Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Proteins Proteom ; 1868(1): 140251, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31299354

RESUMEN

Nowadays enzymatic synthesis of nucleic acid derivatives is gaining momentum over traditional chemical synthetic processes. Biotransformations catalyzed by whole cells or enzymes offer an ecofriendly and efficient alternative to the traditional multistep chemical methods, avoiding the use of chemical reagents and organic solvents that are expensive and environmentally harmful. Herein we report for the first time the covalent immobilization a uracil phosphoribosyltransferase (UPRT). In this sense, UPRT from Thermus thermophilus HB8 was immobilized onto glutaraldehyde-activated MagReSyn®Amine magnetic iron oxide porous microparticles (MTtUPRT). According to the catalyst load experiments, MTtUPRT3 was selected as optimal biocatalyst for further studies. MTtUPRT3 was active and stable in a broad range of temperature (70-100 °C) and in the pH interval 6-8, displaying maximum activity at 100 °C and pH 7 (activity 968 IU/gsupport, retained activity 100%). In addition, MTtUPRT3 could be reused up to 8 times in the synthesis of uridine-5'-monophosphate (UMP). Finally, MTtUPRT3 was successfully applied in the sustainable synthesis of different 5-modified uridine-5'-monophosphates at short times. Taking into account these results, MTtUPRT3 would emerge as a valuable biocatalyst for the synthesis of nucleoside monophosphates through an efficient and environmentally friendly methodology.


Asunto(s)
Enzimas Inmovilizadas/metabolismo , Pentosiltransferasa/metabolismo , Thermus thermophilus/enzimología , Uridina Monofosfato/análogos & derivados , Uridina Monofosfato/biosíntesis , Biocatálisis , Compuestos Férricos , Glutaral , Microesferas
2.
Appl Microbiol Biotechnol ; 100(8): 3655-66, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26810198

RESUMEN

Orotate phosphoribosyl transferase (OPRTase) plays an important role in de novo and salvage pathways of nucleotide synthesis and is widely used as a screening marker in genetic transformation. However, the function of OPRTase in plant pathogens remains unclear. In this study, we characterized an ortholog of Saccharomyces cerevisiae Ura5, the OPRTase MoPyr5, from the rice blast fungus Magnaporthe oryzae. Targeted gene disruption revealed that MoPyr5 is required for mycelial growth, appressorial turgor pressure and penetration into plant tissues, invasive hyphal growth, and pathogenicity. Interestingly, the ∆Mopyr5 mutant is also involved in mycelial surface hydrophobicity. Exogenous uridine 5'-phosphate (UMP) restored vegetative growth and rescued the defect in pathogenicity on detached barley and rice leaf sheath. Collectively, our results show that MoPyr5 is an OPRTase for UMP biosynthesis in M. oryzae and indicate that UTP biosynthesis is closely linked with vegetative growth, cell wall integrity, and pathogenicity of fungus. Our results also suggest that UMP biosynthesis would be a good target for the development of novel fungicides against M. oryzae.


Asunto(s)
Proteínas Fúngicas/metabolismo , Magnaporthe/enzimología , Magnaporthe/patogenicidad , Orotato Fosforribosiltransferasa/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Uridina Monofosfato/biosíntesis , Proteínas Fúngicas/genética , Magnaporthe/genética , Magnaporthe/crecimiento & desarrollo , Orotato Fosforribosiltransferasa/genética , Esporas Fúngicas/enzimología , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/patogenicidad , Virulencia
3.
J Ind Microbiol Biotechnol ; 42(4): 577-83, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25566953

RESUMEN

Although it is generally known that cofactors play a major role in the production of different fermentation products, their role has not been thoroughly and systematically studied. To understand the impact of cofactors on physiological functions, a systematic approach was applied, which involved redox state analysis, energy charge analysis, and metabolite analysis. Using uridine 5'-monophosphate metabolism in Saccharomyces cerevisiae as a model, we demonstrated that regulation of intracellular the ratio of NADPH to NADP(+) not only redistributed the carbon flux between the glycolytic and pentose phosphate pathways, but also regulated the redox state of NAD(H), resulting in a significant change of ATP, and a significantly altered spectrum of metabolic products.


Asunto(s)
Redes y Vías Metabólicas , NADP/metabolismo , NAD/metabolismo , Saccharomyces cerevisiae/metabolismo , Uridina Monofosfato/biosíntesis , Adenosina Trifosfato/metabolismo , Fermentación , Glucólisis , Oxidación-Reducción , Vía de Pentosa Fosfato
4.
Biochem Biophys Res Commun ; 450(1): 870-4, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-24971548

RESUMEN

In addition to the well known second messengers cAMP and cGMP, mammalian cells contain the cyclic pyrimidine nucleotides cCMP and cUMP. Soluble guanylyl cyclase and soluble adenylyl cyclase produce all four cNMPs. Several bacterial toxins exploit mammalian cyclic nucleotide signaling. The type III secretion protein ExoY from Pseudomonas aeruginosa induces severe lung damage and effectively produces cGMP. Here, we show that transfection of mammalian cells with ExoY or infection with ExoY-expressing P. aeruginosa not only massively increases cGMP but also cUMP levels. In contrast, the structurally related CyaA from Bordetella pertussis and edema factor from Bacillus anthracis exhibit a striking preference for cAMP increases. Thus, ExoY is a nucleotidyl cyclase with preference for cGMP and cUMP production. The differential effects of bacterial toxins on cNMP levels suggest that cUMP plays a distinct second messenger role.


Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/biosíntesis , Glucosiltransferasas/metabolismo , Nucleótidos Cíclicos/biosíntesis , Nucleotidiltransferasas/metabolismo , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Uridina Monofosfato/biosíntesis , Apoptosis , Supervivencia Celular
5.
Biochem Biophys Res Commun ; 443(4): 1195-9, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24380860

RESUMEN

Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and generates the second messenger cyclic GMP (cGMP). Recently, purified sGC α1ß1 has been shown to additionally generate the cyclic pyrimidine nucleotides cCMP and cUMP. However, since cyclic pyrimidine nucleotide formation occurred only the presence of Mn(2+) but not Mg(2+), the physiological relevance of these in vitro findings remained unclear. Therefore, we studied cyclic nucleotide formation in intact cells. We observed NO-dependent cCMP- and cUMP formation in intact HEK293 cells overexpressing sGC α1ß1 and in RFL-6 rat fibroblasts endogenously expressing sGC, using HPLC-tandem mass spectrometry. The identity of cCMP and cUMP was unambiguously confirmed by HPLC-time-of-flight mass spectrometry. Our data indicate that cCMP and cUMP play second messenger roles and that Mn(2+) is a physiological sGC cofactor.


Asunto(s)
Guanilato Ciclasa/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Línea Celular , AMP Cíclico/biosíntesis , CMP Cíclico/biosíntesis , GMP Cíclico/biosíntesis , Guanilato Ciclasa/genética , Células HEK293 , Humanos , Manganeso/metabolismo , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Nitroprusiato/farmacología , Nucleótidos Cíclicos/biosíntesis , Ratas , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sistemas de Mensajero Secundario , Guanilil Ciclasa Soluble , Transfección , Uridina Monofosfato/biosíntesis
6.
Methods Enzymol ; 516: 153-68, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23034228

RESUMEN

Several nucleoside antibiotics from various actinomycetes contain a high-carbon sugar nucleoside that is putatively derived via C-5'-modification of the canonical nucleoside. Two prominent examples are the 5'-C-carbamoyluridine- and 5'-C-glycyluridine-containing nucleosides, both families of which were discovered using screens aimed at finding inhibitors of bacterial translocase I involved in the assembly of the bacterial peptidoglycan cell wall. A shared open reading frame was identified whose gene product is similar to enzymes of the nonheme, Fe(II)-, and α-ketoglutarate-dependent dioxygenases. The enzyme LipL from the biosynthetic pathway for A-90289, a 5'-C-glycyluridine-containing nucleoside, was functionally characterized as an UMP:α-ketoglutarate dioxygenase, providing the enzymatic imperative for the generation of a nucleoside-5'-aldehdye that serves as a downstream substrate for an aldol or aldol-type reaction leading to the high-carbon sugar scaffold. The functional assignment of LipL and the homologous enzymes-including bioinformatic analysis, iron detection and quantification, and assay development for biochemical characterization-is presented herein.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pared Celular/enzimología , Ácidos Cetoglutáricos/metabolismo , Lipasa/metabolismo , Oxigenasas de Función Mixta/metabolismo , Streptomyces/enzimología , Uridina Monofosfato/biosíntesis , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Pared Celular/química , Cromatografía Líquida de Alta Presión , Clonación Molecular , Biología Computacional , Escherichia coli/enzimología , Escherichia coli/genética , Expresión Génica , Hierro/química , Hierro/metabolismo , Ácidos Cetoglutáricos/química , Lipasa/química , Lipasa/genética , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Datos de Secuencia Molecular , Peptidoglicano/química , Peptidoglicano/metabolismo , Streptomyces/química , Streptomyces/genética , Uridina Monofosfato/análogos & derivados , Uridina Monofosfato/química
7.
Bioprocess Biosyst Eng ; 35(5): 729-37, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22081050

RESUMEN

A whole-cell biocatalytic process for uridine 5'-monophosphate (UMP) production from orotic acid by Saccharomyces cerevisiae was developed. To rationally redistribute the metabolic flux between glycolysis and pentose phosphate pathway, statistical methods were employed first to find out the critical factors in the process. NaH(2)PO(4), MgCl(2) and pH were found to be the important factors affecting UMP production significantly. The levels of these three factors required for the maximum production of UMP were determined: NaH(2)PO(4) 22.1 g/L; MgCl(2) 2.55 g/L; pH 8.15. An enhancement of UMP production from 6.12 to 8.13 g/L was achieved. A significant redistribution of metabolic fluxes was observed and the underlying mechanism was discussed.


Asunto(s)
Saccharomyces cerevisiae/metabolismo , Uridina Monofosfato/biosíntesis , Concentración de Iones de Hidrógeno , Cloruro de Magnesio/química , Cloruro de Magnesio/metabolismo , Ácido Orótico/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo
8.
J Biol Chem ; 286(23): 20930-41, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21507942

RESUMEN

The final two steps of de novo uridine 5'-monophosphate (UMP) biosynthesis are catalyzed by orotate phosphoribosyltransferase (OPRT) and orotidine 5'-monophosphate decarboxylase (OMPDC). In most prokaryotes and simple eukaryotes these two enzymes are encoded by separate genes, whereas in mammals they are expressed as a bifunctional gene product called UMP synthase (UMPS), with OPRT at the N terminus and OMPDC at the C terminus. Leishmania and some closely related organisms also express a bifunctional enzyme for these two steps, but the domain order is reversed relative to mammalian UMPS. In this work we demonstrate that L. donovani UMPS (LdUMPS) is an essential enzyme in promastigotes and that it is sequestered in the parasite glycosome. We also present the crystal structure of the LdUMPS in complex with its product, UMP. This structure reveals an unusual tetramer with two head to head and two tail to tail interactions, resulting in two dimeric OMPDC and two dimeric OPRT functional domains. In addition, we provide structural and biochemical evidence that oligomerization of LdUMPS is controlled by product binding at the OPRT active site. We propose a model for the assembly of the catalytically relevant LdUMPS tetramer and discuss the implications for the structure of mammalian UMPS.


Asunto(s)
Leishmania donovani/enzimología , Modelos Moleculares , Complejos Multienzimáticos/química , Orotato Fosforribosiltransferasa/química , Orotidina-5'-Fosfato Descarboxilasa/química , Multimerización de Proteína/fisiología , Proteínas Protozoarias/química , Leishmania donovani/genética , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Orotato Fosforribosiltransferasa/genética , Orotato Fosforribosiltransferasa/metabolismo , Orotidina-5'-Fosfato Descarboxilasa/genética , Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Uridina Monofosfato/biosíntesis , Uridina Monofosfato/química , Uridina Monofosfato/genética
9.
Chem Commun (Camb) ; 46(26): 4821-3, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20498911

RESUMEN

The reactions of 6-cyano-1,3-dimethyluracil have been studied as chemical models to illustrate the mechanism for the transformation of 6-cyanouridine 5'-monophosphate (6-CN-UMP) to barbiturate ribonucleoside 5'-monophosphate (BMP) catalyzed by orotidine 5'-monophosphate decarboxylase (ODCase). The results suggest that the Asp residue in the ODCase active site plays the role of a general base in the transformation.


Asunto(s)
Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Uridina Monofosfato/análogos & derivados , Barbitúricos/química , Biocatálisis , Dominio Catalítico , Modelos Químicos , Orotidina-5'-Fosfato Descarboxilasa/química , Uridina Monofosfato/biosíntesis , Uridina Monofosfato/química , Uridina Monofosfato/metabolismo
10.
PLoS One ; 5(2): e9045, 2010 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-20140215

RESUMEN

BACKGROUND: The genome of the halophilic archaeon Halobacterium salinarum NRC-1 encodes for homologs of MutS and MutL, which are key proteins of a DNA mismatch repair pathway conserved in Bacteria and Eukarya. Mismatch repair is essential for retaining the fidelity of genetic information and defects in this pathway result in the deleterious accumulation of mutations and in hereditary diseases in humans. METHODOLOGY/PRINCIPAL FINDINGS: We calculated the spontaneous genomic mutation rate of H. salinarum NRC-1 using fluctuation tests targeting genes of the uracil monophosphate biosynthesis pathway. We found that H. salinarum NRC-1 has a low incidence of mutation suggesting the presence of active mechanisms to control spontaneous mutations during replication. The spectrum of mutational changes found in H. salinarum NRC-1, and in other archaea, appears to be unique to this domain of life and might be a consequence of their adaption to extreme environmental conditions. In-frame targeted gene deletions of H. salinarum NRC-1 mismatch repair genes and phenotypic characterization of the mutants demonstrated that the mutS and mutL genes are not required for maintenance of the observed mutation rate. CONCLUSIONS/SIGNIFICANCE: We established that H. salinarum NRC-1 mutS and mutL genes are redundant to an alternative system that limits spontaneous mutation in this organism. This finding leads to the puzzling question of what mechanism is responsible for maintenance of the low genomic mutation rates observed in the Archaea, which for the most part do not have MutS and MutL homologs.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas Arqueales/genética , Halobacterium salinarum/genética , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Mutación , Adenosina Trifosfatasas/metabolismo , Algoritmos , Proteínas Arqueales/metabolismo , Secuencia de Bases , División Celular/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Genoma Arqueal , Halobacterium salinarum/crecimiento & desarrollo , Halobacterium salinarum/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Eliminación de Secuencia , Uridina Monofosfato/biosíntesis
11.
Appl Microbiol Biotechnol ; 86(1): 75-81, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19826805

RESUMEN

A whole cell biocatalytic process for uridine 5'-monophosphate (UMP) production from orotic acid by Saccharomyces cerevisiae was developed. The concentration of UMP was increased by 23% when 1 g l(-1) sodium citrate was fed into the broth. Effects of citrate addition on UMP production were investigated. Glucose-6-phosphate pool was elevated by onefold, while FBP and pyruvate were decreased by 42% and 40%, respectively. Organic acid pools such as acetate and succinate were averagely decreased by 30% and 49%. The results demonstrated that manipulation of citrate levels could be used as a novel tool to regulate the metabolic fluxes distribution among glycolysis, pentose phosphate pathway, and TCA cycle.


Asunto(s)
Biotecnología/métodos , Ácido Cítrico/metabolismo , Regulación Enzimológica de la Expresión Génica , Glucosa/metabolismo , Saccharomyces cerevisiae/metabolismo , Uridina Monofosfato/biosíntesis , Carbono/metabolismo , Catálisis , Ácido Cítrico/farmacología , Ciclo del Ácido Cítrico/efectos de los fármacos , Medios de Cultivo , Glucólisis/efectos de los fármacos , Concentración de Iones de Hidrógeno , Ácido Orótico/química , Ácido Orótico/metabolismo , Vía de Pentosa Fosfato/efectos de los fármacos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Uridina Monofosfato/metabolismo
12.
Mini Rev Med Chem ; 8(3): 239-47, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18336344

RESUMEN

Orotidine 5'-monophosphate decarboxylase (ODCase) is among the most proficient enzymes, and catalyzes the decarboxylation of OMP to UMP. An overview of ODCase and various proposals for its catalytic mechanism of decarboxylation are briefly presented here. A number of inhibitors of ODCase and new developments in the X-ray structures of ODCases from different species are discussed in the context of their therapeutic potential against cancer and infectious diseases. Latest discoveries in the inhibition of ODCase, for example using the novel C6 substitutions on the uridine, open new doors for drug discovery targeting parasitic diseases such as malaria.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Orotidina-5'-Fosfato Descarboxilasa/antagonistas & inhibidores , Animales , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Humanos , Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Uridina Monofosfato/biosíntesis , Uridina Monofosfato/química
13.
Appl Microbiol Biotechnol ; 76(2): 321-8, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17520248

RESUMEN

Attempts were made with success to develop a two-step biocatalytic process for uridine 5'-monophosphate (UMP) production from orotic acid by Corynebacterium ammoniagenes ATCC 6872: the strain was first cultivated in a high salt mineral medium, and then cells were harvested and used as the catalyst in the UMP production reaction. Effects of cultivation and reaction conditions on UMP production were investigated. The cells exhibited the highest biocatalytic ability when cultivated in a medium containing corn steep liquor at pH 7.0 for 15 h in the exponential phase of growth. To optimize the reaction, both "one-factor-at-a-time" method and statistical method were performed. By "one-factor-at-a-time" optimization, orotic acid, glucose, phosphate ion (equimolar KH(2)PO(4) and K(2)HPO(4)), MgCl(2), Triton X-100 were shown to be the optimum components for the biocatalytic reaction. Phosphate ion and C. ammoniagenes cell were furthermore demonstrated as the most important main effects on UMP production by Plackett-Burman design, indicating that 5-phosphoribosyl-1-pyrophosphate (PRPP) synthesis was the rate-limiting step for pyrimidine nucleotides production. Optimization by a central composition design (CCD) was then performed, and up to 32 mM (10.4 g l(-1)) UMP was accumulated in 24 h from 38.5 mM (6 g l(-1)) orotic acid. The yield was threefold higher than the original UMP yield before optimization.


Asunto(s)
Corynebacterium/enzimología , Modelos Estadísticos , Ácido Orótico/metabolismo , Uridina Monofosfato/biosíntesis , Reactores Biológicos/microbiología , Catálisis , Corynebacterium/genética , Corynebacterium/metabolismo , Regulación Enzimológica de la Expresión Génica/genética , Ácido Orótico/química
14.
J Bacteriol ; 188(13): 4777-86, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16788187

RESUMEN

The uracil salvage pathway in Lactobacillus plantarum was demonstrated to be dependent on the upp-pyrP gene cluster. PyrP was the only high-affinity uracil transporter since a pyrP mutant no longer incorporated low concentrations of radioactively labeled uracil and had increased resistance to the toxic uracil analogue 5-fluorouracil. The upp gene encoded a uracil phosphoribosyltransferase (UPRT) enzyme catalyzing the conversion of uracil and 5-phosphoribosyl-alpha-1-pyrophosphate to UMP and pyrophosphate. Analysis of mutants revealed that UPRT is a major cell supplier of UMP synthesized from uracil provided by preformed nucleic acid degradation. In a mutant selection study, seven independent upp mutants were isolated and all were found to excrete low amounts of pyrimidines to the growth medium. Pyrimidine-dependent transcription regulation of the biosynthetic pyrimidine pyrR1-B-C-Aa1-Ab1-D-F-E operon was impaired in the upp mutants. Despite the fact that upp and pyrP are positioned next to each other on the chromosome, they are not cotranscribed. Whereas pyrP is expressed as a monocistronic message, the upp gene is part of the lp_2376-glyA-upp operon. The lp_2376 gene encodes a putative protein that belongs to the conserved protein family of translation modulators such as Sua5, YciO, and YrdC. The glyA gene encodes a putative hydroxymethyltransferase involved in C1 unit charging of tetrahydrofolate, which is required in the biosynthesis of thymidylate, pantothenate, and purines. Unlike upp transcription, pyrP transcription is regulated by exogenous pyrimidine availability, most likely by the same mechanism of transcription attenuation as that of the pyr operon.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Pentosiltransferasa/genética , Proteínas Represoras/genética , Uracilo/metabolismo , Uridina Monofosfato/metabolismo , Proteínas Bacterianas/genética , Genes Bacterianos , Familia de Multigenes/genética , Operón , Pentosiltransferasa/metabolismo , Pirimidinas/metabolismo , Transcripción Genética , Uridina Monofosfato/biosíntesis
16.
Plant Physiol Biochem ; 43(2): 91-9, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15820655

RESUMEN

Arabidopsis seedlings grown for 14 d without phosphate (P) exhibited stunted growth and other visible symptoms associated with P deficiency. RNA contents in shoots decreased nearly 90%, relative to controls. In shoots, expression of Pht1;2, encoding an inducible high-affinity phosphate transporter, increased threefold, compared with controls, and served as a molecular marker for P limitation. Transcript levels for five enzymes (aspartate transcarbamoylase, ATCase, EC 2.1.3.2; carbamoyl phosphate synthetase, CPSase, EC 6.3.5.5); UMP synthase, EC 2.4.1.10, EC 4.1.1.23; uracil phosphoribosyltransferase, UPRTase, EC 2.4.2.9; UMP kinase, EC 2.7.1.14) increased 2-10-fold in response to P starvation in shoots. These enzymes, which utilize phosphorylated intermediates at putative regulated steps in de novo synthesis and salvaging pathways leading to UMP and pyrimidine nucleotide formation, appear to be coordinately regulated, at the level of gene expression. This response may facilitate pyrimidine nucleotide synthesis under P limitation in this plant. Expression of P-dependent and P-independent phosphoribosyl pyrophosphate (PRPP) synthases (PRS2 and PRS3, respectively) which provide PRPP, the phosphoribosyl donor in UMP synthesis via both de novo and salvaging pathways, was differentially regulated in response to P limitation. PRS2 mRNA levels increased twofold in roots and shoots of P-starved plants, while PRS3 was constitutively-expressed. PRS3 may play a novel role in providing PRPP to cellular metabolism under low P availability.


Asunto(s)
Arabidopsis/metabolismo , Organofosfatos/metabolismo , Pirimidinas/biosíntesis , Arabidopsis/enzimología , Expresión Génica , Proteínas de Transporte de Fosfato/biosíntesis , Proteínas de Transporte de Fosfato/genética , Filogenia , Raíces de Plantas/enzimología , ARN Mensajero/biosíntesis , ARN de Planta/metabolismo , Ribosa-Fosfato Pirofosfoquinasa/biosíntesis , Ribosa-Fosfato Pirofosfoquinasa/genética , Plantones/enzimología , Uridina Monofosfato/biosíntesis , Uridina Monofosfato/genética
17.
Planta ; 215(5): 821-8, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12244448

RESUMEN

In order to obtain general metabolic profiles of pyrimidine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, the in situ metabolic fate of various (14)C-labelled precursors in disks from growing potato tubers was investigated. The activities of key enzymes in potato tuber extracts were also studied. The following results were obtained. Of the intermediates in de novo pyrimidine biosynthesis, [(14)C]carbamoylaspartate was converted to orotic acid and [2-(14)C]orotic acid was metabolized to nucleotides and RNA. UMP synthase, a bifunctional enzyme with activities of orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidine 5'-monophosphate decarboxylase (EC 4.1.1.23), exhibited high activity. The rates of uptake of pyrimidine ribo- and deoxyribonucleosides by the disks were high, in the range 2.0-2.8 nmol (g FW)(-1) h(-1). The pyrimidine ribonucleosides, uridine and cytidine, were salvaged exclusively to nucleotides, by uridine/cytidine kinase (EC 2.7.1.48) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Cytidine was also salvaged after conversion to uridine by cytidine deaminase (EC 3.5.4.5) and the presence of this enzyme was demonstrated in cell-free tuber extracts. Deoxycytidine, a deoxyribonucleoside, was efficiently salvaged. Since deoxycytidine kinase (EC 2.7.1.74) activity was extremely low, non-specific nucleoside phosphotransferase (EC 2.7.1.77) probably participates in deoxycytidine salvage. Thymidine, which is another pyrimidine deoxyribonucleoside, was degraded and was not a good precursor for nucleotide synthesis. Virtually all the thymidine 5'-monophosphate synthesis from thymidine appeared to be catalyzed by phosphotransferase activity, since little thymidine kinase (EC 2.7.1.21) activity was detected. Of the pyrimidine bases, uracil, but not cytosine, was salvaged for nucleotide synthesis. Since uridine phosphorylase (EC 2.4.2.3) activity was not detected, uracil phosphoribosyltransferase (EC 2.4.2.9) seems to play the major role in uracil salvage. Uracil was degraded by the reductive pathway via beta-ureidopropionate, but cytosine was not degraded. The activities of the cytosine-metabolizing enzymes observed in other organisms, pyrimidine nucleoside phosphorylase (EC 2.4.2.2) and cytosine deaminase (EC 3.5.4.1), were not detected in potato tuber extracts. Operation of the de novo synthesis of deoxyribonucleotides via ribonucleotide reductase and of the salvage pathway of deoxycytidine was demonstrated via the incorporation of radioactivity from both [2-(14)C]cytidine and [2-(14)C]deoxycytidine into DNA. A novel pathway converting deoxycytidine to uracil nucleotides was found and deoxycytidine deaminase (EC 3.5.4.14), an enzyme that may participate in this pathway, was detected in the tuber extracts.


Asunto(s)
Enzimas/metabolismo , Tallos de la Planta/metabolismo , Pirimidinas/biosíntesis , Solanum tuberosum/metabolismo , Radioisótopos de Carbono , Técnicas de Cultivo , Citidina/metabolismo , Citidina Desaminasa/metabolismo , Citosina/biosíntesis , Citosina/metabolismo , Citosina Desaminasa , Desoxicitidina/metabolismo , Desoxicitidina Quinasa/metabolismo , Desoxirribonucleósidos/metabolismo , Complejos Multienzimáticos/metabolismo , Nucleósido Desaminasas/metabolismo , Orotato Fosforribosiltransferasa/metabolismo , Orotidina-5'-Fosfato Descarboxilasa/metabolismo , Pentosiltransferasa/metabolismo , Fosfotransferasas/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Nucleósidos de Pirimidina/metabolismo , Pirimidina Fosforilasas , Pirimidinas/metabolismo , Pirimidinonas/metabolismo , Solanum tuberosum/crecimiento & desarrollo , Timidina/metabolismo , Timidina Quinasa/metabolismo , Uracilo/biosíntesis , Uracilo/metabolismo , Uridina/metabolismo , Uridina Quinasa/metabolismo , Uridina Monofosfato/biosíntesis , Uridina Fosforilasa/metabolismo
18.
Reproduction ; 123(6): 757-68, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12052230

RESUMEN

Enzymes of the pathway for de novo biosynthesis of pyrimidine nucleotides have been reported in spermatozoa from fruitfly and mammals. The aim of the present study was to test the hypothesis that the enzymes for biosynthesis of uridine monophosphate (UMP) are concentrated near the mitochondria, which are segregated in the mid-piece of spermatozoa. Baby hamster kidney fibroblasts were compared with spermatozoa from rams, boars, bulls and men. Antibodies raised against synthetic peptides from sequences of the multienzyme polypeptides containing glutamine-dependent carbamyl phosphate synthetase, aspartate transcarbamylase and dihydroorotase (CAD) and UMP synthase, which catalyse reactions 1-3 and 5-6, respectively, were used, together with an affinity-purified antibody raised against dihydroorotate dehydrogenase (DHODH), the mitochondrial enzyme for step 4. Western blot analysis, immunofluorescent microscopy and immunoelectron microscopy confirmed that CAD and UMP synthase are found in the cytoplasm around and outside the mitochondria; DHODH is found exclusively inside the mitochondria. CAD was also located in the nucleus, where it has been reported in the nuclear matrix, and in the cytoplasm, apparently associated with the cytoskeleton. It is possible that CAD in the cytoplasm has a role unconnected with pyrimidine biosynthesis.


Asunto(s)
Aspartato Carbamoiltransferasa/análisis , Mamíferos/metabolismo , Complejos Multienzimáticos/análisis , Orotato Fosforribosiltransferasa/análisis , Orotidina-5'-Fosfato Descarboxilasa/análisis , Espermatozoides/enzimología , Uridina Monofosfato/biosíntesis , Animales , Bovinos , Células Cultivadas , Cricetinae , Fibroblastos/enzimología , Immunoblotting/métodos , Inmunohistoquímica/métodos , Masculino , Ovinos
19.
Mol Cell Biol ; 19(11): 7461-72, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10523634

RESUMEN

In budding yeast (Saccharomyces cerevisiae), the majority of box H/ACA small nucleolar RNPs (snoRNPs) have been shown to direct site-specific pseudouridylation of rRNA. Among the known protein components of H/ACA snoRNPs, the essential nucleolar protein Cbf5p is the most likely pseudouridine (Psi) synthase. Cbf5p has considerable sequence similarity to Escherichia coli TruBp, a known Psi synthase, and shares the "KP" and "XLD" conserved sequence motifs found in the catalytic domains of three distinct families of known and putative Psi synthases. To gain additional evidence on the role of Cbf5p in rRNA biosynthesis, we have used in vitro mutagenesis techniques to introduce various alanine substitutions into the putative Psi synthase domain of Cbf5p. Yeast strains expressing these mutated cbf5 genes in a cbf5Delta null background are viable at 25 degrees C but display pronounced cold- and heat-sensitive growth phenotypes. Most of the mutants contain reduced levels of Psi in rRNA at extreme temperatures. Substitution of alanine for an aspartic acid residue in the conserved XLD motif of Cbf5p (mutant cbf5D95A) abolishes in vivo pseudouridylation of rRNA. Some of the mutants are temperature sensitive both for growth and for formation of Psi in the rRNA. In most cases, the impaired growth phenotypes are not relieved by transcription of the rRNA from a polymerase II-driven promoter, indicating the absence of polymerase I-related transcriptional defects. There is little or no abnormal accumulation of pre-rRNAs in these mutants, although preferential inhibition of 18S rRNA synthesis is seen in mutant cbf5D95A, which lacks Psi in rRNA. A subset of mutations in the Psi synthase domain impairs association of the altered Cbf5p proteins with selected box H/ACA snoRNAs, suggesting that the functional catalytic domain is essential for that interaction. Our results provide additional evidence that Cbf5p is the Psi synthase component of box H/ACA snoRNPs and suggest that the pseudouridylation of rRNA, although not absolutely required for cell survival, is essential for the formation of fully functional ribosomes.


Asunto(s)
Proteínas Asociadas a Microtúbulos/genética , Mutación Puntual , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/genética , Ribonucleoproteínas Nucleares Pequeñas , Proteínas de Saccharomyces cerevisiae , Uridina Monofosfato/biosíntesis , Secuencia de Aminoácidos , Secuencia Conservada , Hidroliasas/metabolismo , Datos de Secuencia Molecular , ARN Polimerasa II/metabolismo , Precursores del ARN/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae , Transcripción Genética
20.
Biosci Biotechnol Biochem ; 61(6): 956-9, 1997 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9214753

RESUMEN

Enzymatic production of cytidine diphosphate choline (CDP-choline) using orotic acid and choline chloride as substrates was investigated using a 200-ml beaker as a reaction vessel. When Cornybacterium ammoniagenes KY13505 cells were used as the enzyme source, UMP was accumulated up to 28.6 g/liter (77.6 mM) from orotic acid after 26 h of reaction. In this reaction, UDP and UTP were also accumulated, but CTP, a direct precursor of CDP-choline, was not accumulated sufficiently. Escherichia coli JF646/pMW6 cells, which overproduce CTP synthetase by selfcloning of the pyrG gene, were used together with cells of KY12505 for the enzymatic reaction using orotic acid as a substrate. CTP was produced at 8.95 g/liter (15.1 mM) after 23 h of this reaction. To produce CDP-choline, two additional enzyme activities were needed. E. coli MM294/pUCK3 and MM294/pCC41 cells, which express a choline kinase from Saccharomyces cerevisiae (CKIase; encoded by the CKI gene) and a cholinephosphate cytidylyltransferase from S. cerevisiae (CCTase; encoded by the CCT gene) respectively, were added to this CTP-producing reaction system. After 23 h of the reaction using orotic acid and choline chloride as substrates, 7.7 g/liter (15.1 mM) of CDP-choline was accumulated without addition of ATP or phosphoribosylpyrophosphate (PRPP). ATP and PRPP required in the CDP-choline forming reaction system are biosynthesized by those cells using glucose as a substrate.


Asunto(s)
Ligasas de Carbono-Nitrógeno , Colina/metabolismo , Corynebacterium/enzimología , Citidina Difosfato Colina/síntesis química , Escherichia coli/enzimología , Regulación Enzimológica de la Expresión Génica/genética , Ácido Orótico/metabolismo , Nucleótidos de Pirimidina/biosíntesis , Colina/química , Cromatografía Líquida de Alta Presión , Corynebacterium/genética , Citidina Trifosfato/biosíntesis , Escherichia coli/genética , Ligasas/biosíntesis , Ácido Orótico/química , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Plásmidos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Uridina Difosfato/biosíntesis , Uridina Monofosfato/biosíntesis , Uridina Monofosfato/química , Uridina Monofosfato/metabolismo , Uridina Trifosfato/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA