Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.560
Filtrar
1.
Physiol Res ; 73(2): 253-263, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38710055

RESUMEN

Up to now, there's a limited number of studies on the relationship between PINK1/Park2 pathway and mitophagy in NAFLD. To investigate the effect of Park2-mediated mitophagy on non-alcoholic fatty liver disease (NAFLD). Oleic acid was used for the establishment of NAFLD model. Oil red-dyed lipid drops and mitochondrial alternations were observed by transmission electron microscopy. Enzymatic kit was used to test lipid content. The levels of IL-8 and TNF-alpha were determined by ELISA. Lenti-Park2 and Park2-siRNA were designed to upregulate and downregulate Park2 expression, respectively. The changing expression of PINK and Park2 was detected by RT-qPCR and Western blot. Immunofluorescence staining was applied to measure the amount of LC3. Successful NAFLD modeling was featured by enhanced lipid accumulation, as well as the elevated total cholesterol (TC), triglyceride (TG), TNF-alpha and IL-8 levels. Mitochondria in NAFLD model were morphologically and functionally damaged. Park2 expression was upregulated by lenti-Park2 and downregulated through Park2-siRNA. The PINK1 expression showed the same trend as Park2 expression. Immunofluorescence staining demonstrated that the when Park2 was overexpressed, more LC3 protein on mitochondrial autophagosome membrane was detected, whereas Park2 knockdown impeded LC3' locating on the membrane. The transmission electron microscopy image exhibited that the extent of damage to the mitochondrial in NAFLD model was revered by enhanced Park2 expression but further exacerbated by reduced Park2 expression. Park2-mediated mitophagy could relive NAFLD and may be a novel therapeutic target for NAFLD treatment. Keywords: Non-alcoholic Fatty Liver Disease (NAFLD), Mitophagy, PINK1/Park2, Park2, PINK1.


Asunto(s)
Mitofagia , Enfermedad del Hígado Graso no Alcohólico , Proteínas Quinasas , Ubiquitina-Proteína Ligasas , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Mitofagia/fisiología , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Animales , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Masculino , Humanos , Ratones
2.
Cell Death Dis ; 15(5): 321, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719812

RESUMEN

RAD18, an important ubiquitin E3 ligase, plays a dual role in translesion DNA synthesis (TLS) and homologous recombination (HR) repair. However, whether and how the regulatory mechanism of O-linked N-acetylglucosamine (O-GlcNAc) modification governing RAD18 and its function during these processes remains unknown. Here, we report that human RAD18, can undergo O-GlcNAcylation at Ser130/Ser164/Thr468, which is important for optimal RAD18 accumulation at DNA damage sites. Mechanistically, abrogation of RAD18 O-GlcNAcylation limits CDC7-dependent RAD18 Ser434 phosphorylation, which in turn significantly reduces damage-induced PCNA monoubiquitination, impairs Polη focus formation and enhances UV sensitivity. Moreover, the ubiquitin and RAD51C binding ability of RAD18 at DNA double-strand breaks (DSBs) is O-GlcNAcylation-dependent. O-GlcNAcylated RAD18 promotes the binding of RAD51 to damaged DNA during HR and decreases CPT hypersensitivity. Our findings demonstrate a novel role of RAD18 O-GlcNAcylation in TLS and HR regulation, establishing a new rationale to improve chemotherapeutic treatment.


Asunto(s)
Acetilglucosamina , Proteínas de Unión al ADN , Antígeno Nuclear de Célula en Proliferación , Recombinasa Rad51 , Reparación del ADN por Recombinación , Ubiquitina-Proteína Ligasas , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Ubiquitina-Proteína Ligasas/metabolismo , Acetilglucosamina/metabolismo , Recombinasa Rad51/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Fosforilación , Replicación del ADN , Ubiquitinación , Roturas del ADN de Doble Cadena , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Daño del ADN , ADN/metabolismo , Células HEK293 , Rayos Ultravioleta , Unión Proteica , Glicosilación , Síntesis Translesional de ADN
3.
Epigenetics Chromatin ; 17(1): 15, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725075

RESUMEN

UHRF1 as a member of RING-finger type E3 ubiquitin ligases family, is an epigenetic regulator with five structural domains. It has been involved in the regulation of a series of biological functions, such as DNA replication, DNA methylation, and DNA damage repair. Additionally, aberrant overexpression of UHRF1 has been observed in over ten cancer types, indicating that UHRF1 is a typical oncogene. The overexpression of UHRF1 repressed the transcription of such tumor-suppressor genes as CDKN2A, BRCA1, and CDH1 through DNMT1-mediated DNA methylation. In addition to the upstream transcription factors regulating gene transcription, post-translational modifications (PTMs) also contribute to abnormal overexpression of UHRF1 in cancerous tissues. The types of PTM include phosphorylation, acetylation, methylationand ubiquitination, which regulate protein stability, histone methyltransferase activity, intracellular localization and the interaction with binding partners. Recently, several novel PTM types of UHRF1 have been reported, but the detailed mechanisms remain unclear. This comprehensive review summarized the types of UHRF1 PTMs, as well as their biological functions. A deep understanding of these crucial mechanisms of UHRF1 is pivotal for the development of novel UHRF1-targeted anti-cancer therapeutic strategies in the future.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT , Neoplasias , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias/metabolismo , Neoplasias/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Metilación de ADN , Animales , Ubiquitinación , Regulación Neoplásica de la Expresión Génica
4.
Int J Biol Sci ; 20(7): 2686-2697, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725852

RESUMEN

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. Breast cancer stem cells (BCSCs) are believed to play a crucial role in the carcinogenesis, therapy resistance, and metastasis of TNBC. It is well known that inflammation promotes stemness. Several studies have identified breast cancer-associated gene 2 (BCA2) as a potential risk factor for breast cancer incidence and prognosis. However, whether and how BCA2 promotes BCSCs has not been elucidated. Here, we demonstrated that BCA2 specifically promotes lipopolysaccharide (LPS)-induced BCSCs through LPS induced SOX9 expression. BCA2 enhances the interaction between myeloid differentiation primary response protein 88 (MyD88) and Toll-like receptor 4 (TLR4) and inhibits the interaction of MyD88 with deubiquitinase OTUD4 in the LPS-mediated NF-κB signaling pathway. And SOX9, an NF-κB target gene, mediates BCA2's pro-stemness function in TNBC. Our findings provide new insights into the molecular mechanisms by which BCA2 promotes breast cancer and potential therapeutic targets for the treatment of breast cancer.


Asunto(s)
Lipopolisacáridos , Células Madre Neoplásicas , Factor de Transcripción SOX9 , Humanos , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Femenino , Lipopolisacáridos/farmacología , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , FN-kappa B/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Regulación hacia Arriba , Transducción de Señal , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Regulación Neoplásica de la Expresión Génica
5.
Cells ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38727267

RESUMEN

The unique prolyl isomerase Pin1 binds to and catalyzes cis-trans conformational changes of specific Ser/Thr-Pro motifs after phosphorylation, thereby playing a pivotal role in regulating the structure and function of its protein substrates. In particular, Pin1 activity regulates the affinity of a substrate for E3 ubiquitin ligases, thereby modulating the turnover of a subset of proteins and coordinating their activities after phosphorylation in both physiological and disease states. In this review, we highlight recent advancements in Pin1-regulated ubiquitination in the context of cancer and neurodegenerative disease. Specifically, Pin1 promotes cancer progression by increasing the stabilities of numerous oncoproteins and decreasing the stabilities of many tumor suppressors. Meanwhile, Pin1 plays a critical role in different neurodegenerative disorders via the regulation of protein turnover. Finally, we propose a novel therapeutic approach wherein the ubiquitin-proteasome system can be leveraged for therapy by targeting pathogenic intracellular targets for TRIM21-dependent degradation using stereospecific antibodies.


Asunto(s)
Peptidilprolil Isomerasa de Interacción con NIMA , Proteolisis , Ubiquitinación , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Conformación Proteica , Animales , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Ubiquitina-Proteína Ligasas/metabolismo
6.
Nat Commun ; 15(1): 3890, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719850

RESUMEN

Shigella flexneri is a Gram-negative bacterium causing severe bloody dysentery. Its pathogenesis is largely dictated by a plasmid-encoded type III secretion system (T3SS) and its associated effectors. Among these, the effector OspG has been shown to bind to the ubiquitin conjugation machinery (E2~Ub) to activate its kinase activity. However, the cellular targets of OspG remain elusive despite years of extensive efforts. Here we show by unbiased phosphoproteomics that a major target of OspG is CAND1, a regulatory protein controlling the assembly of cullin-RING ubiquitin ligases (CRLs). CAND1 phosphorylation weakens its interaction with cullins, which is expected to impact a large panel of CRL E3s. Indeed, global ubiquitome profiling reveals marked changes in the ubiquitination landscape when OspG is introduced. Notably, OspG promotes ubiquitination of a class of cytoskeletal proteins called septins, thereby inhibiting formation of cage-like structures encircling cytosolic bacteria. Overall, we demonstrate that pathogens have evolved an elaborate strategy to modulate host ubiquitin signaling to evade septin-cage entrapment.


Asunto(s)
Proteínas Bacterianas , Septinas , Shigella flexneri , Transducción de Señal , Ubiquitina , Ubiquitinación , Shigella flexneri/metabolismo , Shigella flexneri/patogenicidad , Septinas/metabolismo , Septinas/genética , Humanos , Ubiquitina/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Fosforilación , Interacciones Huésped-Patógeno , Células HeLa , Proteínas Cullin/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Células HEK293 , Disentería Bacilar/microbiología , Disentería Bacilar/metabolismo
7.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731820

RESUMEN

A significant number of patients with genetic epilepsy do not obtain seizure freedom, despite developments in new antiseizure drugs, suggesting a need for novel therapeutic approaches. Many genetic epilepsies are associated with misfolded mutant proteins, including GABRG2(Q390X)-associated Dravet syndrome, which we have previously shown to result in intracellular accumulation of mutant GABAA receptor γ2(Q390X) subunit protein. Thus, a potentially promising therapeutic approach is modulation of proteostasis, such as increasing endoplasmic reticulum (ER)-associated degradation (ERAD). To that end, we have here identified an ERAD-associated E3 ubiquitin ligase, HRD1, among other ubiquitin ligases, as a strong modulator of wildtype and mutant γ2 subunit expression. Overexpressing HRD1 or knockdown of HRD1 dose-dependently reduced the γ2(Q390X) subunit. Additionally, we show that zonisamide (ZNS)-an antiseizure drug reported to upregulate HRD1-reduces seizures in the Gabrg2+/Q390X mouse. We propose that a possible mechanism for this effect is a partial rescue of surface trafficking of GABAA receptors, which are otherwise sequestered in the ER due to the dominant-negative effect of the γ2(Q390X) subunit. Furthermore, this partial rescue was not due to changes in ER chaperones BiP and calnexin, as total expression of these chaperones was unchanged in γ2(Q390X) models. Our results here suggest that leveraging the endogenous ERAD pathway may present a potential method to degrade neurotoxic mutant proteins like the γ2(Q390X) subunit. We also demonstrate a pharmacological means of regulating proteostasis, as ZNS alters protein trafficking, providing further support for the use of proteostasis regulators for the treatment of genetic epilepsies.


Asunto(s)
Retículo Endoplásmico , Epilepsias Mioclónicas , Proteolisis , Receptores de GABA-A , Epilepsias Mioclónicas/metabolismo , Epilepsias Mioclónicas/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Animales , Retículo Endoplásmico/metabolismo , Ratones , Humanos , Convulsiones Febriles/metabolismo , Convulsiones Febriles/genética , Degradación Asociada con el Retículo Endoplásmico , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Mutación , Células HEK293 , Chaperón BiP del Retículo Endoplásmico/metabolismo
8.
Cell Commun Signal ; 22(1): 269, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745240

RESUMEN

BACKGROUND: The pathway involving PTEN-induced putative kinase 1 (PINK1) and PARKIN plays a crucial role in mitophagy, a process activated by artesunate (ART). We propose that patients with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis exhibit insufficient mitophagy, and ART enhances mitophagy via the PINK1/PARKIN pathway, thereby providing neuroprotection. METHODS: Adult female mice aged 8-10 weeks were selected to create a passive transfer model of anti-NMDAR encephalitis. We conducted behavioral tests on these mice within a set timeframe. Techniques such as immunohistochemistry, immunofluorescence, and western blotting were employed to assess markers including PINK1, PARKIN, LC3B, p62, caspase3, and cleaved caspase3. The TUNEL assay was utilized to detect neuronal apoptosis, while transmission electron microscopy (TEM) was used to examine mitochondrial autophagosomes. Primary hippocampal neurons were cultured, treated, and then analyzed through immunofluorescence for mtDNA, mtROS, TMRM. RESULTS: In comparison to the control group, mitophagy levels in the experimental group were not significantly altered, yet there was a notable increase in apoptotic neurons. Furthermore, markers indicative of mitochondrial leakage and damage were found to be elevated in the experimental group compared to the control group, but these markers showed improvement following ART treatment. ART was effective in activating the PINK1/PARKIN pathway, enhancing mitophagy, and diminishing neuronal apoptosis. Behavioral assessments revealed that ART ameliorated symptoms in mice with anti-NMDAR encephalitis in the passive transfer model (PTM). The knockdown of PINK1 led to a reduction in mitophagy levels, and subsequent ART intervention did not alleviate symptoms in the anti-NMDAR encephalitis PTM mice, indicating that ART's therapeutic efficacy is mediated through the activation of the PINK1/PARKIN pathway. CONCLUSIONS: At the onset of anti-NMDAR encephalitis, mitochondrial damage is observed; however, this damage is mitigated by the activation of mitophagy via the PINK1/PARKIN pathway. This regulatory feedback mechanism facilitates the removal of damaged mitochondria, prevents neuronal apoptosis, and consequently safeguards neural tissue. ART activates the PINK1/PARKIN pathway to enhance mitophagy, thereby exerting neuroprotective effects and may achieve therapeutic goals in treating anti-NMDAR encephalitis.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Artesunato , Modelos Animales de Enfermedad , Fármacos Neuroprotectores , Proteínas Quinasas , Animales , Artesunato/farmacología , Artesunato/uso terapéutico , Ratones , Femenino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Encefalitis Antirreceptor N-Metil-D-Aspartato/patología , Encefalitis Antirreceptor N-Metil-D-Aspartato/tratamiento farmacológico , Proteínas Quinasas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/metabolismo , Microscopía Electrónica de Transmisión , Mitofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Hipocampo/patología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo
9.
J Cell Biol ; 223(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38722278

RESUMEN

Aberrant proteins located in the endoplasmic reticulum (ER) undergo rapid ubiquitination by multiple ubiquitin (Ub) E3 ligases and are retrotranslocated to the cytosol as part of the ER-associated degradation (ERAD). Despite several ERAD branches involving different Ub E3 ligases, the molecular machinery responsible for these ERAD branches in mammalian cells remains not fully understood. Through a series of multiplex knockdown/knockout experiments with real-time kinetic measurements, we demonstrate that HERC3 operates independently of the ER-embedded ubiquitin ligases RNF5 and RNF185 (RNF5/185) to mediate the retrotranslocation and ERAD of misfolded CFTR. While RNF5/185 participates in the ERAD process of both misfolded ABCB1 and CFTR, HERC3 uniquely promotes CFTR ERAD. In vitro assay revealed that HERC3 directly interacts with the exposed membrane-spanning domains (MSDs) of CFTR but not with the MSDs embedded in liposomes. Therefore, HERC3 could play a role in the quality control of MSDs in the cytoplasm and might be crucial for the ERAD pathway of select membrane proteins.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Proteínas de la Membrana , Ubiquitina-Proteína Ligasas , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Proteínas de Unión al ADN , Retículo Endoplásmico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Células HeLa , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
10.
J Cell Biol ; 223(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38728007

RESUMEN

Activation of PINK1 and Parkin in response to mitochondrial damage initiates a response that includes phosphorylation of RAB7A at Ser72. Rubicon is a RAB7A binding negative regulator of autophagy. The structure of the Rubicon:RAB7A complex suggests that phosphorylation of RAB7A at Ser72 would block Rubicon binding. Indeed, in vitro phosphorylation of RAB7A by TBK1 abrogates Rubicon:RAB7A binding. Pacer, a positive regulator of autophagy, has an RH domain with a basic triad predicted to bind an introduced phosphate. Consistent with this, Pacer-RH binds to phosho-RAB7A but not to unphosphorylated RAB7A. In cells, mitochondrial depolarization reduces Rubicon:RAB7A colocalization whilst recruiting Pacer to phospho-RAB7A-positive puncta. Pacer knockout reduces Parkin mitophagy with little effect on bulk autophagy or Parkin-independent mitophagy. Rescue of Parkin-dependent mitophagy requires the intact pRAB7A phosphate-binding basic triad of Pacer. Together these structural and functional data support a model in which the TBK1-dependent phosphorylation of RAB7A serves as a switch, promoting mitophagy by relieving Rubicon inhibition and favoring Pacer activation.


Asunto(s)
Mitofagia , Proteínas Serina-Treonina Quinasas , Ubiquitina-Proteína Ligasas , Proteínas de Unión al GTP rab , Proteínas de Unión a GTP rab7 , Mitofagia/genética , Humanos , Fosforilación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Células HeLa , Unión Proteica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Células HEK293
11.
Cell Death Dis ; 15(5): 331, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740775

RESUMEN

Pirh2 is an E3 ubiquitin ligase known to regulate the DNA damage responses through ubiquitylation of various participating signaling factors. DNA damage is a key pathological contributor to Alzheimer's disease (AD), therefore, the role of Pirh2 was investigated in streptozotocin and oligomer Aß1-42 induced rodent experimental model of AD. Pirh2 protein abundance increased during AD conditions, and transient silencing of Pirh2 inhibited the disease-specific pathological markers like level of p-Tau, ßamyloid, acetylcholinesterase activity, and neuronal death. Biochemically, Pirh2 silencing significantly attenuated the oxidative stress, depleted mitochondrial membrane potential, cytochrome c translocation from mitochondria to cytosol, and depleted mitochondrial complex-I activity, and ATP level. Pirh2 silencing also inhibited the altered level of VDAC1, hsp75, hexokinase1, t-Bid, caspase-9, and altered level of apoptotic proteins (Bcl-2, Bax). MALDI-TOF/TOF, co-immunoprecipitation, and UbcH13-linked ubiquitylation assay confirmed the interaction of Pirh2 with cytochrome c and the role of Pirh2 in ubiquitylation of cytochrome c, along with Pirh2-dependent altered proteasome activity. Additionally, Pirh2 silencing further inhibited the translocation of mitochondrion-specific endonuclease G and apoptosis-inducing factors to the nucleus and DNA damage. In conclusion, findings suggested the significant implication of Pirh2 in disease pathogenesis, particularly through impaired mitochondrial function, including biochemical alterations, translocation of cytochrome c, endonuclease G and apoptosis-inducing factor, DNA damage, and neuronal apoptosis.


Asunto(s)
Enfermedad de Alzheimer , Citocromos c , Mitocondrias , Neuronas , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Animales , Citocromos c/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo , Ratas , Masculino , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Péptidos beta-Amiloides/metabolismo , Potencial de la Membrana Mitocondrial , Ubiquitinación , Humanos , Apoptosis , Muerte Celular , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Endodesoxirribonucleasas
12.
Cell Death Dis ; 15(5): 316, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710691

RESUMEN

S100 calcium-binding protein 16 (S100A16) is implicated in both chronic kidney disease (CKD) and acute kidney injury (AKI). Previous research has shown that S100A16 contributes to AKI by facilitating the ubiquitylation and degradation of glycogen synthase kinase 3ß (GSK3ß) and casein kinase 1α (CK1α) through the activation of HMG-CoA reductase degradation protein 1 (HRD1). However, the mechanisms governing S100A16-induced HRD1 activation and the upregulation of S100A16 expression in renal injury are not fully understood. In this study, we observed elevated expression of Hypoxia-inducible Factor 1-alpha (HIF-1α) in the kidneys of mice subjected to ischemia-reperfusion injury (IRI). S100A16 deletion attenuated the increased HIF-1α expression induced by IRI. Using a S100A16 knockout rat renal tubular epithelial cell line (NRK-52E cells), we found that S100A16 knockout effectively mitigated apoptosis during hypoxic reoxygenation (H/R) and cell injury induced by TGF-ß1. Our results revealed that H/R injuries increased both protein and mRNA levels of HIF-1α and HRD1 in renal tubular cells. S100A16 knockout reversed the expressions of HIF-1α and HRD1 under H/R conditions. Conversely, S100A16 overexpression in NRK-52E cells elevated HIF-1α and HRD1 levels. HIF-1α overexpression increased HRD1 and ß-catenin while decreasing GSK-3ß. HIF-1α inhibition restored HRD1 and ß-catenin upregulation and GSK-3ß downregulation by cellular H/R injury. Notably, Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated HIF-1α binding signals on the HRD1 promoter, and luciferase reporter gene assays confirmed HIF-1α's transcriptional regulation of HRD1. Additionally, we identified Transcription Factor AP-2 Beta (TFAP2B) as the upregulator of S100A16. ChIP and luciferase reporter assays confirmed TFAP2B as a transcription factor for S100A16. In summary, this study identifies TFAP2B as the transcription factor for S100A16 and demonstrates HIF-1α regulation of HRD1 transcription within the S100A16-HRD1-GSK3ß/CK1α pathway during renal hypoxia injury. These findings provide crucial insights into the molecular mechanisms of kidney injury, offering potential avenues for therapeutic intervention.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , Subunidad alfa del Factor 1 Inducible por Hipoxia , Animales , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Ratas , Proteínas S100/metabolismo , Proteínas S100/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Transducción de Señal , Masculino , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/genética , Ratones Endogámicos C57BL , Riñón/metabolismo , Riñón/patología , Apoptosis , Línea Celular , Hipoxia de la Célula , Ratones Noqueados
13.
Nat Commun ; 15(1): 3789, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710693

RESUMEN

The CUL3-RING E3 ubiquitin ligases (CRL3s) play an essential role in response to extracellular nutrition and stress stimuli. The ubiquitin ligase function of CRL3s is activated through dimerization. However, how and why such a dimeric assembly is required for its ligase activity remains elusive. Here, we report the cryo-EM structure of the dimeric CRL3KLHL22 complex and reveal a conserved N-terminal motif in CUL3 that contributes to the dimerization assembly and the E3 ligase activity of CRL3KLHL22. We show that deletion of the CUL3 N-terminal motif impairs dimeric assembly and the E3 ligase activity of both CRL3KLHL22 and several other CRL3s. In addition, we found that the dynamics of dimeric assembly of CRL3KLHL22 generates a variable ubiquitination zone, potentially facilitating substrate recognition and ubiquitination. These findings demonstrate that a CUL3 N-terminal motif participates in the assembly process and provide insights into the assembly and activation of CRL3s.


Asunto(s)
Secuencias de Aminoácidos , Microscopía por Crioelectrón , Proteínas Cullin , Receptores de Interleucina-17 , Ubiquitina-Proteína Ligasas , Ubiquitinación , Proteínas Cullin/metabolismo , Proteínas Cullin/química , Proteínas Cullin/genética , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Células HEK293 , Multimerización de Proteína , Secuencia Conservada , Unión Proteica , Modelos Moleculares
14.
Mol Cell ; 84(9): 1635-1636, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38701740

RESUMEN

In a recent publication in Nature, Xu et al.1 discovered a role of CRL5-SPSB3 ubiquitin ligase in promoting ubiquitination and degradation of nuclear cGAS, which prevents aberrant cGAS activation by genomic DNA and contributes to the maintenance of immune homeostasis.


Asunto(s)
Homeostasis , Nucleotidiltransferasas , Ubiquitinación , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Núcleo Celular/metabolismo , Proteolisis , Animales
15.
Mol Biol Rep ; 51(1): 606, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704498

RESUMEN

BACKGROUND: Recent in vitro studies using RB1+/- fibroblasts and MSCs have shown molecular and functional disruptions without the need for biallelic loss of RB1. However, this was not reflected in the recent in vitro studies employing RB1+/- retinal organoids. To gain further insights into the molecular disruptions in the RB1+/- retinal organoids, we performed a high throughput RNA sequencing analysis. METHODS AND RESULTS: iPSCs were generated from RB1+/+ and RB1+/- OAMSCs derived from retinoblastoma patients. RB1+/+ and RB1+/- iPSCs were subjected to a step-wise retinal differentiation protocol. Retinal differentiation was evaluated by Real-time PCR and flow cytometry analysis of the retinal markers. To gain further insights into the molecular differences in RB1+/- retinal organoids, a high throughput RNA sequencing followed by differential gene expression analysis and gene set enrichment analysis (GSEA) was performed. The analysis revealed a shift from the regular metabolic process of glycolysis to oxidative phosphorylation in the RB1+/- retinal organoids. To investigate further, we performed assays to determine the levels of pyruvate, lactate and ATP in the retinal organoids. The results revealed significant increase in ATP and pyruvate levels in RB1+/- retinal organoids of day 120 compared to that of the RB1+/+. The results thus revealed enhanced ATP production in the RB1+/- retinal organoids. CONCLUSION: The study provides novel insights into the metabolic phenotype of heterozygous RB1 mutant suggesting dysregulation of energy metabolism and glycolytic pathways to be first step even before the changes in cellular proliferation or other phenotypic consequences ensue.


Asunto(s)
Adenosina Trifosfato , Diferenciación Celular , Células Madre Pluripotentes Inducidas , Mutación , Organoides , Retina , Retinoblastoma , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Organoides/metabolismo , Retina/metabolismo , Retina/citología , Retinoblastoma/genética , Retinoblastoma/metabolismo , Adenosina Trifosfato/metabolismo , Diferenciación Celular/genética , Mutación/genética , Heterocigoto , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Glucólisis/genética , Proteínas de Unión a Retinoblastoma/genética , Proteínas de Unión a Retinoblastoma/metabolismo
16.
Cell Commun Signal ; 22(1): 254, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702781

RESUMEN

IL-3/STAT5 signaling pathway is crucial for the development and activation of immune cells, contributing to the cellular response to infections and inflammatory stimuli. Dysregulation of the IL-3/STAT5 signaling have been associated with inflammatory and autoimmune diseases characterized by inflammatory cell infiltration and organ damage. IL-3 receptor α (IL-3Rα) specifically binds to IL-3 and initiates intracellular signaling, resulting in the phosphorylation of STAT5. However, the regulatory mechanisms of IL-3Rα remain unclear. Here, we identified the E3 ubiquitin ligase RNF128 as a negative regulator of IL-3/STAT5 signaling by targeting IL-3Rα for lysosomal degradation. RNF128 was shown to selectively bind to IL-3Rα, without interacting with the common beta chain IL-3Rß, which shares the subunit with GM-CSF. The deficiency of Rnf128 had no effect on GM-CSF-induced phosphorylation of Stat5, but it resulted in heightened Il-3-triggered activation of Stat5 and increased transcription of the Id1, Pim1, and Cd69 genes. Furthermore, we found that RNF128 promoted the K27-linked polyubiquitination of IL-3Rα in a ligase activity-dependent manner, ultimately facilitating its degradation through the lysosomal pathway. RNF128 inhibited the activation and chemotaxis of macrophages in response to LPS stimulation, thereby attenuating excessive inflammatory responses. Collectively, these results reveal that RNF128 negatively regulates the IL-3/STAT5 signaling pathway by facilitating K27-linked polyubiquitination of IL-3Rα. This study uncovers E3 ubiquitin ligase RNF128 as a novel regulator of the IL-3/STAT5 signaling pathway, providing potential molecular targets for the treatment of inflammatory diseases.


Asunto(s)
Interleucina-3 , Factor de Transcripción STAT5 , Transducción de Señal , Ubiquitina-Proteína Ligasas , Ubiquitinación , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Humanos , Animales , Interleucina-3/metabolismo , Ratones , Lisosomas/metabolismo , Células HEK293 , Fosforilación , Receptores de Interleucina-3/metabolismo , Receptores de Interleucina-3/genética
17.
J Exp Clin Cancer Res ; 43(1): 135, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702792

RESUMEN

BACKGROUND: Rhabdomyosarcoma (RMS) is a rare malignancy and the most common soft tissue sarcoma in children. Vasculogenic mimicry (VM) is a novel tumor microcirculation model different from traditional tumor angiogenesis, which does not rely on endothelial cells to provide sufficient blood supply for tumor growth. In recent years, VM has been confirmed to be closely associated with tumor progression. However, the ability of RMS to form VM has not yet been reported. METHODS: Immunohistochemistry, RT-qPCR and western blot were used to test the expression level of SNAI2 and its clinical significance. The biological function in regulating vasculogenic mimicry and malignant progression of SNAI2 was examined both in vitro and in vivo. Mass spectrometry, co-immunohistochemistry, immunofluorescence staining, and ubiquitin assays were performed to explore the regulatory mechanism of SNAI2. RESULTS: Our study indicated that SNAI2 was abnormally expressed in patients with RMS and RMS cell lines and promoted the proliferation and metastasis of RMS. Through cell tubule formation experiments, nude mice Matrigel plug experiments, and immunohistochemistry (IHC), we confirmed that RMS can form VM and that SNAI2 promotes the formation of VM. Due to SNAI2 is a transcription factor that is not easily drugged, we used Co-IP combined with mass spectrometry to screen for the SNAI2-binding protein USP7 and TRIM21. USP7 depletion inhibited RMS VM formation, proliferation and metastasis by promoting SNAI2 degradation. We further demonstrated that TRIM21 is expressed at low levels in human RMS tissues and inhibits VM in RMS cells. TRIM21 promotes SNAI2 protein degradation through ubiquitination in the RMS. The deubiquitinase USP7 and E3 ligase TRIM21 function in an antagonistic rather than competitive mode and play a key role in controlling the stability of SNAI2 to determine the VM formation and progression of RMS. CONCLUSION: Our findings reveal a previously unknown mechanism by which USP7 and TRIM21 balance the level of SNAI2 ubiquitination, determining RMS vasculogenic mimicry, proliferation, and migration. This new mechanism may provide new targeted therapies to inhibit the development of RMS by restoring TRIM21 expression or inhibiting USP7 expression in RMS patients with high SNAI2 protein levels.


Asunto(s)
Neovascularización Patológica , Rabdomiosarcoma , Ribonucleoproteínas , Factores de Transcripción de la Familia Snail , Peptidasa Específica de Ubiquitina 7 , Humanos , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Animales , Ratones , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Rabdomiosarcoma/metabolismo , Rabdomiosarcoma/patología , Rabdomiosarcoma/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Femenino , Progresión de la Enfermedad , Proliferación Celular , Masculino , Homeostasis , Línea Celular Tumoral , Ratones Desnudos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
18.
Nutrients ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732549

RESUMEN

Oleocanthal (OC) is a monophenol of extra-virgin olive oil (EVOO) endowed with antibiotic, cardioprotective and anticancer effects, among others, mainly in view of its antioxidant and anti-inflammatory properties. OC has been largely investigated in terms of its anticancer activity, in Alzheimer disease and in collagen-induced arthritis; however, the possibility that it can also affect muscle biology has been totally overlooked so far. This study is the first to describe that OC modulates alterations induced in C2C12 myotubes by stimuli known to induce muscle wasting in vivo, namely TNF-α, or in the medium conditioned by the C26 cachexia-inducing tumor (CM-C26). C2C12 myotubes were exposed to CM-C26 or TNF-α in the presence or absence of OC for 24 and 48 h and analyzed by immunofluorescence and Western blotting. In combination with TNF-α or CM-C26, OC was revealed to be able to restore both the myotube's original size and morphology and normal levels of both atrogin-1 and MuRF1. OC seems unable to impinge on the autophagic-lysosomal proteolytic system or protein synthesis. Modulations towards normal levels of the expression of molecules involved in myogenesis, such as Pax7, myogenin and MyHC, were also observed in the myotube cultures exposed to OC and TNF-α or CM-C26. In conclusion, the data presented here show that OC exerts a protective action in C2C12 myotubes exposed to TNF-α or CM-C26, with mechanisms likely involving the downregulation of ubiquitin-proteasome-dependent proteolysis and the partial relief of myogenic differentiation impairment.


Asunto(s)
Catecoles , Monoterpenos Ciclopentánicos , Fibras Musculares Esqueléticas , Proteínas Musculares , Atrofia Muscular , Factor de Necrosis Tumoral alfa , Animales , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Atrofia Muscular/prevención & control , Atrofia Muscular/metabolismo , Proteínas Musculares/metabolismo , Monoterpenos Ciclopentánicos/farmacología , Catecoles/farmacología , Línea Celular , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Desarrollo de Músculos/efectos de los fármacos , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/metabolismo , Autofagia/efectos de los fármacos , Fenoles/farmacología , Caquexia/prevención & control , Medios de Cultivo Condicionados/farmacología , Aldehídos
19.
J Nanobiotechnology ; 22(1): 247, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741123

RESUMEN

Tyrosine kinase inhibitors have been the standard treatment for patients with Philadelphia chromosome-positive (Ph+) leukemia. However, a series of issues, including drug resistance, relapse and intolerance, are still an unmet medical need. Here, we report the targeted siRNA-based lipid nanoparticles in Ph+ leukemic cell lines for gene therapy of Ph+ leukemia, which specifically targets a recently identified NEDD8 E3 ligase RAPSYN in Ph+ leukemic cells to disrupt the neddylation of oncogenic BCR-ABL. To achieve the specificity for Ph+ leukemia therapy, a single-chain fragment variable region (scFv) of anti-CD79B monoclonal antibody was covalently conjugated on the surface of OA2-siRAPSYN lipid nanoparticles to generate the targeted lipid nanoparticles (scFv-OA2-siRAPSYN). Through effectively silencing RAPSYN gene in leukemic cell lines by the nanoparticles, BCR-ABL was remarkably degraded accompanied by the inhibition of proliferation and the promotion of apoptosis. The specific targeting, therapeutic effects and systemic safety were further evaluated and demonstrated in cell line-derived mouse models. The present study has not only addressed the clinical need of Ph+ leukemia, but also enabled gene therapy against a less druggable target.


Asunto(s)
Proteínas de Fusión bcr-abl , Nanopartículas , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Animales , Humanos , Ratones , Línea Celular Tumoral , Nanopartículas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Silenciador del Gen , ARN Interferente Pequeño , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Ratones Endogámicos BALB C , Apoptosis/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/terapia , Terapia Genética/métodos , Proliferación Celular/efectos de los fármacos , Femenino
20.
J Med Chem ; 67(9): 7569-7584, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38690687

RESUMEN

PTP1B, a promising target for insulin sensitizers in type 2 diabetes treatment, can be effectively degraded using proteolysis-targeting chimera (PROTAC). This approach offers potential for long-acting antidiabetic agents. We report potent bifunctional PROTACs targeting PTP1B through the E3 ubiquitin ligase cereblon. Western blot analysis showed significant PTP1B degradation by PROTACs at concentrations from 5 nM to 5 µM after 48 h. Evaluation of five highly potent PROTACs revealed compound 75 with a longer PEG linker (23 atoms), displaying remarkable degradation activity after 48 and 72 h, with DC50 values of 250 nM and 50 nM, respectively. Compound 75 induced selective degradation of PTP1B, requiring engagement with both the target protein and CRBN E3 ligase, in a ubiquitination and proteasome-dependent manner. It significantly reduced blood glucose AUC0-2h to 29% in an oral glucose tolerance test and activated the IRS-1/PI3K/Akt signaling pathway in HepG2 cells, showing promise for long-term antidiabetic therapy.


Asunto(s)
Hipoglucemiantes , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Proteolisis , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Descubrimiento de Drogas , Células Hep G2 , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/síntesis química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA