Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 610
Filtrar
1.
Eur Rev Med Pharmacol Sci ; 28(8): 3048-3055, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38708463

RESUMEN

OBJECTIVE: Despite the multiple available treatment modalities, cervical cancer is one of the leading causes of mortality and morbidity among female gynecological cancers. Endoplasmic Reticulum (ER) is an effective organelle in ensuring cell homeostasis and is closely related to the development of cancer. Esculetin is a coumarin derivative that has anticancer, anti-inflammatory, antioxidant, and neuroprotective effects. Esculetin may have an anticancer effect by inducting apoptosis and ER stress. In this study, we evaluate that esculetin has an anti-tumor effect on human cervical cancer-derived (HeLa) cells via ER stress. MATERIALS AND METHODS: Esculetin was applied to the HeLa cells, and a viability test was performed using the methyl thiazolyl tetrazolium proliferation (MTT) assay. Expression levels of apoptotic genes and anti-apoptotic genes were determined by real-time polymerase chain reaction. The results were statistically evaluated. RESULTS: Analysis of the MTT assay detected that esculetin inhibited HeLa cell viability development. Based on Western blot and quantitative real-time polymerase chain reaction (qPCR) analyses, esculetin destroyed cervical cancer cells via the ER stress pathway. CONCLUSIONS: The results showed that esculetin may have a potent antitumoral effect. It can potentially be utilized in the pharmacological therapy of cervical cancer.


Asunto(s)
Antineoplásicos , Apoptosis , Supervivencia Celular , Estrés del Retículo Endoplásmico , Umbeliferonas , Humanos , Umbeliferonas/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células HeLa , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Proliferación Celular/efectos de los fármacos , Femenino
2.
Sci Rep ; 14(1): 11770, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783034

RESUMEN

Auraptene (AUR) and umbelliprenin (UMB) are naturally occurring prenylated coumarins that have demonstrated promising anticancer effects across various human cancer cell lines. This meta-analysis aimed to systematically assess, compare, and quantify the anticancer efficacy of AUR and UMB by synthesizing evidence from in vitro studies. A comprehensive literature search identified 27 eligible studies investigating AUR or UMB against cancer cells. Mixed-effects models revealed significant negative associations between coumarin dose and viability for AUR (est. = - 2.27) and UMB (est. = - 3.990), underscoring their dose-dependent cytotoxicity. Meta-regression indicated slightly higher potency for UMB over AUR, potentially due to increased lipophilicity imparted by additional isoprenyl units. Machine learning approaches identified coumarin dose and cancer type as the most influential determinants of toxicity, while treatment duration and the specific coumarin displayed weaker effects. Moderate (AUR) to substantial (UMB) between-study heterogeneity was detected, although the findings proved robust. In summary, this meta-analysis establishes AUR and UMB as promising natural anticancer candidates with clear dose-toxicity relationships across diverse malignancies. The structural insights and quantifications of anticancer efficacy can inform forthcoming efforts assessing therapeutic potential in pre-clinical models and human trials.


Asunto(s)
Antineoplásicos , Cumarinas , Umbeliferonas , Humanos , Cumarinas/química , Cumarinas/farmacología , Umbeliferonas/farmacología , Umbeliferonas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Supervivencia Celular/efectos de los fármacos
3.
Sci Rep ; 14(1): 11450, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769394

RESUMEN

A mesoporous silica nanoparticle (MSN) coated with polydopamine (PDA) and loaded with umbelliprenin (UMB) was prepared and evaluated for its anti-cancer properties in this study. Then UMB-MSN-PDA was characterized by dynamic light scattering (DLS), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM) and FTIR methods. UV-visible spectrometry was employed to study the percentage of encapsulation efficiency (EE%). UMB-MSN-PDA mediated cell cytotoxicity and their ability to induce programmed cell death were evaluated by MTT, real-time qPCR, flow cytometry, and AO/PI double staining methods. The size of UMB-MSN-PDA was 196.7 with a size distribution of 0.21 and a surface charge of -41.07 mV. The EE% was 91.92%. FESEM and TEM showed the spherical morphology of the UMB-MSN-PDA. FTIR also indicated the successful interaction of the UMB and MSN and PDA coating. The release study showed an initial 20% release during the first 24 h of the study and less than 40% during 168 h. The lower cytotoxicity of the UMB-MSN-PDA against HFF normal cells compared to MCF-7 carcinoma cells suggested the safety of formulation on normal cells and tissues. The induction of apoptosis in MCF-7 cells was indicated by the upregulation of P53, caspase 8, and caspase 9 genes, enhanced Sub-G1 phase cells, and the AO/PI fluorescent staining. As a result of these studies, it may be feasible to conduct preclinical studies shortly to evaluate the formulation for its potential use in cancer treatment.


Asunto(s)
Antineoplásicos , Indoles , Nanopartículas , Polímeros , Dióxido de Silicio , Humanos , Indoles/química , Indoles/farmacología , Dióxido de Silicio/química , Polímeros/química , Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Porosidad , Células MCF-7 , Umbeliferonas/química , Umbeliferonas/farmacología , Portadores de Fármacos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos
4.
Int Immunopharmacol ; 133: 112004, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38613881

RESUMEN

Silicosis is a hazardous occupational disease caused by inhalation of silica, characterized by persistent lung inflammation that leads to fibrosis and subsequent lung dysfunction. Moreover, the complex pathophysiology of silicosis, the challenges associated with early detection, and the unfavorable prognosis contribute to the limited availability of treatment options. Daphnetin (DAP), a natural lactone, has demonstrated various pharmacological properties, including anti-inflammatory, anti-fibrotic, and pulmonary protective effects. However, the effects of DAP on silicosis and its molecular mechanisms remain uncover. This study aimed to evaluate the therapeutic effects of DAP against pulmonary inflammation and fibrosis using a silica-induced silicosis mouse model, and investigate the potential mechanisms and targets through network pharmacology, proteomics, molecular docking, and cellular thermal shift assay (CETSA). Here, we found that DAP significantly alleviated silica-induced lung injury in mice with silicosis. The results of H&E staining, Masson staining, and Sirius red staining indicated that DAP effectively reduced the inflammatory response and collagen deposition over a 28-day period following lung exposure to silica. Furthermore, DAP reduced the number of TUNEL-positive cells, increased the expression levels of Bcl-2, and decreased the expression of Bax and cleaved caspase-3 in the mice with silicosis. More importantly, DAP suppressed the expression levels of NLRP3 signaling pathway-related proteins, including NLRP3, ASC, and cleaved caspase-1, thereby inhibiting silica-induced lung inflammation. Further studies demonstrated that DAP possesses the ability to inhibit the epithelial mesenchymal transition (EMT) induced by silica through the inhibition of the TGF-ß1/Smad2/3 signaling pathway. The experimental results of proteomic analysis found that the PI3K/AKT1 signaling pathway was the key targets of DAP to alleviate lung injury induced by silica. DAP significantly inhibited the activation of the PI3K/AKT1 signaling pathway induced by silica in lung tissues. The conclusion was also verified by the results of molecular and CETSA. To further verify this conclusion, the activity of PI3K/AKT1 signaling pathway was inhibited in A549 cells using LY294002. When the A549 cells were pretreated with LY294002, the protective effect of DAP on silica-induced injury was lost. In conclusion, the results of this study suggest that DAP alleviates pulmonary inflammation and fibrosis induced by silica by modulating the PI3K/AKT1 signaling pathway, and holds promise as a potentially effective treatment for silicosis.


Asunto(s)
Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Fibrosis Pulmonar , Transducción de Señal , Dióxido de Silicio , Silicosis , Umbeliferonas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Umbeliferonas/farmacología , Umbeliferonas/uso terapéutico , Silicosis/tratamiento farmacológico , Silicosis/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Humanos , Neumonía/tratamiento farmacológico , Neumonía/inducido químicamente , Neumonía/patología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Masculino , Pulmón/patología , Pulmón/efectos de los fármacos , Modelos Animales de Enfermedad , Simulación del Acoplamiento Molecular
5.
Mech Ageing Dev ; 219: 111931, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554949

RESUMEN

Impaired mitochondrial fatty acid ß-oxidation (FAO) plays a role in the onset of several age-associated diseases, including atherosclerosis. In the current work, we investigated the efficacies of mitochondria-targeted esculetin (Mito-Esc) and metformin in enhancing FAO in human aortic endothelial cells (HAECs), and its relevance in the delay of cellular senescence and age-associated atherosclerotic plaque formation in Apoe-/- mice. Chronic culturing of HAECs with either Mito-Esc or metformin increased oxygen consumption rates (OCR), and caused delay in senescence features. Conversely, etomoxir (CPT1 inhibitor) reversed Mito-Esc- and metformin-induced OCR, and caused premature endothelial senescence. Interestingly, Mito-Esc, unlike metformin, in the presence of etomoxir failed to preserve OCR. Thereby, underscoring Mito-Esc's exclusive reliance on FAO as an energy source. Mechanistically, chronic culturing of HAECs with either Mito-Esc or metformin led to AMPK activation, increased CPT1 activity, and acetyl-CoA levels along with a concomitant reduction in malonyl-CoA levels, and lipid accumulation. Similar results were observed in Apoe-/- mice aorta and liver tissue with a parallel reduction in age-associated atherosclerotic plaque formation and degeneration of liver with either Mito-Esc or metformin administration. Together, Mito-Esc and metformin by potentiating FAO, may have a role in the delay of cellular senescence by modulating mitochondrial function.


Asunto(s)
Aterosclerosis , Senescencia Celular , Células Endoteliales , Ácidos Grasos , Metformina , Mitocondrias , Oxidación-Reducción , Umbeliferonas , Animales , Metformina/farmacología , Umbeliferonas/farmacología , Senescencia Celular/efectos de los fármacos , Ratones , Oxidación-Reducción/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Humanos , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Ácidos Grasos/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Envejecimiento/metabolismo , Envejecimiento/efectos de los fármacos
6.
Cancer Rep (Hoboken) ; 7(1): e1948, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38062981

RESUMEN

BACKGROUND: The growing complexity of cancer has made it a significant concern in the medical community. Although cancer research has advanced, it is still challenging to create new effective medications due to the limitations and side effects of existing treatment strategies. These are enforcing the development of some alternative drugs from natural compounds with fewer drawbacks and side effects. AIM: Therefore, this review aims to provide up-to-date, crucial, and all-encompassing data on esculetin's anticancer activity, including all relevant molecular and cellular processes based on in vivo and in vitro investigations. RESULTS: According to the literature review, esculetin is available in nature and is effective against 16 different types of cancer. The general mechanism shown by esculetin is modulating signaling cascades and its related pathways, like cell proliferation, cell growth, autophagy, apoptosis, necrosis, inflammation, angiogenesis, metastasis, invasion, and DNA damage. Nanoformulation of esculetin improves this natural product's efficacy by improving water solubility. Esculetin's synergistic effects with both natural substances and conventional treatments have been shown, and this method aids in reversing resistance mechanisms by modulating resistance-related proteins. In addition, it has fewer side effects on humans than other phytochemicals and standard drugs with some good pharmacokinetic features. CONCLUSION: Therefore, until standard chemotherapeutics are available in pharmaceutical markets, esculetin should be used as a therapeutic drug against various cancer types.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Umbeliferonas/farmacología , Apoptosis , Transducción de Señal
7.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 173-187, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37395795

RESUMEN

The aim of this work was to compare the anti-inflammatory and antioxidant effects of three natural coumarins: 1,2-benzopyrone, umbelliferone and esculetin. The antioxidant capacity of coumarins was evaluated using both chemical and biological in vitro assays. Chemical assays included DPPH and ABTS∙+ radical scavenging as well as ferric ion reducing ability power (FRAP) assay. Inhibition of mitochondrial ROS generation and lipid peroxidation in brain homogenates were used as biological in vitro assays. The experimental method of carrageenan-induced pleurisy in rats was used for the in vivo investigation of the anti-inflammatory activity. In silico molecular docking analysis was undertaken to predict the affinity of COX-2 to the coumarins. Considering the antioxidant capacity, esculetin was the most efficient one as revealed by all employed assays. Particularly, the mitochondrial ROS generation was totally abolished by the compound at low concentrations (IC50 = 0.57 µM). As for the anti-inflammatory effects, the COX-2 enzyme presented good affinities to the three coumarins, as revealed by the molecular docking analyses. However, considering the in vivo anti-inflammatory effects, 1,2-benzopyrone was the most efficient one in counteracting pleural inflammation and it potentiated the anti-inflammatory actions of dexamethasone. Umbelliferone and esculetin treatments failed to reduce the volume of pleural exudate. Overall, therefore, our results support the notion that this class of plant secondary metabolites displays promising effects in the prevention and/or treatment of inflammation and other diseases associated with oxidative stress, although the singularities regarding the type of the inflammatory process and pharmacokinetics must be taken into account.


Asunto(s)
Antioxidantes , Cumarinas , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Cumarinas/farmacología , Cumarinas/uso terapéutico , Especies Reactivas de Oxígeno , Ciclooxigenasa 2/metabolismo , Simulación del Acoplamiento Molecular , Umbeliferonas/farmacología , Umbeliferonas/uso terapéutico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Extractos Vegetales/farmacología
8.
J Toxicol Environ Health A ; 87(1): 33-46, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37886814

RESUMEN

Hydroxycoumarins are an important source of biologically active compounds. Previous studies have shown that the number and position of the hydroxyl substituents in the scaffold play an important role for the observed biological activity. In the present study, 3-(3-hydroxyphenyl)-7-hydroxycoumarin was synthesized, and potential cytogenotoxic effects determined in human HepG2/C3A cells displaying phase 1 and phase 2 enzymes (metabolizing cell ability) and compared to human peripheral blood mononuclear cells (PBMC) without xenobiotics metabolizing capacity. Cell viability was determined with concentrations between 0.01 and 10 µg/ml of 3-(3-hydroxyphenyl)-7-hydroxycoumarin using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) and trypan blue tests. Genotoxicity was determined utilizing the comet assay, and the clastogenic/aneugenic potential employing the micronucleus (MN) test. The results of the in vitro cytotoxicity assays showed a significant decrease in cell viability of PBMC following exposure to 10 µg/ml concentration of the studied compound after 48 and 72 hr. Comet assay observations noted significant DNA damage in PBMC after 4 hr treatment. No marked cytogenotoxic effects were found in HepG2/C3A cells. No chromosomal mutations were observed in both cell lines. It is important to note that 3-(3-hydroxyphenyl)-7-hydroxycoumarin may exert beneficial pharmacological actions at the low micromolar range and with half-life less than 24 hr. Therefore, the results obtained encourage the continuation of studies on this new molecule for medicinal purposes, but its potential toxicity at higher concentrations and longer exposure times needs to be investigated in further studies.


Asunto(s)
Daño del ADN , Leucocitos Mononucleares , Humanos , Ensayo Cometa/métodos , Pruebas de Micronúcleos/métodos , Muerte Celular , Umbeliferonas/farmacología
9.
Medicine (Baltimore) ; 102(45): e35852, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37960728

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory bowel disease of the colonic mucosa. Esculetin is a type of natural coumarin that has many pharmacological activities such as antioxidant, anticancer, anti-inflammatory, etc. A previous study showed that esculetin improved intestinal inflammation and reduced serum proinflammatory cytokines in UC. The present study aimed to utilize network pharmacology and molecular docking to explore the potential mechanism of esculetin against UC. The potential gene targets of esculetin were predicted through SwissTargetPrediction and Super-PRED web servers. UC-related genes were obtained from DisGeNet, OMIM, and GeneCards databases. The overlap between gene targets of esculetin and UC-related genes were identified as the potential targets of esculetin against UC. The interaction between these overlapping genes was analyzed by the STRING database and the core genes were identified by Cytoscape platform. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the core genes were then performed. And the results of these analyses were further confirmed through molecular docking. A total of 50 overlapping genes were identified as the potential action targets of esculetin against UC. Among them, 10 genes (AKT1, STAT1, CCND1, SRC, PTGS2, EGFR, NFKB1, ESR1, MMP9, SERPINE1) were finally identified as the core genes. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis results showed that the top signaling pathway associated with the core genes of esculetin against UC was the prolactin (PRL) signaling pathway. Molecular docking results showed that esculetin has a strong binding affinity to the core genes, as well as PRL and prolactin receptor. This study suggests that esculetin may have a crucial impact on UC through the PRL signaling pathway and provides insights into the potential mechanism of esculetin in the treatment of UC, which may shed light on the mechanism and treatment of UC.


Asunto(s)
Colitis Ulcerosa , Humanos , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/genética , Simulación del Acoplamiento Molecular , Farmacología en Red , Umbeliferonas/farmacología , Umbeliferonas/uso terapéutico
10.
Physiol Rep ; 11(23): e15879, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38030388

RESUMEN

In this study, we investigated the nephroprotective effects of Umbelliferone (UMB) against cisplatin-induced acute kidney injury (AKI). C57BL/6J mice were treated with cisplatin via a single intraperitoneal injection (25 mg/kg) with or without UMB (40 mg/kg/day) by gavage. Renal function, apoptosis, oxidative stress, inflammation, and mitochondrial function were analyzed to evaluate kidney injury. In vitro, human proximal tubule epithelial cells were treated with cisplatin, with or without UMB, for 24 h. Western blotting and immunohistochemistry were performed to explore the mechanisms underlying the nephroprotective effects of UMB. Cisplatin-induced renal dysfunction, including increases in blood urea nitrogen, serum creatinine, and renal tubular injury indices (NGAL and KIM-1), were significantly attenuated by UMB treatment, along with renal phenotypic changes and renal tubular injury, as evidenced by improved renal histology. Moreover, NRF2 was activated by UMB pretreatment, along with the inhibition of oxidative stress and inflammatory response, as evidenced by decreased levels of antioxidant genes and inflammatory cytokines in cisplatin-induced AKI. Our results demonstrate that UMB can protect against cisplatin-induced nephrotoxicity, which is mediated by the NRF2 signaling pathway via antioxidant and anti-inflammatory activities, suggesting the clinical potential of UMB for the treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Ratones , Animales , Humanos , Cisplatino/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Ratones Endogámicos C57BL , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Riñón/metabolismo , Estrés Oxidativo , Inflamación/metabolismo , Apoptosis , Umbeliferonas/farmacología , Umbeliferonas/uso terapéutico , Umbeliferonas/metabolismo
11.
Medicine (Baltimore) ; 102(40): e35306, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37800835

RESUMEN

Esculin and esculetin are 2 widely studied coumarin components of Cortex Fraxini, which is a well-known herbal medicine with a 2000-year history. In vivo and in vitro studies have demonstrated that both have a variety of pharmacological activities, including antioxidant, anti-tumor, anti-inflammatory, antibacterial, antidiabetic, immunomodulatory, anti-atherosclerotic, and so on. Their underlying mechanisms of action and biological activities include scavenging free radicals, modulating the nuclear factor erythroid 2-related factor 2 pathway, regulating the cell cycle, inhibiting tumor cell proliferation and migration, promoting mitochondrial pathway apoptosis, inhibiting the NF-κB and MAPK signaling pathways, regulating CD4+ T cells differentiation and associated cytokine release, inhibiting vascular smooth muscle cells, etc. This review aims to provide comprehensive information on pharmacological studies of esculin and esculetin, which is of noteworthy importance in exploring the therapeutic potential of both coumarin compounds.


Asunto(s)
Esculina , Umbeliferonas , Humanos , Esculina/farmacología , Esculina/uso terapéutico , Umbeliferonas/farmacología , Umbeliferonas/uso terapéutico , Cumarinas/farmacología , Cumarinas/uso terapéutico , Apoptosis
12.
Toxicol In Vitro ; 93: 105694, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37704181

RESUMEN

In this study, the anticancer activity of umbelliferone (7-hydroxycoumarin-UMB) was investigated in MKN-45 human gastric cancer and MIA PaCa-2 human pancreatic cancer cells. The cytotoxic effect of UMB on MKN-45 and MIA PaCa-2 cells was determined by WST-8 cell viability assay; the effect on colony formation and migration potential by colony forming assay and wound healing/cell migration assay. Apoptotic effect of UMB was determined by measuring the change in mitochondrial membrane potentials, reactive oxygen species levels, and Caspase-3 activities in cells. Anticancer drugs cisplatin and gemcitabine were used as positive controls in experiments, and NIH/Swiss 3 T3 mouse embryonic fibroblast cells were used as a healthy cell group. The results of this study showed that umbelliferone had a significant cytotoxic effect in MKN-45 and MIA PaCa-2 cells, especially after 72 h treatment, while its cytotoxic effect in NIH/3 T3 cells was low. Furthermore, UMB reduces significantly the potential of cells to colonize and migrate; it has been determined that it causes apoptosis by decreasing the mitochondrial membrane potential, increasing intracellular ROS levels and Caspase-3 activity. UMB was found to have more anticancer effect on MIA PaCa-2 cells compared to MKN-45 cells. This showed that UMB has a cell-selective effect.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Línea Celular Tumoral , Caspasa 3 , Fibroblastos , Gemcitabina , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Apoptosis , Umbeliferonas/farmacología , Umbeliferonas/uso terapéutico
13.
Inflammopharmacology ; 31(4): 1731-1750, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37308634

RESUMEN

Coumarin, a plant secondary metabolite, has various pharmacological activities, including antioxidant stress and anti-inflammatory effects. Umbelliferone, a common coumarin compound found in almost all higher plants, has been extensively studied for its pharmacological effects in different disease models and doses with complex action mechanisms. This review aims to summarize these studies and provide useful information to relevant scholars. The pharmacological studies demonstrate that umbelliferone has diverse effects such as anti-diabetes, anti-cancer, anti-infection, anti-rheumatoid arthritis, neuroprotection, and improvement of liver, kidney, and myocardial tissue damage. The action mechanisms of umbelliferone include inhibition of oxidative stress, inflammation, and apoptosis, improvement of insulin resistance, myocardial hypertrophy, and tissue fibrosis, in addition to regulation of blood glucose and lipid metabolism. Among the action mechanisms, the inhibition of oxidative stress and inflammation is the most critical. In short, these pharmacological studies disclose that umbelliferone is expected to treat many diseases, and more research should be conducted.


Asunto(s)
Antioxidantes , Hígado , Humanos , Antioxidantes/farmacología , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Umbeliferonas/farmacología , Umbeliferonas/uso terapéutico
14.
Life Sci ; 327: 121864, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37336359

RESUMEN

AIMS: Cisplatin is a widely-used drug in the clinical treatment of tumors, but kidney nephrotoxicity is one of the reasons that limits its widespread use. We previously found that 7-hydroxycoumarin-ß-D-glucuronide (7-HCG) was one of metabolites of skimmin and highly enriched in the kidneys and maintained a high blood concentration in skimmin-treated rats. Therefore, we investigated whether 7-HCG has a protective effect on cisplatin-induced acute kidney injury. MATERIALS AND METHODS: Male C57BL/6 mice were continuously administered 7-HCG for five days, and on the third day, an intraperitoneal injection of cisplatin was given to induce acute kidney injury. After 72 h, the mice were sacrificed for analysis. Serum and renal tissue were collected for renal function evaluation. RNA sequencing was used to explore mechanism, and further validated by western blot and immunohistochemistry. In addition, pharmacokinetic study of oral 7-HCG administration was performed to examine how much 7-hydroxycoumarin (7-HC) was metabolized and 7-HC possible effect on renal protection. KEY FINDINGS: 7-HCG significantly reduced serum BUN and SCR levels, and alleviated pathological damage in renal tissue, and reduced the renal index. RNA sequencing revealed that 7-HCG could reverse p38 MAPK regulation and apoptosis. By western blotting, it was found that 7-HCG could reduce renal injury by reducing p-p38, p-ERK, p-JNK, cleaved-caspase3 and Bax. The immunohistochemical results of cleaved-caspase3 were consistent with western blotting. 7-HCG also significantly reduced the production of ROS in kidney tissue. Pharmacokinetic experiments have shown that 7-HCG in the blood increased rapidly and was eliminated slowly, with an average t1/2ß of 18.3 h. And the concentration of 7-HCG in the target organ kidney was about 4 times higher than that in blood. SIGNIFICANCE: Our findings indicate that 7-HCG could exert its protective effect against cisplatin-induced acute kidney injury by inhibiting apoptosis via p38 MAPK regulation and elucidates its pharmacokinetics.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Ratones , Masculino , Ratas , Animales , Cisplatino/toxicidad , Glucurónidos/efectos adversos , Glucurónidos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Ratones Endogámicos C57BL , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Riñón/metabolismo , Apoptosis , Umbeliferonas/farmacología , Umbeliferonas/uso terapéutico
15.
Environ Sci Pollut Res Int ; 30(33): 80181-80191, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37291353

RESUMEN

Cisplatin (CIS) is an effective chemotherapy against different solid cancers. However, the adverse effects, including hepatotoxicity, limit its clinical use. 7-hydroxycoumarin (7-HC) possesses antioxidant and hepatoprotective activities, but its protective effect against CIS hepatotoxicity has not been investigated. This study evaluated the effect of 7-HC on liver injury, oxidative stress (OS), and inflammation provoked by CIS. Rats received 7-HC (25, 50, and 100 mg/kg) orally for 2 weeks followed by intraperitoneal injection of CIS (7 mg/kg) at day 15. CIS increased serum transaminases, alkaline phosphatase (ALP), and bilirubin and provoked tissue injury accompanied by elevated reactive oxygen species (ROS), malondialdehyde (MDA), and nitric oxide (NO). Liver nuclear factor (NF)-κB p65, inducible NO synthase (iNOS), pro-inflammatory cytokines, Bax, and caspase-3 were upregulated, and antioxidant defenses and Bcl-2 were decreased in CIS-treated rats, while 7-HC prevented liver injury and ameliorated OS, inflammatory and apoptosis markers. In addition, 7-HC enhanced nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase (HO)-1 in CIS-administered rats and in silico studies revealed its binding affinity toward HO-1. In conclusion, 7-HC protected against CIS hepatotoxicity by mitigating OS and inflammatory response and modulating Nrf2/HO-1 pathway.


Asunto(s)
Antioxidantes , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Ratas , Animales , Antioxidantes/metabolismo , Cisplatino/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Regulación hacia Arriba , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Estrés Oxidativo , Inflamación/metabolismo , FN-kappa B/metabolismo , Umbeliferonas/farmacología , Apoptosis
16.
Tissue Cell ; 82: 102103, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37178526

RESUMEN

Intestinal injury is a common adverse effect of methotrexate (MTX) therapy, limiting its clinical use. Despite oxidative stress and inflammation being the most embedded mechanism of injury, pharmacological agents that exhibit antioxidant and anti-inflammatory impacts could prevent such toxicities. This study aimed to assess the enteroprotective effect of lactobacillus acidophilus (LB) and/or umbelliferone (UMB) against MTX-induced intestinal injury. Histologically, pretreatment with LB, UMB, or their combinations preserve the intestinal histological structure and mucin content with superior effect in combination therapy. In addition, oral pretreatment with UMB, LB, or their combinations significantly restored oxidant/antioxidant status, as evidenced by the upregulation of Nrf2, SOD3, HO-1, GSH, and GST levels concurrent with a decline in MDA contents. Besides, they suppressed the inflammatory burden by inhibiting STAT3, MPO, TLR4, NF-κB, TNF-α, and IL-6 levels. Moreover, LB, UMB, or their combinations significantly upregulated Wnt and ß-catenin expression. Notably, pretreatment with the combination therapy is superior to monotherapy in protecting rats' small intestines from MTX-induced enteritis. In conclusion, combined pretreatment with LB and UMB could be a novel therapeutic regimen for conditions of intestinal injury induced by MTX via restoring oxidant/antioxidant balance and suppressing inflammatory burden.


Asunto(s)
Antioxidantes , Metotrexato , Ratas , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Metotrexato/toxicidad , Transducción de Señal , Lactobacillus acidophilus/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Umbeliferonas/farmacología , Umbeliferonas/uso terapéutico , Oxidantes/farmacología , Factor 2 Relacionado con NF-E2/metabolismo
17.
Bioorg Med Chem Lett ; 88: 129302, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37088219

RESUMEN

A rapid and simple enzymatic transformation of the representative coumarin esculetin (1) with polyphenol oxidase originating from Agaricus bisporus afforded five new oxidized metabolites, esculetinins A (2), B (3), C (4), D (5), and E (6), together with the known compound isoeuphorbetin (7). The structures of the oligomerized transformation products were established on the basis of spectroscopic interpretations. The esculetin oligomers 2 and 3 revealed highly enhanced inhibitory activities against α-glucosidase, with IC50 values of 0.7 ± 0.1 and 2.3 ± 0.3 µM, respectively, as compared to the original esculetin. Kinetic analysis also exhibited that the two new potent metabolites 2 and 3 have competitive modes of action.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Umbeliferonas , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Cinética , Umbeliferonas/farmacología , alfa-Glucosidasas/metabolismo
18.
Cell Commun Signal ; 21(1): 66, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36998049

RESUMEN

BACKGROUND: Sepsis is a life-threatening organ dysfunction syndrome resulted from severe infection with high morbidity and mortality. Cluster of differentiation 38 (CD38) is a multifunctional type II transmembrane glycoprotein widely expressed on the surface of various immunocytes membranes that mediates host immune response to infection and plays an important role in many inflammatory diseases. Daphnetin (Daph), isolated from the daphne genus plant, is a natural coumarin derivative that possesses anti-inflammatory and anti-apoptotic effects. The current study aimed to investigate the role and mechanism of Daph in alleviating lipopolysaccharide (LPS)-induced septic lung injury, and to explore whether the protective effect of Daph in mice and cell models was related to CD38. METHODS: Firstly, network pharmacology analysis of Daph was performed. Secondly, LPS-induced septic lung injury in mice were treated with Daph or vehicle control respectively and then assessed for survival, pulmonary inflammation and pathological changes. Lastly, Mouse lung epithelial cells (MLE-12 cells) were transfected with CD38 shRNA plasmid or CD38 overexpressed plasmid, followed by LPS and Daph treatment. Cells were assessed for viability and transfection efficiency, inflammatory and signaling. RESULTS: Our results indicated that Daph treatment improved survival rate and alleviated pulmonary pathological damage of the sepsis mice, as well as reduced the excessive release of pro-inflammatory cytokines IL-1ß, IL-18, IL-6, iNOS and chemokines MCP-1 regulated by MAPK/NF-κB pathway in pulmonary injury. Daph treatment decreased Caspase-3 and Bax, increased Bcl-2, inhibited nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome-mediated pyroptosis in lung tissues of septic lung injury. Also, Daph treatment reduced the level of excessive inflammatory mediators, inhibited apoptosis and pyroptosis in MLE-12 cells. It is noteworthy that the protective effect of Daph on MLE-12 cells damage and death was assisted by the enhanced expression of CD38. CONCLUSIONS: Our results demonstrated that Daph offered a beneficial therapeutic effect for septic lung injury via the up-regulation of CD38 and inhibition of MAPK/NF-κB/NLRP3 pathway. Video Abstract.


Asunto(s)
Lesión Pulmonar , Sepsis , Umbeliferonas , Animales , Ratones , Lipopolisacáridos , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Sepsis/metabolismo , Umbeliferonas/farmacología
19.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36982853

RESUMEN

Coumarin derivatives have been recognized for their antithrombotic, anti-inflammatory, and antioxidant properties, and daphnetin is one of the natural coumarin derivatives isolated from Daphne Koreana Nakai. Although the pharmacological value of daphnetin is well documented in diverse biological activities, its antithrombotic effect has not been studied to date. Here, we characterized the role and underlying mechanism of daphnetin in the regulation of platelet activation using murine platelets. In order to check the effect of daphnetin on platelet function, we first measured the effect of daphnetin on platelet aggregation and secretion. Collagen-induced platelet aggregation and dense granule secretion were partially inhibited by daphnetin. Interestingly, 2-MeSADP-induced secondary waves of aggregation and secretion were completely inhibited by daphnetin. It is known that 2-MeSADP-induced secretion and the resultant secondary wave of aggregation are mediated by the positive feedback effect of thromboxane A2 (TxA2) generation, suggesting the important role of daphnetin on TxA2 generation in platelets. Consistently, daphnetin did not affect the 2-MeSADP-induced platelet aggregation in aspirinated platelets where the contribution of TxA2 generation was blocked. Additionally, platelet aggregation and secretion induced by a low concentration of thrombin, which is affected by the positive feedback effect of TxA2 generation, were partially inhibited in the presence of daphnetin. Importantly, 2-MeSADP- and thrombin-induced TxA2 generation was significantly inhibited in the presence of daphnetin, confirming the role of daphnetin on TxA2 generation. Finally, daphnetin significantly inhibited 2-MeSADP-induced cytosolic phospholipase A2 (cPLA2) and ERK phosphorylation in non-aspirinated platelets. Only cPLA2 phosphorylation, not ERK phosphorylation, was significantly inhibited by daphnetin in aspirinated platelets. In conclusion, daphnetin plays a critical role in platelet function by inhibiting TxA2 generation through the regulation of cPLA2 phosphorylation.


Asunto(s)
Trombina , Tromboxanos , Animales , Ratones , Plaquetas , Fibrinolíticos/farmacología , Agregación Plaquetaria , Trombina/farmacología , Tromboxano A2 , Umbeliferonas/farmacología , Fosfolipasas A2 Citosólicas/metabolismo
20.
Neurochem Int ; 165: 105520, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933866

RESUMEN

Effective therapeutic treatments for ischemic stroke are limited. Previous studies suggest selective activation of mitophagy alleviates cerebral ischemic injury while excessive autophagy is detrimental. However, few compounds are available to selectively activate mitophagy without affecting autophagy flux. Here, we found that acute administration of Umbelliferone (UMB) upon reperfusion exerted neuroprotective effects against ischemic injury in mice subjected to transient middle cerebral artery occlusion (tMCAO) and suppressed oxygen-glucose deprivation reperfusion (OGD-R)-induced apoptosis in SH-SY5Y cells. Interestingly, UMB promoted the translocation of mitophagy adaptor SQSTM1 to mitochondria and further reduced the mitochondrial content as well as the expression of SQSTM1 in SHSY5Y cells after OGD-R. Importantly, both the mitochondrial loss and reduction of SQSTM1 expression after UMB incubation can be reversed by autophagy inhibitor chloroquine and wortmannin, proving the mitophagy activation by UMB. Nevertheless, UMB failed to further affect neither LC3 lipidation nor the number of autophagosomes after cerebral ischemia in vivo and in vitro. Furthermore, UMB facilitated OGD-R-induced mitophagy in a Parkin-dependent manner. Inhibition of autophagy/mitophagy either pharmaceutically or genetically abolished the neuroprotective effects of UMB. Taken all, these results suggest that UMB protects against cerebral ischemic injury, both in vivo and in vitro, via promoting mitophagy without increasing the autophagic flux. UMB might serve as a potential leading compound for selectively activating mitophagy and the treatment of ischemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Neuroblastoma , Fármacos Neuroprotectores , Daño por Reperfusión , Ratones , Humanos , Animales , Fármacos Neuroprotectores/uso terapéutico , Proteína Sequestosoma-1 , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Neuroblastoma/metabolismo , Autofagia/fisiología , Mitocondrias/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/prevención & control , Isquemia Encefálica/metabolismo , Oxígeno/metabolismo , Umbeliferonas/metabolismo , Umbeliferonas/farmacología , Umbeliferonas/uso terapéutico , Accidente Cerebrovascular Isquémico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA