4.
Proc Natl Acad Sci U S A ; 121(21): e2322923121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739798

RESUMEN

The ubiquitin-proteasome system is essential to all eukaryotes and has been shown to be critical to parasite survival as well, including Plasmodium falciparum, the causative agent of the deadliest form of malarial disease. Despite the central role of the ubiquitin-proteasome pathway to parasite viability across its entire life-cycle, specific inhibitors targeting the individual enzymes mediating ubiquitin attachment and removal do not currently exist. The ability to disrupt P. falciparum growth at multiple developmental stages is particularly attractive as this could potentially prevent both disease pathology, caused by asexually dividing parasites, as well as transmission which is mediated by sexually differentiated parasites. The deubiquitinating enzyme PfUCHL3 is an essential protein, transcribed across both human and mosquito developmental stages. PfUCHL3 is considered hard to drug by conventional methods given the high level of homology of its active site to human UCHL3 as well as to other UCH domain enzymes. Here, we apply the RaPID mRNA display technology and identify constrained peptides capable of binding to PfUCHL3 with nanomolar affinities. The two lead peptides were found to selectively inhibit the deubiquitinase activity of PfUCHL3 versus HsUCHL3. NMR spectroscopy revealed that the peptides do not act by binding to the active site but instead block binding of the ubiquitin substrate. We demonstrate that this approach can be used to target essential protein-protein interactions within the Plasmodium ubiquitin pathway, enabling the application of chemically constrained peptides as a novel class of antimalarial therapeutics.


Asunto(s)
Péptidos , Plasmodium falciparum , Proteínas Protozoarias , Ubiquitina Tiolesterasa , Plasmodium falciparum/enzimología , Plasmodium falciparum/metabolismo , Plasmodium falciparum/efectos de los fármacos , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/genética , Humanos , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/antagonistas & inhibidores , Antimaláricos/farmacología , Antimaláricos/química , Ubiquitina/metabolismo , Malaria Falciparum/parasitología , Malaria Falciparum/tratamiento farmacológico
5.
FASEB J ; 38(10): e23653, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38738548

RESUMEN

Hypoxic preconditioning has been recognized as a promotive factor for accelerating cutaneous wound healing. Our previous study uncovered that exosomal lncRNA H19, derived from adipose-derived stem cells (ADSCs), plays a crucial role in orchestrating cutaneous wound healing. Herein, we aimed to explore whether there is a connection between hypoxia and ADSC-derived exosomes (ADSCs-exos) in cutaneous wound healing. Exosomes extracted from ADSCs under normoxic and hypoxic conditions were identified using transmission electron microscope (TEM) and particle size analysis. The effects of ADSCs-exos on the proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs) were evaluated by CCK-8, EdU, wound healing, and tube formation assays. Expression patterns of H19, HIF-1α, and USP22 were measured. Co-immunoprecipitation, chromatin immunoprecipitation, ubiquitination, and luciferase reporter assays were conducted to confirm the USP22/HIF-1α/H19 axis, which was further validated in a mice model of skin wound. Exosomes extracted from hypoxia-treated ADSCs (termed as H-ADSCs-exos) significantly increased cell proliferation, migration, and angiogenesis in H2O2-exposed HUVECs, and promoted cutaneous wound healing in vivo. Moreover, H-ADSCs and H-ADSCs-exos, which exhibited higher levels of H19, were found to be transcriptionally activated by HIF-1α. Mechanically, H-ADSCs carrying USP22 accounted for deubiquitinating and stabilizing HIF-1α. Additionally, H-ADSCs-exos improved cell proliferation, migration, and angiogenesis in H2O2-triggered HUVECs by activating USP22/HIF-1α axis and promoting H19 expression, which may provide a new clue for the clinical treatment of cutaneous wound healing.


Asunto(s)
Exosomas , Células Endoteliales de la Vena Umbilical Humana , Subunidad alfa del Factor 1 Inducible por Hipoxia , ARN Largo no Codificante , Ubiquitina Tiolesterasa , Cicatrización de Heridas , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Exosomas/metabolismo , Humanos , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proliferación Celular , Tejido Adiposo/metabolismo , Tejido Adiposo/citología , Masculino , Regulación hacia Arriba , Células Madre/metabolismo , Movimiento Celular , Piel/metabolismo , Hipoxia de la Célula , Ratones Endogámicos C57BL
6.
J Cancer Res Clin Oncol ; 150(4): 204, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642144

RESUMEN

BACKGROUND: Emerging research has validated that circular RNAs (circRNAs) have indispensable regulatory functions in tumorigenesis, including colorectal cancer (CRC). Ferroptosis is a specific cell death form and implicates in the malignant progression of tumors. Here, this study aimed to investigate the biofunction of circ_0087851 in tumor progression and ferroptosis of CRC, as well as its underlying molecular mechanism. METHODS: The expression pattern of circ_0087851 in CRC was validated by qRT-PCR. The biological characteristics of circ_0087851 in CRC were assessed through CCK-8, colony formation and transwell assays in vitro. The ferroptosis was measured using ferroptosis-related reagents on iron, Fe2+, and lipid ROS detection. Bioinformatics, luciferase reporter, and RNA pulldown assays were employed to reveal the circ_0087851-mediated regulatory network. In addition, the effect of circ_0087851 on tumor growth in vivo was detected using a xenograft model. RESULTS: Circ_0087851 was notably diminished in CRC tissues and cells. Functionally, overexpression of circ_0087851 suppressed CRC cell growth, migration, invasion, and facilitated ferroptosis in vitro. Meanwhile, circ_0087851 upregulation impeded CRC growth in vivo. Mechanistically, circ_0087851 functioned as a molecular sponge for miR-593-3p, and BRCA1 associated protein 1 (BAP1) was identified as a downstream target of miR-593-3p. Besides, rescue experiments revealed that miR-593-3p overexpression or silencing of BAP1 reversed circ_0087851-mediated CRC progression. CONCLUSION: Circ_0087851 performed as a tumor suppressor and ferroptosis promoter by the miR-593-3p/BAP1 axis, providing novel biomarker and therapeutic target for the clinical management of CRC.


Asunto(s)
Neoplasias Colorrectales , Ferroptosis , MicroARNs , ARN Circular , Humanos , Carcinogénesis , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Ferroptosis/genética , MicroARNs/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , ARN Circular/genética
7.
Int J Biol Macromol ; 267(Pt 2): 131645, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631582

RESUMEN

Diet-induced obesity can cause metabolic syndromes. The critical link in disease progression is adipose tissue macrophage (ATM) recruitment, which drives low-level inflammation, triggering adipocyte dysfunction. It is unclear whether ubiquitin-specific proteinase 14 (USP14) affects metabolic disorders by mediating adipose tissue inflammation. In the present study, we showed that USP14 is highly expressed in ATMs of obese human patients and diet-induced obese mice. Mouse USP14 overexpression aggravated obesity-related insulin resistance by increasing the levels of pro-inflammatory ATMs, leading to adipose tissue inflammation, excessive lipid accumulation, and hepatic steatosis. In contrast, USP14 knockdown in adipose tissues alleviated the phenotypes induced by a high-fat diet. Co-culture experiments showed that USP14 deficiency in macrophages led to decreased adipocyte lipid deposition and enhanced insulin sensitivity, suggesting that USP14 plays an important role in ATMs. Mechanistically, USP14 interacted with TNF receptor-associated 6, preventing K48-linked ubiquitination as well as proteasome degradation, leading to increased pro-inflammatory polarization of macrophages. In contrast, the pharmacological inhibition of USP14 significantly ameliorated diet-induced hyperlipidemia and insulin resistance in mice. Our results demonstrated that macrophage USP14 restriction constitutes a key constraint on the pro-inflammatory M1 phenotype, thereby inhibiting obesity-related metabolic diseases.


Asunto(s)
Tejido Adiposo , Dieta Alta en Grasa , Resistencia a la Insulina , Macrófagos , Obesidad , Ubiquitina Tiolesterasa , Animales , Obesidad/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Macrófagos/metabolismo , Ratones , Humanos , Tejido Adiposo/metabolismo , Dieta Alta en Grasa/efectos adversos , Masculino , Adipocitos/metabolismo , Inflamación/metabolismo , Ubiquitinación , Ratones Endogámicos C57BL
8.
J Virol ; 98(5): e0017724, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38563731

RESUMEN

Cactin, a highly conserved protein, plays a crucial role in various physiological processes in eukaryotes, including innate immunity. Recently, the function of Cactin in the innate immunity of Drosophila has been explored, revealing that Cactin regulates a non-canonical signaling pathway associated with the Toll and Imd pathways via the Cactin-Deaf1 axis. In addition, Cactin exhibits specific antiviral activity against the Drosophila C virus (DCV) in Drosophila, with an unknown mechanism. During DCV infection, it has been confirmed that the protein level and antiviral activity of Cactin are regulated by ubiquitination. However, the precise ubiquitination and deubiquitination mechanisms of Cactin in Drosophila remain unexplored. In this study, we identified ubiquitin-specific protease 14 (Usp14) as a major deubiquitinase for Cactin through comprehensive deubiquitinase screening. Our results demonstrate that Usp14 interacts with the C_Cactus domain of Cactin via its USP domain. Usp14 efficiently removes K48- and K63-linked polyubiquitin chains from Cactin, thereby preventing its degradation through the ubiquitin-proteasome pathway. Usp14 significantly inhibits DCV replication in Drosophila cells by stabilizing Cactin. Moreover, Usp14-deficient fruit flies exhibit increased susceptibility to DCV infection compared to wild-type flies. Collectively, our findings reveal the regulation of ubiquitination and antiviral activity of Cactin by the deubiquitinase Usp14, providing valuable insights into the modulation of Cactin-mediated antiviral activity in Drosophila.IMPORTANCEViral infections pose a severe threat to human health, marked by high pathogenicity and mortality rates. Innate antiviral pathways, such as Toll, Imd, and JAK-STAT, are generally conserved across insects and mammals. Recently, the multi-functionality of Cactin in innate immunity has been identified in Drosophila. In addition to regulating a non-canonical signaling pathway through the Cactin-Deaf1 axis, Cactin exhibits specialized antiviral activity against the Drosophila C virus (DCV) with an unknown mechanism. A previous study emphasized the significance of the Cactin level, regulated by the ubiquitin-proteasome pathway, in modulating antiviral signaling. However, the regulatory mechanisms governing Cactin remain unexplored. In this study, we demonstrate that Usp14 stabilizes Cactin by preventing its ubiquitination and subsequent degradation. Furthermore, Usp14 plays a crucial role in regulating the antiviral function mediated by Cactin. Therefore, our findings elucidate the regulatory mechanism of Cactin in Drosophila, offering a potential target for the prevention and treatment of viral infections.


Asunto(s)
Proteínas de Drosophila , Inmunidad Innata , Ubiquitinación , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/virología , Drosophila melanogaster/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Transducción de Señal , Dicistroviridae/metabolismo , Replicación Viral , Drosophila/metabolismo , Antivirales/farmacología , Antivirales/metabolismo
9.
Sci Rep ; 14(1): 9146, 2024 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644411

RESUMEN

Uveal melanoma (UVM) is the most common primary tumor in adult human eyes. Costimulatory molecules (CMs) are important in maintaining T cell biological functions and regulating immune responses. To investigate the role of CMs in UVM and exploit prognostic signature by bioinformatics analysis. This study aimed to identify and validate a CMs associated signature and investigate its role in the progression and prognosis of UVM. The expression profile data of training cohort and validation cohort were downloaded from The Cancer Genome Atlas (TCGA) dataset and the Gene Expression Omnibus (GEO) dataset. 60 CM genes were identified, and 34 genes were associated with prognosis by univariate Cox regression. A prognostic signature was established with six CM genes. Further, high- and low-risk groups were divided by the median, and Kaplan-Meier (K-M) curves indicated that high-risk patients presented a poorer prognosis. We analyzed the correlation of gender, age, stage, and risk score on prognosis by univariate and multivariate regression analysis. We found that risk score was the only risk factor for prognosis. Through the integration of the tumor immune microenvironment (TIME), it was found that the high-risk group presented more immune cell infiltration and expression of immune checkpoints and obtained higher immune scores. Enrichment analysis of the biological functions of the two groups revealed that the differential parts were mainly related to cell-cell adhesion, regulation of T-cell activation, and cytokine-cytokine receptor interaction. No differences in tumor mutation burden (TMB) were found between the two groups. GNA11 and BAP1 have higher mutation frequencies in high-risk patients. Finally, based on the Genomics of Drug Sensitivity in Cancer 2 (GDSC2) dataset, drug sensitivity analysis found that high-risk patients may be potential beneficiaries of the treatment of crizotinib or temozolomide. Taken together, our CM-related prognostic signature is a reliable biomarker that may provide ideas for future treatments for the disease.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Melanoma , Neoplasias de la Úvea , Humanos , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/mortalidad , Neoplasias de la Úvea/inmunología , Melanoma/genética , Melanoma/mortalidad , Melanoma/inmunología , Melanoma/patología , Pronóstico , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Perfilación de la Expresión Génica , Ubiquitina Tiolesterasa/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Adulto , Anciano , Transcriptoma , Estimación de Kaplan-Meier
11.
J Exp Clin Cancer Res ; 43(1): 124, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658954

RESUMEN

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a common gastrointestinal tumor and has become an important global health problem. The PI3K/AKT signaling pathway plays a key role in the development of ESCC. CircRNAs have been reported to be involved in the regulation of the PI3K/AKT pathway, but the underlying mechanisms are unclear. Therefore, this study aimed to identify protein-coding circRNAs and investigate their functions in ESCC. METHODS: Differential expression of circRNAs between ESCC tissues and adjacent normal tissues was identified using circRNA microarray analysis. Thereafter, LC-MS/MS was used to identify circPDE5A-encoded novel protein PDE5A-500aa. Molecular biological methods were used to explore the biological functions and regulatory mechanisms of circPDE5A and PDE5A-500aa in ESCC. Lastly, circRNA-loaded nanoplatforms were constructed to investigate the therapeutic translation value of circPDE5A. RESULTS: We found that circPDE5A expression was down-regulated in ESCC cells and tissues and that it was negatively associated with advanced clinicopathological stages and poorer prognosis in ESCC. Functionally, circPDE5A inhibited ESCC proliferation and metastasis in vitro and in vivo by encoding PDE5A-500aa, a key regulator of the PI3K/AKT signaling pathway in ESCC. Mechanistically, PDE5A-500aa interacted with PIK3IP1 and promoted USP14-mediated de-ubiquitination of the k48-linked polyubiquitin chain at its K198 residue, thereby attenuating the PI3K/AKT pathway in ESCC. In addition, Meo-PEG-S-S-PLGA-based reduction-responsive nanoplatforms loaded with circPDE5A and PDE5A-500aa plasmids were found to successfully inhibit the growth and metastasis of ESCC in vitro and in vivo. CONCLUSION: The novel protein PDE5A-500aa encoded by circPDE5A can act as an inhibitor of the PI3K/AKT signaling pathway to inhibit the progression of ESCC by promoting USP14-mediated de-ubiquitination of PIK3IP1 and may serve as a potential target for the development of therapeutic agents.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , ARN Circular , Ubiquitina Tiolesterasa , Ubiquitinación , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Línea Celular Tumoral , Proliferación Celular , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/genética , Progresión de la Enfermedad , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Transducción de Señal , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética
12.
Mol Genet Genomic Med ; 12(4): e2423, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622850

RESUMEN

BACKGROUND: Inflammatory myofibroblastic tumors (IMTs) are rare mesenchymal soft tissue sarcomas that often present diagnostic challenges due to their wide and varied morphology. A subset of IMTs have fusions involving ALK or ROS1. The role of next-generation sequencing (NGS) for classification of unselected sarcomas remains controversial. METHODS AND RESULTS: We report a case of a metastatic sarcoma in a 34-year-old female originally diagnosed as an unclassified spindle cell sarcoma with myofibroblastic differentiation and later reclassified as IMT after NGS revealed a TFG-ROS1 rearrangement. Histologically, the neoplasm had spindle cell morphology with a lobulated to focally infiltrative growth pattern with scant inflammatory cell infiltrate. Immunohistochemistry demonstrated focal desmin and variable smooth muscle actin staining but was negative for SOX10, S100, and CD34. Fluorescence in situ hybridization was negative for USP6 or ALK gene rearrangements. NGS revealed a TFG-ROS1 rearrangement and the patient was treated with crizotinib with clinical benefit. CONCLUSIONS: We discuss the role of NGS as well as its potential benefit in patients with unresectable, ALK-negative metastatic disease. Considering this case and previous literature, we support the use of NGS for patients requiring systemic treatment.


Asunto(s)
Proteínas Tirosina Quinasas , Sarcoma , Femenino , Humanos , Adulto , Proteínas Tirosina Quinasas/genética , Quinasa de Linfoma Anaplásico/genética , Hibridación Fluorescente in Situ , Proteínas Proto-Oncogénicas/genética , Sarcoma/tratamiento farmacológico , Sarcoma/genética , Sarcoma/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Ubiquitina Tiolesterasa/genética , Proteínas de Transporte Vesicular/genética
13.
Viruses ; 16(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675828

RESUMEN

The innate immune response to viruses is formed in part by interferon (IFN)-induced restriction factors, including ISG15, p21, and SAMHD1. IFN production can be blocked by the ISG15-specific protease USP18. HIV-1 has evolved to circumvent host immune surveillance. This mechanism might involve USP18. In our recent studies, we demonstrate that HIV-1 infection induces USP18, which dramatically enhances HIV-1 replication by abrogating the antiviral function of p21. USP18 downregulates p21 by accumulating misfolded dominant negative p53, which inactivates wild-type p53 transactivation, leading to the upregulation of key enzymes involved in de novo dNTP biosynthesis pathways and inactivated SAMHD1. Despite the USP18-mediated increase in HIV-1 DNA in infected cells, it is intriguing to note that the cGAS-STING-mediated sensing of the viral DNA is abrogated. Indeed, the expression of USP18 or knockout of ISG15 inhibits the sensing of HIV-1. We demonstrate that STING is ISGylated at residues K224, K236, K289, K347, K338, and K370. The inhibition of STING K289-linked ISGylation suppresses its oligomerization and IFN induction. We propose that human USP18 is a novel factor that potentially contributes in multiple ways to HIV-1 replication.


Asunto(s)
VIH-1 , Ubiquitina Tiolesterasa , Ubiquitinas , Replicación Viral , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Humanos , VIH-1/fisiología , VIH-1/genética , Ubiquitinas/metabolismo , Ubiquitinas/genética , Citocinas/metabolismo , Citocinas/genética , Inmunidad Innata , Infecciones por VIH/virología , Infecciones por VIH/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Interacciones Huésped-Patógeno , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética
14.
Chin J Nat Med ; 22(4): 329-340, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658096

RESUMEN

The management of colorectal cancer (CRC) poses a significant challenge, necessitating the development of innovative and effective therapeutics. Our research has shown that notoginsenoside Ft1 (Ng-Ft1), a small molecule, markedly inhibits subcutaneous tumor formation in CRC and enhances the proportion of CD8+ T cells in tumor-bearing mice, thus restraining tumor growth. Investigation into the mechanism revealed that Ng-Ft1 selectively targets the deubiquitination enzyme USP9X, undermining its role in shielding ß-catenin. This leads to a reduction in the expression of downstream effectors in the Wnt signaling pathway. These findings indicate that Ng-Ft1 could be a promising small-molecule treatment for CRC, working by blocking tumor progression via the Wnt signaling pathway and augmenting CD8+ T cell prevalence within the tumor environment.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Colorrectales , Ubiquitina Tiolesterasa , Vía de Señalización Wnt , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Ratones , Humanos , Vía de Señalización Wnt/efectos de los fármacos , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , beta Catenina/metabolismo , Ratones Endogámicos BALB C
15.
Cancer Genomics Proteomics ; 21(3): 252-259, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38670591

RESUMEN

BACKGROUND/AIM: The term "calcified chondroid mesenchymal neoplasm" was introduced in 2021 to describe a group of tumors characterized by various morphological features, including the formation of cartilage or chondroid matrix. These tumors frequently carry chimeric genes where the 5'-end partner gene is fibronectin 1 and the 3'-end partner gene codes for receptor tyrosine kinase. Our study explores fusion of the genes platelet-derived growth factor receptor alpha (PDGFRA) and ubiquitin-specific peptidase 8 (USP8) in calcified chondroid mesenchymal neoplasm. CASE REPORT: Genetic investigations were conducted on a tumor located in the leg of a 71-year-old woman. G-banding analysis of short-term cultured tumor cells revealed the karyotype 46,XX,t(4;15)(q12;q21)[6]/46,XX[4]. RNA sequencing detected in-frame PDGFRA::USP8 and USP8::PDGFRA chimeric transcripts, which were validated by RT-PCR/Sanger sequencing. The PDGFRA::USP8 chimeric protein is predicted to have cell membrane location and functions as a chimeric ubiquitinyl hydrolase. The USP8::PDGFRA protein was predicted to be nuclear and function as a positive regulator of cellular metabolic process. CONCLUSION: We report, for the first time, a calcified chondroid mesenchymal neoplasm carrying a balanced t(4;15)(q12;q21) chromosomal translocation, resulting in the generation of both PDGFRA::USP8 and USP8::PDGFRA chimeras. The PDGFRA::USP8 protein is located on the cell membrane and functions as a chimeric ubiquitinyl hydrolase, activated by PDGFs. Conversely, USP8::PDGFRA is a nuclear protein regulating metabolic processes.


Asunto(s)
Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Humanos , Femenino , Anciano , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Translocación Genética , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Calcinosis/genética , Calcinosis/patología , Cromosomas Humanos Par 4/genética
16.
Oncoimmunology ; 13(1): 2344905, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659649

RESUMEN

T cell immunity is critical for human defensive immune response. Exploring the key molecules during the process provides new targets for T cell-based immunotherapies. CMC1 is a mitochondrial electron transport chain (ETC) complex IV chaperon protein. By establishing in-vitro cell culture system and Cmc1 gene knock out mice, we evaluated the role of CMC1 in T cell activation and differentiation. The B16-OVA tumor model was used to test the possibility of targeting CMC1 for improving T cell anti-tumor immunity. We identified CMC1 as a positive regulator in CD8+T cells activation and terminal differentiation. Meanwhile, we found that CMC1 increasingly expressed in exhausted T (Tex) cells. Genetic lost of Cmc1 inhibits the development of CD8+T cell exhaustion in mice. Instead, deletion of Cmc1 in T cells prompts cells to differentiate into metabolically and functionally quiescent cells with increased memory-like features and tolerance to cell death upon repetitive or prolonged T cell receptor (TCR) stimulation. Further, the in-vitro mechanistic study revealed that environmental lactate enhances CMC1 expression by inducing USP7, mediated stabilization and de-ubiquitination of CMC1 protein, in which a mechanism we propose here that the lactate-enriched tumor microenvironment (TME) drives CD8+TILs dysfunction through CMC1 regulatory effects on T cells. Taken together, our study unraveled the novel role of CMC1 as a T cell regulator and its possibility to be utilized for anti-tumor immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Ratones Noqueados , Proteínas Mitocondriales , Animales , Ratones , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular/inmunología , Activación de Linfocitos/inmunología , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Melanoma Experimental/genética , Ratones Endogámicos C57BL , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética
17.
Dev Comp Immunol ; 156: 105181, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636698

RESUMEN

Interferon regulatory factor 7 (IRF7) is considered the master regulator of virus-induced interferon (IFN) production. However, to avoid an autoimmune response, the expression of IRF7 must be tightly controlled. In this study, we report that zebrafish ubiquitin-specific protease 8 (USP8) promotes IRF7 degradation through an autophagy-lysosome-dependent pathway to inhibit IFN production. First, zebrafish usp8 is induced upon spring viremia of carp virus (SVCV) infection and polyinosinic/polycytidylic acid (poly I:C) stimulation. Second, overexpression of USP8 suppresses SVCV or poly I:C-mediated IFN expression. Mechanistically, USP8 interacts with IRF7 and promotes its degradation via an autophagy-lysosome-dependent pathway. Finally, USP8 significantly suppresses cellular antiviral responses and enhances SVCV proliferation. In summary, our discoveries offer a perspective on the role of zebrafish USP8 and provide additional understanding of the regulation of IRF7 in host antiviral immune response.


Asunto(s)
Autofagia , Factor 7 Regulador del Interferón , Factores Reguladores del Interferón , Lisosomas , Rhabdoviridae , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/inmunología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Autofagia/inmunología , Lisosomas/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/genética , Rhabdoviridae/fisiología , Rhabdoviridae/inmunología , Interferones/metabolismo , Poli I-C/inmunología , Infecciones por Rhabdoviridae/inmunología , Proteolisis , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Humanos , Inmunidad Innata
18.
Cell Death Differ ; 31(5): 574-591, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491202

RESUMEN

Drug resistance in cancer therapy is the major reason for poor prognosis. Addressing this clinically unmet issue is important and urgent. In this study, we found that targeting USP24 by the specific USP24 inhibitors, USP24-i and its analogues, dramatically activated autophagy in the interphase and mitotic periods of lung cancer cells by inhibiting E2F4 and TRAF6, respectively. USP24 functional knockout, USP24C1695A, or targeting USP24 by USP24-i-101 inhibited drug resistance and activated autophagy in gefitinib-induced drug-resistant mice with doxycycline-induced EGFRL858R lung cancer, but this effect was abolished after inhibition of autophagy, indicating that targeting USP24-mediated induction of autophagy is required for inhibition of drug resistance. Genomic instability and PD-L1 levels were increased in drug resistant lung cancer cells and were inhibited by USP24-i-101 treatment or knockdown of USP24. In addition, inhibition of autophagy by bafilomycin-A1 significantly abolished the effect of USP24-i-101 on maintaining genomic integrity, decreasing PD-L1 and inhibiting drug resistance acquired in chemotherapy or targeted therapy. In summary, an increase in the expression of USP24 in cancer cells is beneficial for the induction of drug resistance and targeting USP24 by USP24-i-101 optimized from USP24-i inhibits drug resistance acquired during cancer therapy by increasing PD-L1 protein degradation and genomic stability in an autophagy induction-dependent manner.


Asunto(s)
Autofagia , Resistencia a Antineoplásicos , Ubiquitina Tiolesterasa , Autofagia/efectos de los fármacos , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Animales , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ratones , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética
19.
Cell Mol Life Sci ; 81(1): 137, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478109

RESUMEN

Improving the function of the blood-spinal cord barrier (BSCB) benefits the functional recovery of mice following spinal cord injury (SCI). The death of endothelial cells and disruption of the BSCB at the injury site contribute to secondary damage, and the ubiquitin-proteasome system is involved in regulating protein function. However, little is known about the regulation of deubiquitinated enzymes in endothelial cells and their effect on BSCB function after SCI. We observed that Sox17 is predominantly localized in endothelial cells and is significantly upregulated after SCI and in LPS-treated brain microvascular endothelial cells. In vitro Sox17 knockdown attenuated endothelial cell proliferation, migration, and tube formation, while in vivo Sox17 knockdown inhibited endothelial regeneration and barrier recovery, leading to poor functional recovery after SCI. Conversely, in vivo overexpression of Sox17 promoted angiogenesis and functional recovery after injury. Additionally, immunoprecipitation-mass spectrometry revealed the interaction between the deubiquitinase UCHL1 and Sox17, which stabilized Sox17 and influenced angiogenesis and BSCB repair following injury. By generating UCHL1 conditional knockout mice and conducting rescue experiments, we further validated that the deubiquitinase UCHL1 promotes angiogenesis and restoration of BSCB function after injury by stabilizing Sox17. Collectively, our findings present a novel therapeutic target for treating SCI by revealing a potential mechanism for endothelial cell regeneration and BSCB repair after SCI.


Asunto(s)
Células Endoteliales , Traumatismos de la Médula Espinal , Animales , Ratones , Ratas , Angiogénesis , Barrera Hematoencefálica/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Células Endoteliales/metabolismo , Proteínas HMGB/metabolismo , Proteínas HMGB/farmacología , Ratas Sprague-Dawley , Recuperación de la Función/fisiología , Factores de Transcripción SOXF/genética , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
20.
J Biol Chem ; 300(4): 107150, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462164

RESUMEN

Histone 2A monoubiquitination (uH2A) underscores a key epigenetic regulation of gene expression. In this report, we show that the deubiquitinase for uH2A, ubiquitin-specific peptidase 16 (USP16), is modified by O-linked N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation involves the installation of the O-GlcNAc moiety to Ser/Thr residues. It crosstalks with Ser/Thr phosphorylation, affects protein-protein interaction, alters enzyme activity or protein folding, and changes protein subcellular localization. In our study, we first confirmed that USP16 is glycosylated on Thr203 and Ser214, as reported in a previous chemoenzymatic screen. We then discovered that mutation of the O-GlcNAcylation site Thr203, which is adjacent to deubiquitination-required Cys204, reduces the deubiquitination activity toward H2AK119ub in vitro and in cells, while mutation on Ser214 had the opposite effects. Using USP16 Ser552 phosphorylation-specific antibodies, we demonstrated that O-GlcNAcylation antagonizes cyclin-dependent kinase 1-mediated phosphorylation and promotes USP16 nuclear export. O-GlcNAcylation of USP16 is also required for deubiquitination of Polo-like kinase 1, a mitotic master kinase, and the subsequent chromosome segregation and cytokinesis. In summary, our study revealed that O-GlcNAcylation of USP16 at Thr203 and Ser214 coordinates deubiquitination of uH2A and Polo-like kinase 1, thus ensuring proper cell cycle progression.


Asunto(s)
Ubiquitinación , Humanos , Fosforilación , Glicosilación , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Acetilglucosamina/metabolismo , Ciclo Celular , Células HEK293 , Células HeLa , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Histonas/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Quinasa Tipo Polo 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA