Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 342
Filtrar
1.
Nat Cardiovasc Res ; 3(8): 933-950, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39196035

RESUMEN

Valve remodeling is a process involving extracellular matrix organization and elongation of valve leaflets. Here, through single-cell RNA sequencing of human fetal valves, we identified an elastin-producing valve interstitial cell (VIC) subtype (apolipoprotein E (APOE)+, elastin-VICs) spatially located underneath valve endothelial cells (VECs) sensing unidirectional flow. APOE knockdown in fetal VICs resulted in profound elastogenesis defects. In valves with pulmonary stenosis (PS), we observed elastin fragmentation and decreased expression of APOE along with other genes regulating elastogenesis. Cell-cell interaction analysis revealed that jagged 1 (JAG1) from unidirectional VECs activates elastogenesis in elastin-VICs through NOTCH2. Similar observations were made in VICs cocultured with VECs under unidirectional flow. Notably, a drastic reduction of JAG1-NOTCH2 was also observed in PS valves. Lastly, we found that APOE controls JAG1-induced NOTCH activation and elastogenesis in VICs through the extracellular signal-regulated kinase pathway. Our study suggests important roles of both APOE and NOTCH in regulating elastogenesis during human valve remodeling.


Asunto(s)
Apolipoproteínas E , Elastina , Células Endoteliales , Proteína Jagged-1 , Transducción de Señal , Humanos , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética , Elastina/metabolismo , Elastina/genética , Células Endoteliales/metabolismo , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Receptor Notch2/metabolismo , Receptor Notch2/genética , Células Cultivadas , Válvula Pulmonar/metabolismo , Técnicas de Cocultivo , Comunicación Celular/fisiología , Válvulas Cardíacas/embriología , Válvulas Cardíacas/metabolismo
3.
Front Biosci (Landmark Ed) ; 29(6): 219, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38940032

RESUMEN

BACKGROUND: Rheumatic heart disease (RHD) is caused by inflammatory cells mistakenly attacking the heart valve due to Group A Streptococcus (GAS) infection, but it is still unclear which cells or genes are involved in the process of inflammatory cells infiltrating the valve. Inflammatory infiltration into the target tissue requires an increase in the expression of phosphorylated vascular endothelial-cadherin (p-VE-cad), p-VE-cad can increase the endothelial permeability and promote the migration of inflammatory cells across the endothelium. P-VE-cad is potentially regulated by RAS-related C3 botulinum substrate 1 (RAC1), together with phosphorylated proline-rich tyrosine kinase 2 (p-PYK2). While RAC1/p-PYK2/p-VE-cad is triggered by the activation of vascular cell adhesion molecule-1 (VCAM-1). VCAM-1 is related to M1 macrophages adhering to the endothelium via very late antigen 4 (VLA4). Inflammatory infiltration into the valve is extremely important in the early pathogenesis of RHD. However, there is no relevant research on whether M1/VLA4/VCAM-1/RAC1/p-PYK2/p-VE-cad is involved in RHD; therefore, what we explored in this study was whether M1/VLA4/VCAM-1/RAC1/p-PYK2/p-VE-cad is involved. METHODS: We established a rat model of RHD and a cell model of M1 macrophage and endothelial cell cocultivation. Subsequently, we measured the degree of inflammatory cell infiltration, the levels of IL-6/IL-17, the degree of fibrosis (COL3/1), and the expression levels of fibrosis markers (FSP1, COL1A1 and COL3A1) in the heart valves of RHD rats. Additionally, we detected the expression of M1/M2 macrophage biomarkers in rat model and cell model, as well as the expression of M1/VLA4/VCAM-1/RAC1/p-PYK2/p-VE-cad. We also tested the changes in endothelial permeability after coculturing M1 macrophages and endothelial cells. RESULTS: Compared to those in the control group, the levels of inflammatory cell infiltration and fibrotic factors in the heart valves of RHD rats were significantly higher; the expression of M1 macrophage biomarkers (iNOS, CD86 and TNF-α) in RHD rats was significantly higher; and significantly higher than the expression of M2 macrophage biomarkers (Arg1 and TGF-ß). And the expression levels of VLA4/VCAM-1 and RAC1/p-PYK2/p-VE-cad in the hearts of RHD rats were significantly higher. At the cellular level, after coculturing M1 macrophages with endothelial cells, the expression levels of VLA4/VCAM-1 and RAC1/p-PYK2/p-VE-cad were significantly higher, and the permeability of the endothelium was significantly greater due to cocultivation with M1 macrophages. CONCLUSIONS: All the results suggested that M1 macrophages and the VLA4/VCAM-1 pathway are potentially involved in the process of inflammatory infiltration in RHD.


Asunto(s)
Macrófagos , Cardiopatía Reumática , Molécula 1 de Adhesión Celular Vascular , Animales , Cardiopatía Reumática/metabolismo , Cardiopatía Reumática/patología , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Macrófagos/metabolismo , Ratas , Integrina alfa4beta1/metabolismo , Masculino , Válvulas Cardíacas/metabolismo , Válvulas Cardíacas/patología , Transducción de Señal , Ratas Sprague-Dawley , Proteína de Unión al GTP rac1/metabolismo , Modelos Animales de Enfermedad , Humanos
4.
Sci Adv ; 10(20): eadl0633, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38748804

RESUMEN

Biomechanical forces, and their molecular transducers, including key mechanosensitive transcription factor genes, such as KLF2, are required for cardiac valve morphogenesis. However, klf2 mutants fail to completely recapitulate the valveless phenotype observed under no-flow conditions. Here, we identify the transcription factor EGR3 as a conserved biomechanical force transducer critical for cardiac valve formation. We first show that egr3 null zebrafish display a complete and highly penetrant loss of valve leaflets, leading to severe blood regurgitation. Using tissue-specific loss- and gain-of-function tools, we find that during cardiac valve formation, Egr3 functions cell-autonomously in endothelial cells, and identify one of its effectors, the nuclear receptor Nr4a2b. We further find that mechanical forces up-regulate egr3/EGR3 expression in the developing zebrafish heart and in porcine valvular endothelial cells, as well as during human aortic valve remodeling. Altogether, these findings reveal that EGR3 is necessary to transduce the biomechanical cues required for zebrafish cardiac valve morphogenesis, and potentially for pathological aortic valve remodeling in humans.


Asunto(s)
Proteína 3 de la Respuesta de Crecimiento Precoz , Válvulas Cardíacas , Morfogénesis , Proteínas de Pez Cebra , Pez Cebra , Animales , Válvulas Cardíacas/metabolismo , Válvulas Cardíacas/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Morfogénesis/genética , Humanos , Proteína 3 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 3 de la Respuesta de Crecimiento Precoz/genética , Regulación del Desarrollo de la Expresión Génica , Células Endoteliales/metabolismo , Mecanotransducción Celular , Porcinos
5.
Circulation ; 149(18): 1435-1456, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38357822

RESUMEN

BACKGROUND: A main obstacle in current valvular heart disease research is the lack of high-quality homogeneous functional heart valve cells. Human induced pluripotent stem cells (hiPSCs)-derived heart valve cells may help with this dilemma. However, there are no well-established protocols to induce hiPSCs to differentiate into functional heart valve cells, and the networks that mediate the differentiation have not been fully elucidated. METHODS: To generate heart valve cells from hiPSCs, we sequentially activated the Wnt, BMP4, VEGF (vascular endothelial growth factor), and NFATc1 signaling pathways using CHIR-99021, BMP4, VEGF-165, and forskolin, respectively. The transcriptional and functional similarity of hiPSC-derived heart valve cells compared with primary heart valve cells were characterized. Longitudinal single-cell RNA sequencing was used to uncover the trajectory, switch genes, pathways, and transcription factors of the differentiation. RESULTS: An efficient protocol was developed to induce hiPSCs to differentiate into functional hiPSC-derived valve endothelial-like cells and hiPSC-derived valve interstitial-like cells. After 6-day differentiation and CD144 magnetic bead sorting, ≈70% CD144+ cells and 30% CD144- cells were obtained. On the basis of single-cell RNA sequencing data, the CD144+ cells and CD144- cells were found to be highly similar to primary heart valve endothelial cells and primary heart valve interstitial cells in gene expression profile. Furthermore, CD144+ cells had the typical function of primary heart valve endothelial cells, including tube formation, uptake of low-density lipoprotein, generation of endothelial nitric oxide synthase, and response to shear stress. Meanwhile, CD144- cells could secret collagen and matrix metalloproteinases, and differentiate into osteogenic or adipogenic lineages like primary heart valve interstitial cells. Therefore, we identified CD144+ cells and CD144- cells as hiPSC-derived valve endothelial-like cells and hiPSC-derived valve interstitial-like cells, respectively. Using single-cell RNA sequencing analysis, we demonstrated that the trajectory of heart valve cell differentiation was consistent with embryonic valve development. We identified the main switch genes (NOTCH1, HEY1, and MEF2C), signaling pathways (TGF-ß, Wnt, and NOTCH), and transcription factors (MSX1, SP5, and MECOM) that mediated the differentiation. Finally, we found that hiPSC-derived valve interstitial-like cells might derive from hiPSC-derived valve endothelial-like cells undergoing endocardial-mesenchymal transition. CONCLUSIONS: In summary, this is the first study to report an efficient strategy to generate functional hiPSC-derived valve endothelial-like cells and hiPSC-derived valve interstitial-like cells from hiPSCs, as well as to elucidate the differentiation trajectory and transcriptional dynamics of hiPSCs differentiated into heart valve cells.


Asunto(s)
Diferenciación Celular , Válvulas Cardíacas , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Válvulas Cardíacas/citología , Válvulas Cardíacas/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/citología , Transducción de Señal
6.
J Am Heart Assoc ; 12(1): e028215, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36565196

RESUMEN

Background Whereas the risk factors for structural valve degeneration (SVD) of glutaraldehyde-treated bioprosthetic heart valves (BHVs) are well studied, those responsible for the failure of BHVs fixed with alternative next-generation chemicals remain largely unknown. This study aimed to investigate the reasons behind the development of SVD in ethylene glycol diglycidyl ether-treated BHVs. Methods and Results Ten ethylene glycol diglycidyl ether-treated BHVs excised because of SVD, and 5 calcified aortic valves (AVs) replaced with BHVs because of calcific AV disease were collected and their proteomic profile was deciphered. Then, BHVs and AVs were interrogated for immune cell infiltration, microbial contamination, distribution of matrix-degrading enzymes and their tissue inhibitors, lipid deposition, and calcification. In contrast with dysfunctional AVs, failing BHVs suffered from complement-driven neutrophil invasion, excessive proteolysis, unwanted coagulation, and lipid deposition. Neutrophil infiltration was triggered by an asymptomatic bacterial colonization of the prosthetic tissue. Neutrophil elastase, myeloblastin/proteinase 3, cathepsin G, and matrix metalloproteinases (MMPs; neutrophil-derived MMP-8 and plasma-derived MMP-9), were significantly overexpressed, while tissue inhibitors of metalloproteinases 1/2 were downregulated in the BHVs as compared with AVs, together indicative of unbalanced proteolysis in the failing BHVs. As opposed to other proteases, MMP-9 was mostly expressed in the disorganized prosthetic extracellular matrix, suggesting plasma-derived proteases as the primary culprit of SVD in ethylene glycol diglycidyl ether-treated BHVs. Hence, hemodynamic stress and progressive accumulation of proteases led to the extracellular matrix degeneration and dystrophic calcification, ultimately resulting in SVD. Conclusions Neutrophil- and plasma-derived proteases are responsible for the loss of BHV mechanical competence and need to be thwarted to prevent SVD.


Asunto(s)
Bioprótesis , Insuficiencia Cardíaca , Prótesis Valvulares Cardíacas , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Prótesis Valvulares Cardíacas/efectos adversos , Proteolisis , Proteómica , Válvulas Cardíacas/metabolismo , Válvula Aórtica/cirugía , Válvula Aórtica/metabolismo , Insuficiencia Cardíaca/etiología , Péptido Hidrolasas/metabolismo , Lípidos , Bioprótesis/efectos adversos
7.
Genesis ; 61(1-2): e23506, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36546531

RESUMEN

In Drosophila larvae, the direction of blood flow within the heart tube, as well as the diastolic filling of the posterior heart chamber, is regulated by a single cardiac valve. This valve is sufficient to close the heart tube at the junction of the ventricle and the aorta and is formed by only two cells; both are integral parts of the heart tube. The valve cells regulate hemolymph flow by oscillating between a spherical and a flattened cell shape during heartbeats. At the spherical stage, the opposing valve cells close the heart lumen. The dynamic cell shape changes of valve cells are supported by a dense, criss-cross orientation of myofibrils and the presence of the valvosomal compartment, a large intracellular cavity. Both structures are essential for the valve cells' function. In a screen for factors specifically expressed in cardiac valve cells, we identified the transcription factor Tailup. Knockdown of tailup causes abnormal orientation and differentiation of cardiac muscle fibers in the larval aorta and inhibits the formation of the ventral longitudinal muscle layer located underneath the heart tube in the adult fly and affects myofibrillar orientation of valve cells. Furthermore, we have identified regulatory sequences of tup that control the expression of tailup in the larval and adult valve cells.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Corazón , Válvulas Cardíacas/metabolismo , Larva/genética , Larva/metabolismo , Miocitos Cardíacos/metabolismo
8.
Development ; 149(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36189830

RESUMEN

Within a cell, vesicles play a crucial role in the transport of membrane material and proteins to a given target membrane, and thus regulate a variety of cellular functions. Vesicular transport occurs by means of, among others, endocytosis, where cargoes are taken up by the cell and are processed further upon vesicular trafficking, i.e. transported back to the plasma membrane via recycling endosomes or the degraded by fusion of the vesicles with lysosomes. During evolution, a variety of vesicles with individual functions arose, with some of them building up highly specialised subcellular compartments. In this study, we have analysed the biosynthesis of a new vesicular compartment present in the valve cells of Drosophila melanogaster. We show that the compartment is formed by invaginations of the plasma membrane and grows via re-routing of the recycling endosomal pathway. This is achieved by inactivation of other membrane-consuming pathways and a plasma membrane-like molecular signature of the compartment in these highly specialised heart cells.


Asunto(s)
Drosophila melanogaster , Endosomas , Animales , Membrana Celular/metabolismo , Drosophila melanogaster/metabolismo , Endocitosis , Endosomas/metabolismo , Válvulas Cardíacas/metabolismo , Transporte de Proteínas , Proteínas de Unión al GTP rab/metabolismo
9.
Dev Biol ; 486: 81-95, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35364055

RESUMEN

Endothelial cells (ECs) are critical to proper heart valve development, directly contributing to the mesenchyme of the cardiac cushions, which progressively transform into mature valves. To date, investigators have lacked sufficient markers of valve ECs to evaluate their contributions during valve morphogenesis fully. As a result, it has been unclear whether the well-characterized regional differentiation of valves correlates with any endothelial domains in the heart. Furthermore, it has been difficult to ascertain whether endothelial heterogeneity in the heart influences underlying mesenchymal zones in an angiocrine manner. To identify regionally expressed EC genes in the heart valves, we screened publicly available databases and assembled a toolkit of endothelial-enriched genes. We identified Cyp26b1 as one of many endothelial enriched genes found to be expressed in the endocardium of the developing cushions and valves. Here, we show that Cyp26b1 is required for normal heart valve development. Genetic ablation of Cyp26b1 in mouse embryos leads to abnormally thickened aortic valve leaflets, which is due in part to increased endothelial and mesenchymal cell proliferation in the remodeling valves. In addition, Cyp26b1 mutant hearts display ventricular septal defects (VSDs) in a portion of null embryos. We show that loss of Cyp26b1 results in upregulation of retinoic acid (RA) target genes, supporting the observation that Cyp26b1 has RA-dependent roles. Together, this work identifies a novel role for Cyp26b1 in heart valve morphogenesis and points to a role of RA in this process. Understanding the spatiotemporal expression dynamics of cardiac EC genes will pave the way for investigation of both normal and dysfunctional heart valve development.


Asunto(s)
Células Endoteliales , Válvulas Cardíacas , Animales , Válvula Aórtica , Válvulas Cardíacas/metabolismo , Ratones , Morfogénesis , Organogénesis , Ácido Retinoico 4-Hidroxilasa/genética , Ácido Retinoico 4-Hidroxilasa/metabolismo , Tretinoina/metabolismo
10.
Dev Cell ; 57(5): 598-609.e5, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35245444

RESUMEN

Organ morphogenesis involves dynamic changes of tissue properties while cells adapt to their mechanical environment through mechanosensitive pathways. How mechanical cues influence cell behaviors during morphogenesis remains unclear. Here, we studied the formation of the zebrafish atrioventricular canal (AVC) where cardiac valves develop. We show that the AVC forms within a zone of tissue convergence associated with the increased activation of the actomyosin meshwork and cell-orientation changes. We demonstrate that tissue convergence occurs with a reduction of cell volume triggered by mechanical forces and the mechanosensitive channel TRPP2/TRPV4. Finally, we show that the extracellular matrix component hyaluronic acid controls cell volume changes. Together, our data suggest that multiple force-sensitive signaling pathways converge to modulate cell volume. We conclude that cell volume reduction is a key cellular feature activated by mechanotransduction during cardiovascular morphogenesis. This work further identifies how mechanical forces and extracellular matrix influence tissue remodeling in developing organs.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Tamaño de la Célula , Válvulas Cardíacas/metabolismo , Mecanotransducción Celular , Morfogénesis , Canales Catiónicos TRPV/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
11.
Cell Rep ; 37(1): 109782, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34610316

RESUMEN

In the zebrafish embryo, the onset of blood flow generates fluid shear stress on endocardial cells, which are specialized endothelial cells that line the interior of the heart. High levels of fluid shear stress activate both Notch and Klf2 signaling, which play crucial roles in atrioventricular valvulogenesis. However, it remains unclear why only individual endocardial cells ingress into the cardiac jelly and initiate valvulogenesis. Here, we show that lateral inhibition between endocardial cells, mediated by Notch, singles out Delta-like-4-positive endocardial cells. These cells ingress into the cardiac jelly, where they form an abluminal cell population. Delta-like-4-positive cells ingress in response to Wnt9a, which is produced in parallel through an Erk5-Klf2-Wnt9a signaling cascade also activated by blood flow. Hence, mechanical stimulation activates parallel mechanosensitive signaling pathways that produce binary effects by driving endocardial cells toward either luminal or abluminal fates. Ultimately, these cell fate decisions sculpt cardiac valve leaflets.


Asunto(s)
Endocardio/metabolismo , Mecanotransducción Celular , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Embrión no Mamífero/metabolismo , Embrión no Mamífero/patología , Desarrollo Embrionario , Endocardio/citología , Válvulas Cardíacas/crecimiento & desarrollo , Válvulas Cardíacas/metabolismo , Válvulas Cardíacas/patología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Morfolinos/metabolismo , Receptores de Neurotransmisores/antagonistas & inhibidores , Receptores de Neurotransmisores/genética , Receptores de Neurotransmisores/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética
12.
Science ; 374(6565): 351-354, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34648325

RESUMEN

Developing cardiovascular systems use mechanical forces to take shape, but how ubiquitous blood flow forces instruct local cardiac cell identity is still unclear. By manipulating mechanical forces in vivo, we show here that shear stress is necessary and sufficient to promote valvulogenesis. We found that valve formation is associated with the activation of an extracellular adenosine triphosphate (ATP)­dependent purinergic receptor pathway, specifically triggering calcium ion (Ca2+) pulses and nuclear factor of activated T cells 1 (Nfatc1) activation. Thus, mechanical forces are converted into discrete bioelectric signals by an ATP-Ca2+-Nfatc1­mechanosensitive pathway to generate positional information and control valve formation.


Asunto(s)
Válvulas Cardíacas/crecimiento & desarrollo , Resistencia al Corte , Estrés Mecánico , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Fenómenos Electrofisiológicos , Células Endoteliales/fisiología , Válvulas Cardíacas/citología , Válvulas Cardíacas/metabolismo , Factores de Transcripción NFATC/metabolismo , Receptores Purinérgicos P2/metabolismo , Pez Cebra
14.
Glycobiology ; 31(11): 1582-1595, 2021 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-34459483

RESUMEN

Streptococcus gordonii and Streptococcus sanguinis are primary colonizers of tooth surfaces and are generally associated with oral health, but can also cause infective endocarditis (IE). These species express "Siglec-like" adhesins that bind sialylated glycans on host glycoproteins, which can aid the formation of infected platelet-fibrin thrombi (vegetations) on cardiac valve surfaces. We previously determined that the ability of S. gordonii to bind sialyl T-antigen (sTa) increased pathogenicity, relative to recognition of sialylated core 2 O-glycan structures, in an animal model of IE. However, it is unclear when and where the sTa structure is displayed, and which sTa-modified host factors promote valve colonization. In this study, we identified sialylated glycoproteins in the aortic valve vegetations and plasma of rat and rabbit models of this disease. Glycoproteins that display sTa vs. core 2 O-glycan structures were identified by using recombinant forms of the streptococcal Siglec-like adhesins for lectin blotting and affinity capture, and the O-linked glycans were profiled by mass spectrometry. Proteoglycan 4 (PRG4), also known as lubricin, was a major carrier of sTa in the infected vegetations. Moreover, plasma PRG4 levels were significantly higher in animals with damaged or infected valves, as compared with healthy animals. The combined results demonstrate that, in addition to platelet GPIbα, PRG4 is a highly sialylated mucin-like glycoprotein found in aortic valve vegetations and may contribute to the persistence of oral streptococci in this protected endovascular niche. Moreover, plasma PRG4 could serve as a biomarker for endocardial injury and infection.


Asunto(s)
Modelos Animales de Enfermedad , Endocarditis Bacteriana/metabolismo , Válvulas Cardíacas/metabolismo , Proteoglicanos/metabolismo , Streptococcus gordonii/aislamiento & purificación , Animales , Endocarditis Bacteriana/microbiología , Endocarditis Bacteriana/patología , Femenino , Válvulas Cardíacas/microbiología , Válvulas Cardíacas/patología , Humanos , Conejos , Ratas , Ratas Sprague-Dawley
15.
Front Immunol ; 12: 731361, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447390

RESUMEN

Immune privilege is an evolutionary adaptation that protects vital tissues with limited regenerative capacity from collateral damage by the immune response. Classical examples include the anterior chamber of the eye and the brain. More recently, the placenta, testes and articular cartilage were found to have similar immune privilege. What all of these tissues have in common is their vital function for evolutionary fitness and a limited regenerative capacity. Immune privilege is clinically relevant, because corneal transplantation and meniscal transplantation do not require immunosuppression. The heart valves also serve a vital function and have limited regenerative capacity after damage. Moreover, experimental and clinical evidence from heart valve transplantation suggests that the heart valves are spared from alloimmune injury. Here we review this evidence and propose the concept of heart valves as immune privileged sites. This concept has important clinical implications for heart valve transplantation.


Asunto(s)
Evolución Biológica , Válvulas Cardíacas/inmunología , Privilegio Inmunológico , Animales , Proliferación Celular , Trasplante de Corazón , Válvulas Cardíacas/metabolismo , Válvulas Cardíacas/patología , Válvulas Cardíacas/trasplante , Humanos , Regeneración
16.
Sci Rep ; 11(1): 12299, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112893

RESUMEN

Freeze-drying can be used to ensure off-the-shelf availability of decellularized heart valves for cardiovascular surgery. In this study, decellularized porcine aortic heart valves were analyzed by nitroblue tetrazolium (NBT) staining and Fourier transform infrared spectroscopy (FTIR) to identify oxidative damage during freeze-drying and subsequent storage as well as after treatment with H2O2 and FeCl3. NBT staining revealed that sucrose at a concentration of at least 40% (w/v) is needed to prevent oxidative damage during freeze-drying. Dried specimens that were stored at 4 °C depict little to no oxidative damage during storage for up to 2 months. FTIR analysis shows that fresh control, freeze-dried and stored heart valve specimens cannot be distinguished from one another, whereas H2O2- and FeCl3-treated samples could be distinguished in some tissue section. A feed forward artificial neural network model could accurately classify H2O2 and FeCl3 treated samples. However, fresh control, freeze-dried and stored samples could not be distinguished from one another, which implies that these groups are very similar in terms of their biomolecular fingerprints. Taken together, we conclude that sucrose can minimize oxidative damage caused by freeze-drying, and that subsequent dried storage has little effects on the overall biochemical composition of heart valve scaffolds.


Asunto(s)
Liofilización/métodos , Prótesis Valvulares Cardíacas/normas , Válvulas Cardíacas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Válvulas Cardíacas/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/farmacología , Aprendizaje Automático , Espectroscopía Infrarroja por Transformada de Fourier , Porcinos
17.
Dev Dyn ; 250(10): 1432-1449, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33811421

RESUMEN

BACKGROUND: Mitral valve prolapse (MVP) is a common and progressive cardiovascular disease with developmental origins. How developmental errors contribute to disease pathogenesis are not well understood. RESULTS: A multimeric complex was identified that consists of the MVP gene Dzip1, Cby1, and ß-catenin. Co-expression during valve development revealed overlap at the basal body of the primary cilia. Biochemical studies revealed a DZIP1 peptide required for stabilization of the complex and suppression of ß-catenin activities. Decoy peptides generated against this interaction motif altered nuclear vs cytosolic levels of ß-catenin with effects on transcriptional activity. A mutation within this domain was identified in a family with inherited non-syndromic MVP. This novel mutation and our previously identified DZIP1S24R variant resulted in reduced DZIP1 and CBY1 stability and increased ß-catenin activities. The ß-catenin target gene, MMP2 was up-regulated in the Dzip1S14R/+ valves and correlated with loss of collagenous ECM matrix and myxomatous phenotype. CONCLUSION: Dzip1 functions to restrain ß-catenin signaling through a CBY1 linker during cardiac development. Loss of these interactions results in increased nuclear ß-catenin/Lef1 and excess MMP2 production, which correlates with developmental and postnatal changes in ECM and generation of a myxomatous phenotype.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Válvulas Cardíacas/embriología , Prolapso de la Válvula Mitral/metabolismo , Organogénesis/fisiología , beta Catenina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células HEK293 , Válvulas Cardíacas/metabolismo , Humanos , Ratones , Ratones Noqueados , Prolapso de la Válvula Mitral/genética , Fenotipo , Transducción de Señal/fisiología
18.
Cardiovasc Res ; 117(9): 2016-2029, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-33576771

RESUMEN

Calcification of the arterial wall and valves is an important part of the pathophysiological process of peripheral and coronary atherosclerosis, aortic stenosis, ageing, diabetes, and chronic kidney disease. This review aims to better understand how extracellular phosphates and their ability to be retained as calcium phosphates on the extracellular matrix initiate the mineralization process of arteries and valves. In this context, the physiological process of bone mineralization remains a human model for pathological soft tissue mineralization. Soluble (ionized) calcium precipitation occurs on extracellular phosphates; either with inorganic or on exposed organic phosphates. Organic phosphates are classified as either structural (phospholipids, nucleic acids) or energetic (corresponding to phosphoryl transfer activities). Extracellular phosphates promote a phenotypic shift in vascular smooth muscle and valvular interstitial cells towards an osteoblast gene expression pattern, which provokes the active phase of mineralization. A line of defense systems protects arterial and valvular tissue calcifications. Given the major roles of phosphate in soft tissue calcification, phosphate mimetics, and/or prevention of phosphate dissipation represent novel potential therapeutic approaches for arterial and valvular calcification.


Asunto(s)
Arterias/metabolismo , Calcinosis/metabolismo , Enfermedades de las Válvulas Cardíacas/metabolismo , Válvulas Cardíacas/metabolismo , Organofosfatos/metabolismo , Osteogénesis , Fosfatos/metabolismo , Calcificación Vascular/metabolismo , Animales , Arterias/efectos de los fármacos , Arterias/patología , Conservadores de la Densidad Ósea/uso terapéutico , Calcinosis/tratamiento farmacológico , Calcinosis/patología , Quelantes/uso terapéutico , Enfermedades de las Válvulas Cardíacas/tratamiento farmacológico , Enfermedades de las Válvulas Cardíacas/patología , Válvulas Cardíacas/efectos de los fármacos , Válvulas Cardíacas/patología , Humanos , Osteogénesis/efectos de los fármacos , Calcificación Vascular/tratamiento farmacológico , Calcificación Vascular/patología
19.
Sci Rep ; 11(1): 2464, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510256

RESUMEN

Progressive stenosis is one of the main factors that limit the lifetime of bioprosthetic valved conduits. To improve long-term performance we aimed to identify targets that inhibit pannus formation on conduit walls. From 11 explanted, obstructed, RNAlater presevered pulmonary valved conduits, we dissected the thickened conduit wall and the thin leaflet to determine gene expression-profiles using ultra deep sequencing. Differential gene expression between pannus and leaflet provided the dataset that was screened for potential targets. Promising target candidates were immunohistologically stained to see protein abundance and the expressing cell type(s). While immunostainings for DDR2 and FGFR2 remained inconclusive, EGFR, ErbB4 and FLT4 were specifically expressed in a subset of tissue macrophages, a cell type known to regulate the initiation, maintenance, and resolution of tissue repair. Taken toghether, our data suggest EGFR, ErbB4 and FLT4 as potential target candidates to limit pannus formation in bioprosthestic replacement valves.


Asunto(s)
Bioprótesis , Regulación de la Expresión Génica , Prótesis Valvulares Cardíacas , Válvulas Cardíacas , Adulto , Niño , Preescolar , Femenino , Válvulas Cardíacas/metabolismo , Válvulas Cardíacas/patología , Válvulas Cardíacas/cirugía , Humanos , Lactante , Masculino
20.
Cardiovasc Res ; 117(3): 663-673, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-32170926

RESUMEN

Heterogeneous macrophage lineages are present in the aortic and mitral valves of the heart during development and disease. These populations include resident macrophages of embryonic origins and recruited monocyte-derived macrophages prevalent in disease. Soon after birth, macrophages from haematopoietic lineages are recruited to the heart valves, and bone marrow transplantation studies in mice demonstrate that haematopoietic-derived macrophages continue to invest adult valves. During myxomatous heart valve disease, monocyte-derived macrophages are recruited to the heart valves and they contribute to valve degeneration in a mouse model of Marfan syndrome. Here, we review recent studies of macrophage lineages in heart valve development and disease with discussion of clinical significance and therapeutic applications.


Asunto(s)
Linaje de la Célula , Enfermedades de las Válvulas Cardíacas/patología , Válvulas Cardíacas/patología , Macrófagos/patología , Animales , Fármacos Cardiovasculares/uso terapéutico , Regulación del Desarrollo de la Expresión Génica , Enfermedades de las Válvulas Cardíacas/tratamiento farmacológico , Enfermedades de las Válvulas Cardíacas/genética , Enfermedades de las Válvulas Cardíacas/metabolismo , Válvulas Cardíacas/efectos de los fármacos , Válvulas Cardíacas/metabolismo , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Terapia Molecular Dirigida , Morfogénesis , Fenotipo , Receptores CCR2/antagonistas & inhibidores , Receptores CCR2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...