Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 359, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836885

RESUMEN

Vacuum foam drying (VFD) has been shown to improve the thermostability and long-term shelf life of Newcastle Disease Virus (NDV). This study optimized the VFD process to improve the shelf life of NDV at laboratory-scale and then tested the optimized conditions at pilot-scale. The optimal NDV to T5 formulation ratio was determined to be 1:1 or 3:2. Using the 1:1 virus to formulation ratio, the optimal filling volumes were determined to be 13-17% of the vial capacity. The optimized VFD process conditions were determined to be at a shelf temperature of 25℃ with a minimum overall drying time of 44 h. The vaccine samples prepared using these optimized conditions at laboratory-scale exhibited virus titer losses of ≤ 1.0 log10 with residual moisture content (RMC) below 3%. Furthermore, these samples were transported for 97 days around China at ambient temperature without significant titer loss, thus demonstrating the thermostability of the NDV-VFD vaccine. Pilot-scale testing of the NDV-VFD vaccine at optimized conditions showed promising results for up-scaling the process as the RMC was below 3%. However, the virus titer loss was slightly above 1.0 log10 (approximately 1.1 log10). Therefore, the NDV-VFD process requires further optimization at pilot scale to obtain a titer loss of ≤ 1.0 log10. Results from this study provide important guidance for possible industrialization of NDV-VFD vaccine in the future. KEY POINTS: • The process optimization and scale-up test of thermostable NDV vaccine prepared through VFD is reported for the first time in this study. • The live attenuated NDV-VFD vaccine maintained thermostability for 97 days during long distance transportation in summer without cold chain conditions. • The optimized NDV-VFD vaccine preparations evaluated at pilot-scale maintained acceptable levels of infectivity after preservation at 37℃ for 90 days, which demonstrated the feasibility of the vaccine for industrialization.


Asunto(s)
Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Temperatura , Vacunas Virales , Virus de la Enfermedad de Newcastle/inmunología , Virus de la Enfermedad de Newcastle/química , Proyectos Piloto , Enfermedad de Newcastle/prevención & control , Enfermedad de Newcastle/virología , Vacunas Virales/química , Vacunas Virales/inmunología , Vacio , Animales , Pollos , Desecación , China , Estabilidad de Medicamentos , Carga Viral
2.
ACS Appl Bio Mater ; 7(6): 4133-4141, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38812435

RESUMEN

The ultimate vaccine against infections caused by Nipah virus should be capable of providing protection at the respiratory tract─the most probable port of entry for this pathogen. Intranasally delivered vaccines, which target nasal-associated lymphoid tissue and induce both systemic and mucosal immunity, are attractive candidates for enabling effective vaccination against this lethal disease. Herein, the water-soluble polyphosphazene delivery vehicle assembles into nanoscale supramolecular constructs with the soluble extracellular portion of the Hendra virus attachment glycoprotein─a promising subunit vaccine antigen against both Nipah and Hendra viruses. These supramolecular constructs signal through Toll-like receptor 7/8 and promote binding interactions with mucin─an important feature of effective mucosal adjuvants. High mass contrast of phosphorus-nitrogen backbone of the polymer enables a successful visualization of nanoconstructs in their vitrified state by cryogenic electron microscopy. Here, we characterize the self-assembly of polyphosphazene macromolecule with biologically relevant ligands by asymmetric flow field flow fractionation, dynamic light scattering, fluorescence spectrophotometry, and turbidimetric titration methods. Furthermore, a polyphosphazene-enabled intranasal Nipah vaccine candidate demonstrates the ability to induce immune responses in hamsters and shows superiority in inducing total IgG and neutralizing antibodies when benchmarked against the respective clinical stage alum adjuvanted vaccine. The results highlight the potential of polyphosphazene-enabled nanoassemblies in the development of intranasal vaccines.


Asunto(s)
Administración Intranasal , Virus Nipah , Compuestos Organofosforados , Polímeros , Vacunas de Subunidad , Vacunas Virales , Compuestos Organofosforados/química , Compuestos Organofosforados/administración & dosificación , Polímeros/química , Virus Nipah/inmunología , Animales , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/química , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/química , Vacunas de Subunidad/administración & dosificación , Tamaño de la Partícula , Ensayo de Materiales , Materiales Biocompatibles/química , Nanopartículas/química , Inmunización
3.
Artículo en Inglés | MEDLINE | ID: mdl-38427544

RESUMEN

Transfer RNAs (tRNA) are non-coding RNAs. Encouraged by biological applications discovered for peptides derived from other non-coding genomic regions, we explore the possibility of deriving epitope-based vaccines from tRNA encoded peptides (tREP) in this study. Epitope-based vaccines have been identified as an effective strategy to mitigate safety and specificity concerns observed in vaccine development. In this study, we explore the potential of tREP as a source for epitope-based vaccines for virus pathogens. We present a computational workflow that uses verified data sources and community-validated predictive tools to produce a ranked list of plausible epitope-based vaccines starting from tRNA sequences. The top epitope, bound to the predicted HLA molecule, for the virus pathogen is computationally validated through 200 ns molecular dynamics (MD) simulations followed by binding free energy calculations. The simulation results indicate that two tRNA encoded epitope-based vaccines, RRHIDIVV and IMVRFSAE for Mamastrovirus 3 and Norovirus GII, respectively, are likely candidates. Peptides originating from tRNAs provide unexplored opportunities for vaccine design. Encouraged by our previous experimental study, which established the inhibitory properties of tREPs against infectious parasites, we have proposed a computationally validated set of peptides derived from tREPs as vaccines for viral pathogens.


Asunto(s)
Biología Computacional , Simulación de Dinámica Molecular , Péptidos , ARN de Transferencia , ARN de Transferencia/genética , ARN de Transferencia/química , Biología Computacional/métodos , Péptidos/química , Péptidos/genética , Péptidos/inmunología , Humanos , Vacunas Virales/inmunología , Vacunas Virales/genética , Vacunas Virales/química , Epítopos/química , Epítopos/inmunología , Epítopos/genética , Norovirus/genética , Norovirus/inmunología , Norovirus/química
4.
Adv Healthc Mater ; 13(13): e2303619, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38340040

RESUMEN

The convergence strategies of antigenic subunits and synthetic nanoparticle scaffold platform improve the vaccine production efficiency and enhance vaccine-induced immunogenicity. Selecting the appropriate nanoparticle scaffold is crucial to controlling target antigens immunologically. Lumazine synthase (LS) is an attractive candidate for a vaccine display system due to its thermostability, modification tolerance, and morphological plasticity. Here, the first development of a multivalent thermostable scaffold, LS-SUMO (SUMO, small ubiquitin-likemodifier), and a divalent nanovaccine covalently conjugated with Chikungunya virus E2 and Zika virus EDIII antigens, is reported. Compared with antigen monomers, LS-SUMO nanoparticle vaccines elicit a higher humoral response and neutralizing antibodies against both antigen targets in mouse sera. Mice immunized with LS-SUMO conjugates produce CD4+ T cell-mediated Th2-biased responses and promote humoral immunity. Importantly, LS-SUMO conjugates possess equivalent humoral immunogenicity after heat treatment. Taken together, LS-SUMO is a powerful biotargeting nanoplatform with high-yield production, thermal stability and opens a new avenue for multivalent presentation of various antigens.


Asunto(s)
Virus Chikungunya , Virus Zika , Animales , Ratones , Virus Chikungunya/inmunología , Virus Zika/inmunología , Nanopartículas/química , Vacunas Virales/inmunología , Vacunas Virales/química , Ratones Endogámicos BALB C , Femenino , Fiebre Chikungunya/inmunología , Fiebre Chikungunya/prevención & control , Inmunidad Humoral/efectos de los fármacos , Anticuerpos Neutralizantes/inmunología , Antígenos Virales/inmunología , Antígenos Virales/química , Nanovacunas , Complejos Multienzimáticos
5.
J Virol ; 98(2): e0165023, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38271227

RESUMEN

Vaccination is the most effective method to protect humans and animals from diseases. Anti-idiotype vaccines are safer due to their absence of pathogens. However, the commercial production of traditional anti-idiotype vaccines using monoclonal and polyclonal antibodies (mAb and pAb) is complex and has a high failure rate. The present study designed a novel, simple, low-cost strategy for developing anti-idiotype vaccines with nanobody technology. We used porcine circovirus type 2 (PCV2) as a viral model, which can result in serious economic loss in the pig industry. The neutralizing mAb-1E7 (Ab1) against PCV2 capsid protein (PCV2-Cap) was immunized in the camel. And 12 nanobodies against mAb-1E7 were screened. Among them, Nb61 (Ab2) targeted the idiotype epitope of mAb-1E7 and blocked mAb-1E7's binding to PCV2-Cap. Additionally, a high-dose Nb61 vaccination can also protect mice and pigs from PCV2 infection. Epitope mapping showed that mAb-1E7 recognized the 75NINDFL80 of PCV2-Cap and 101NYNDFLG107 of Nb61. Subsequently, the mAb-3G4 (Ab3) against Nb61 was produced and can neutralize PCV2 infection in the PK-15 cells. Structure analysis showed that the amino acids of mAb-1E7 and mAb-3G4 respective binding to PCV2-Cap and Nb61 were also similar on the amino acids sequences and spatial conformation. Collectively, our study first provided a strategy for producing nanobody-based anti-idiotype vaccines and identified that anti-idiotype nanobodies could mimic the antigen on amino acids and structures. Importantly, as more and more neutralization mAbs against different pathogens are prepared, anti-idiotype nanobody vaccines can be easily produced against the disease with our strategy, especially for dangerous pathogens.IMPORTANCEAnti-idiotype vaccines utilize idiotype-anti-idiotype network theory, eliminating the need for external antigens as vaccine candidates. Especially for dangerous pathogens, they were safer because they did not contact the live pathogenic microorganisms. However, developing anti-idiotype vaccines with traditional monoclonal and polyclonal antibodies is complex and has a high failure rate. We present a novel, universal, simple, low-cost strategy for producing anti-idiotype vaccines with nanobody technology. Using a neutralization antibody against PCV2-Cap, a nanobody (Ab2) was successfully produced and could mimic the neutralizing epitope of PCV2-Cap. The nanobody can induce protective immune responses against PCV2 infection in mice and pigs. It highlighted that the anti-idiotype vaccine using nanobody has a very good application in the future, especially for dangerous pathogens.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Anticuerpos de Dominio Único , Vacunas Virales , Animales , Humanos , Ratones , Proteínas de la Cápside , Infecciones por Circoviridae/prevención & control , Infecciones por Circoviridae/veterinaria , Epítopos , Porcinos , Vacunas Virales/química , Vacunas Virales/inmunología
6.
J Virol ; 97(10): e0093823, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37792003

RESUMEN

IMPORTANCE: Human norovirus (HuNoV) is highly infectious and can result in severe illnesses in the elderly and children. So far, there is no effective antiviral drug to treat HuNoV infection, and thus, the development of HuNoV vaccines is urgent. However, NoV evolves rapidly, and currently, at least 10 genogroups with numerous genotypes have been found. The genetic diversity of NoV and the lack of cross-protection between different genotypes pose challenges to the development of broadly protective vaccines. In this study, guided by structural alignment between GI.1 and GII.4 HuNoV VP1 proteins, several chimeric-type virus-like particles (VLPs) were designed through surface-exposed loop grafting. Mouse immunization studies show that two of the designed chimeric VLPs induced cross-immunity against both GI.1 and GII.4 HuNoVs. To our knowledge, this is the first designed chimeric VLPs that can induce cross-immune activities across different genogroups of HuNoV, which provides valuable strategies for the development of cross-reactive HuNoV vaccines.


Asunto(s)
Infecciones por Caliciviridae , Epítopos , Genotipo , Norovirus , Vacunas Virales , Virión , Animales , Humanos , Ratones , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/prevención & control , Infecciones por Caliciviridae/virología , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Inmunización , Norovirus/química , Norovirus/clasificación , Norovirus/genética , Norovirus/inmunología , Vacunas Virales/química , Vacunas Virales/genética , Vacunas Virales/inmunología , Quimera/genética , Quimera/inmunología , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Virión/química , Virión/genética , Virión/inmunología
8.
Database (Oxford) ; 20232023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37776561

RESUMEN

The 2019 Novel Coronavirus (SARS-CoV-2) has infected millions of people worldwide and caused millions of deaths. The virus has gone numerous mutations to replicate faster, which can overwhelm the immune system of the host. Linear B-cell epitopes are becoming promising in prevention of various deadly infectious diseases, breaking the general idea of their low immunogenicity and partial protection. However, there is still no public repository to host the linear B-cell epitopes for facilitating the development vaccines against SARS-CoV-2. Therefore, we developed BCEDB, a linear B-cell epitopes database specifically designed for hosting, exploring and visualizing linear B-cell epitopes and their features. The database provides a comprehensive repository of computationally predicted linear B-cell epitopes from Spike protein; a systematic annotation of epitopes including sequence, antigenicity score, genomic locations of epitopes, mutations in different virus lineages, mutation sites on the 3D structure of Spike protein and a genome browser to visualize them in an interactive manner. It represents a valuable resource for peptide-based vaccine development. Database URL: http://www.oncoimmunobank.cn/bcedbindex.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2 , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/química , Vacunas contra la COVID-19 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vacunas Virales/química , Vacunas Virales/genética , Epítopos de Linfocito T/genética
9.
Genes Genomics ; 45(12): 1489-1508, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37548884

RESUMEN

The discovery of the first infectious variant in Wuhan, China, in December 2019, has posed concerns over global health due to the spread of COVID-19 and subsequent variants. While the majority of patients experience flu-like symptoms such as cold and fever, a small percentage, particularly those with compromised immune systems, progress from mild illness to fatality. COVID-19 is caused by a RNA virus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our approach involved utilizing immunoinformatic to identify vaccine candidates with multiple epitopes and ligand-binding regions in reported SARS-CoV-2 variants. Through analysis of the spike glycoprotein, we identified dominant epitopes for T-cells and B-cells, resulting in a vaccine construct containing two helper T-cell epitopes, six cytotoxic T-cell epitopes, and four linear B-cell epitopes. Prior to conjugation with adjuvants and linkers, all epitopes were evaluated for antigenicity, toxicity, and allergenicity. Additionally, we assessed the vaccine Toll-Like Receptors complex (2, 3, and 4). The vaccine construct demonstrated antigenicity, non-toxicity, and non-allergenicity, thereby enabling the host to generate antibodies with favorable physicochemical characteristics. Furthermore, the 3D structure of the B-cell construct exhibited a ProSA-web z-score plot with a value of -1.71, indicating the reliability of the designed structure. The Ramachandran plot analysis revealed that 99.6% of the amino acid residues in the vaccine subunit were located in the high favored observation region, further establishing its strong candidacy as a vaccination option.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Proteoma , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/química , Vacunas contra la COVID-19/genética , Reproducibilidad de los Resultados , Vacunas Virales/química , Vacunas Virales/genética
10.
Comput Biol Med ; 163: 107233, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37422941

RESUMEN

In the recent past several vaccines were developed to combat the COVID-19 disease. Unfortunately, the protective efficacy of the current vaccines has been reduced due to the high mutation rate in SARS-CoV-2. Here, we successfully implemented a coevolution based immunoinformatics approach to design an epitope-based peptide vaccine considering variability in spike protein of SARS-CoV-2. The spike glycoprotein was investigated for B- and T-cell epitope prediction. Identified T-cell epitopes were mapped on previously reported coevolving amino acids in the spike protein to introduce mutation. The non-mutated and mutated vaccine components were constructed by selecting epitopes showing overlapping with the predicted B-cell epitopes and highest antigenicity. Selected epitopes were linked with the help of a linker to construct a single vaccine component. Non-mutated and mutated vaccine component sequences were modelled and validated. The in-silico expression level of the vaccine constructs (non-mutated and mutated) in E. coli K12 shows promising results. The molecular docking analysis of vaccine components with toll-like receptor 5 (TLR5) demonstrated strong binding affinity. The time series calculations including root mean square deviation (RMSD), radius of gyration (RGYR), and energy of the system over 100 ns trajectory obtained from all atom molecular dynamics simulation showed stability of the system. The combined coevolutionary and immunoinformatics approach used in this study will certainly help to design an effective peptide vaccine that may work against different strains of SARS-CoV-2. Moreover, the strategy used in this study can be implemented on other pathogens.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Simulación del Acoplamiento Molecular , Vacunas contra la COVID-19 , Glicoproteína de la Espiga del Coronavirus/química , Escherichia coli , Vacunas Virales/química , Epítopos de Linfocito T/química , Vacunas de Subunidad/química , Biología Computacional/métodos
11.
Dent Med Probl ; 60(3): 489-495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37184460

RESUMEN

BACKGROUND: The high prevalence and mortality rate of coronavirus disease 2019 (COVID-19) is a major global concern. Bioinformatics approaches have helped to develop new strategies to combat infectious agents, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Indeed, the structural proteins of microorganisms provide suitable epitopes for the development of vaccines to prevent infectious diseases. OBJECTIVES: The present study aimed to use bioinformatics tools to find peptides from the membrane (M) and nucleocapsid (N) proteins with effective cellular and humoral immunogenicity. MATERIAL AND METHODS: Sequences of the M and N proteins were sourced from the National Center for Biotechnology Information (NCBI). The conserved regions of the proteins with the highest immunogenicity were identified and assessed using different servers, and the physicochemical and biochemical properties of the epitopes were evaluated. Finally, allergenicity, antigenicity and docking to human leukocyte antigen (HLA) were investigated. RESULTS: The data indicated that the best epitopes were LVIGFLFLT and LFLTWICLL (as membrane epitopes), and KLDDKDPNFKDQ (as a nucleocapsid epitope), with significant immunogenicity and no evidence of allergenicity. The 3 epitopes are stable peptides that can interact with HLA to induce strong immune responses. CONCLUSIONS: The findings indicate that 3 common epitopes could effectively elicit an immune response against the disease. Hence, in vitro and in vivo studies are recommended to confirm the theoretical information.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Proteínas de la Nucleocápside/química , Vacunas contra la COVID-19 , Vacunas Virales/química , Epítopos de Linfocito T/química , Péptidos
12.
J Biomol Struct Dyn ; 41(22): 12464-12479, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36935104

RESUMEN

MERS-CoV, a zoonotic virus, poses a serious threat to public health globally. Thus, it is imperative to develop an effective vaccination strategy for protection against MERS-CoV. Immunoinformatics and computational biology tools provide a faster and more cost-effective strategy to design potential vaccine candidates. In this work, the spike proteins from different strains of MERS-CoV were selected to predict HTL-epitopes that show affinity for T-helper MHC-class II HTL allelic determinant (HLA-DRB1:0101). The antigenicity and conservation of these epitopes among the selected spike protein variants in different MERS-CoV strains were analyzed. The analysis identified five epitopes with high antigenicity: QSIFYRLNGVGITQQ, DTIKYYSIIPHSIRS, PEPITSLNTKYVAPQ, INGRLTTLNAFVAQQ and GDMYVYSAGHATGTT. Then, a multi-epitope vaccine candidate was designed using linkers and adjuvant molecules. Finally, the vaccine construct was subjected to molecular docking with TLR5 (Toll-like receptor-5). The proposed vaccine construct had strong binding energy of -32.3 kcal/mol when interacting with TLR5.Molecular dynamics simulation analysis showed that the complex of the vaccine construct and TLR5 is stable. Analysis using in silico immune simulation also showed that the prospective multi-epitope vaccine design had the potential to elicit a response within 70 days, with the immune system producing cytokines and immunoglobulins. Finally, codon adaptation and in silico cloning analysis showed that the candidate vaccine could be expressed in the Escherichia coli K12 strain. Here we also designed support vaccine construct MEV-2 by using B-cell and CD8+ CTL epitopes to generate the complete immunogenic effect. This study opens new avenues for the extension of research on MERS vaccine development.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Coronavirus del Síndrome Respiratorio de Oriente Medio , Vacunas Virales , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Simulación del Acoplamiento Molecular , Receptor Toll-Like 5 , Estudios Prospectivos , Epítopos de Linfocito B , Epítopos de Linfocito T , Vacunas Virales/química , Simulación de Dinámica Molecular , Desarrollo de Vacunas , Biología Computacional , Vacunas de Subunidad
13.
J Biomol Struct Dyn ; 41(22): 13348-13367, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36744449

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 virus has created a global damage and has exposed the vulnerable side of scientific research towards novel diseases. The intensity of the pandemic is huge, with mortality rates of more than 6 million people worldwide in a span of 2 years. Considering the gravity of the situation, scientists all across the world are continuously attempting to create successful therapeutic solutions to combat the virus. Various vaccination strategies are being devised to ensure effective immunization against SARS-CoV-2 infection. SARS-CoV-2 spreads very rapidly, and the infection rate is remarkably high than other respiratory tract viruses. The viral entry and recognition of the host cell is facilitated by S protein of the virus. N protein along with NSP3 is majorly responsible for viral genome assembly and NSP12 performs polymerase activity for RNA synthesis. In this study, we have designed a multi-epitope, chimeric vaccine considering the two structural (S and N protein) and two non-structural proteins (NSP3 and NSP12) of SARS-CoV-2 virus. The aim is to induce immune response by generating antibodies against these proteins to target the viral entry and viral replication in the host cell. In this study, computational tools were used, and the reliability of the vaccine was verified using molecular docking, molecular dynamics simulation and immune simulation studies in silico. These studies demonstrate that the vaccine designed shows steady interaction with Toll like receptors with good stability and will be effective in inducing a strong and specific immune response in the body.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2/metabolismo , COVID-19/prevención & control , Vacunas contra la COVID-19 , Simulación del Acoplamiento Molecular , Pandemias/prevención & control , Reproducibilidad de los Resultados , Vacunas Virales/química , Epítopos de Linfocito B
14.
J Biomol Struct Dyn ; 41(9): 3762-3771, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35318896

RESUMEN

Zika virus (ZIKV), an RNA virus, rapidly spreads Aedes mosquito-borne sickness. Currently, there are neither effective vaccines nor therapeutics available to prevent or treat ZIKV infection. In this study, to address these unmet medical needs, we aimed to design B- and T-cell candidate multi-epitope-based subunit against ZIKV using an in silico approach. In this study we applied immunoinformatics, molecular docking, and dynamic simulation assessments targeting the most immunogenic proteins; the capsid (C), envelope (E) proteins and the non-stuctural protein (NS1), described in our previous study, and which predicted immunodominant B and T cell epitopes. The final non-allergenic and highly antigenic multi-epitope was constituted of immunogenic screened-epitopes (3 CTL and 3 HTL) and the ß-defensin as an adjuvant that have been linked using EAAAK, AAY, and GPGPG linkers, respectively. The final construct containing 143 amino acids was characterized for its allergenicity, antigenicity, and physiochemical properties; and found to be safe and immunogenic with a good prediction of solubility. The existence of IFN-γ epitopes asserts the capacity to trigger strong immune responses. Subsequently, the molecular docking among vaccine and immune receptors (TLR2/TLR4) was revealed with a good binding affinity with and stable molecular interactions. Molecular dynamics simulation confirmed the stability of the complexes. Finally, the construct was subjected to in silico cloning demonstrating the efficiently of its expression in E.coli. However, this study needs the experimental validation to demonstrate vaccine safety and efficacy.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Simulación por Computador , Epítopos de Linfocito B , Epítopos de Linfocito T , Vacunas Virales , Infección por el Virus Zika , Virus Zika , Clonación Molecular , Codón/genética , Epítopos de Linfocito B/química , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Simulación del Acoplamiento Molecular , Solubilidad , Receptores Toll-Like/inmunología , Vacunas Virales/efectos adversos , Vacunas Virales/química , Vacunas Virales/inmunología , Virus Zika/química , Virus Zika/inmunología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/prevención & control , Humanos
15.
J Biomol Struct Dyn ; 41(11): 4917-4938, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35549819

RESUMEN

The genome feature of SARS-CoV-2 leads the virus to mutate and creates new variants of concern. Tackling viral mutations is also an important challenge for the development of a new vaccine. Accordingly, in the present study, we undertook to identify B- and T-cell epitopes with immunogenic potential for eliciting responses to SARS-CoV-2, using computational approaches and its tailoring to coronavirus variants. A total of 47 novel epitopes were identified as immunogenic triggering immune responses and no toxic after investigation with in silico tools. Furthermore, we found these peptide vaccine candidates showed a significant binding affinity for MHC I and MHC II alleles in molecular docking investigations. We consider them to be promising targets for developing peptide-based vaccines against SARS-CoV-2. Subsequently, we designed two efficient multi-epitopes vaccines against the SARS-CoV-2, the first one based on potent MHC class I and class II T-cell epitopes of S (FPNITNLCPF-NYNYLYRLFR-MFVFLVLLPLVSSQC), M (MWLSYFIASF-GLMWLSYFIASFRLF), E (LTALRLCAY-LLFLAFVVFLLVTLA), and N (SPRWYFYYL-AQFAPSASAFFGMSR). The second candidate is the result of the tailoring of the first designed vaccine according to three classes of SARS-CoV-2 variants. Molecular docking showed that the protein-protein binding interactions between the vaccines construct and TLR2-TLR4 immune receptors are stable complexes. These findings confirmed that the final multi-epitope vaccine could be easily adapted to new viral variants. Our study offers a shortlist of promising epitopes that can accelerate the development of an effective and safe vaccine against the virus and its adaptation to new variants.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2/metabolismo , Epítopos de Linfocito T , Simulación del Acoplamiento Molecular , Vacunología , Vacunas Virales/química , Epítopos de Linfocito B
16.
Pathog Glob Health ; 117(2): 134-151, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35550001

RESUMEN

The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has globally devastated public health, the economies of many countries and quality of life universally. The recent emergence of immune-escaped variants and scenario of vaccinated individuals being infected has raised the global concerns about the effectiveness of the current available vaccines in transmission control and disease prevention. Given the high rate mutation of SARS-CoV-2, an efficacious vaccine targeting against multiple variants that contains virus-specific epitopes is desperately needed. An immunoinformatics approach is gaining traction in vaccine design and development due to the significant reduction in time and cost of immunogenicity studies and increasing reliability of the generated results. It can underpin the development of novel therapeutic methods and accelerate the design and production of peptide vaccines for infectious diseases. Structural proteins, particularly spike protein (S), along with other proteins have been studied intensively as promising coronavirus vaccine targets. Numbers of promising online immunological databases, tools and web servers have widely been employed for the design and development of next generation COVID-19 vaccines. This review highlights the role of immunoinformatics in identifying immunogenic peptides as potential vaccine targets, involving databases, and prediction and characterization of epitopes which can be harnessed for designing future coronavirus vaccines.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2 , Vacunas Virales/química , Vacunas Virales/genética , Calidad de Vida , Reproducibilidad de los Resultados , Epítopos de Linfocito B , Epítopos de Linfocito T , Simulación del Acoplamiento Molecular
17.
J Biomol Struct Dyn ; 41(13): 6121-6133, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35894946

RESUMEN

New variants of SARS-CoV-2 are continuously being reported. To curtail the spread of this virus, it is essential to find an efficient and potent vaccine. Here, we report in silico designing of a protein (ferritin: FR) nanocage fused with multiple epitopes identified using the immuno-informatics approach and high-throughput screening. Employing computational approaches, we identified potential epitopes from membrane, nucleocapsid, and envelope proteins of SARS-CoV-2 and docked them on the selected human leukocyte antigen Class I and II receptors, then the stability of the complexes was assessed using molecular dynamics simulation studies. We have engineered chimeric ferritin nanocage, chm66FR, with the nested peptide of 10 epitopes by replacing the loop region at the 66th position of the nanocage, then its stability was confirmed using metadynamics simulation. Further, we used the homotrimeric '6-helical bundle' of the spike protein to engineer the chimeric 6HB (chm6HB). The chm6HB is, engineered with three epitope peptides, mounted on the N-terminal trimeric interface of the chm66FR to generate the chm6HB-chm66FR, which contains 15 epitope peptides. Chimeric FR nanocages and the chm6HB could be potential vaccine candidates against strains of SARS-CoV-2. These multivalent and multiple epitopes protein nanocages and scaffolds could mount both humoral and T-cell mediated immune responses against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2/metabolismo , COVID-19/prevención & control , Vacunas contra la COVID-19 , Vacunas Virales/química , Ferritinas/metabolismo , Epítopos de Linfocito T , Epítopos de Linfocito B , Simulación del Acoplamiento Molecular , Péptidos/metabolismo , Simulación de Dinámica Molecular , Vacunas de Subunidad
18.
J Biomol Struct Dyn ; 41(7): 2713-2732, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35132938

RESUMEN

Scientists are rigorously looking for an efficient vaccine against the current pandemic due to the SARS-CoV-2 virus. The reverse vaccinology approach may provide us with significant therapeutic leads in this direction and further determination of T-cell/B-cell response to antigen. In the present study, we conducted a population coverage analysis referring to the diverse Indian population. From the Immune epitope database (IEDB), HLA- distribution analysis was performed to find the most promiscuous T-cell epitope out of In silico determined epitope of Spike protein from SARS-CoV-2. Epitopes were selected based on their binding affinity with the maximum number of HLA alleles belonging to the highest population coverage rate values for the chosen geographical area in India. 404 cleavage sites within the 1288 amino acids sequence of spike glycoprotein were determined by NetChop proteasomal cleavage prediction suggesting the presence of adequate sites in the protein sequence for cleaving into appropriate epitopes. For population coverage analysis, 179 selected epitopes present the projected population coverage up to 97.45% with 56.16 average hit and 15.07 pc90. 54 epitopes are found with the highest coverage among the Indian population and highly conserved within the given spike RBD domain sequence. Among all the predicted epitopes, 9-mer TRFASVYAW and RFDNPVLPF along with 12-mer LLAGTITSGWTF and VSQPFLMDLEGK epitopes are observed as the best due to their decent docking score and best binding affinity to corresponding HLA alleles during MD simulations. Outcomes from this study could be critical to design a vaccine against SARS-CoV-2 for a different set of populations within the country.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Vacunas Virales , Humanos , Vacunas contra la COVID-19 , Epítopos de Linfocito T , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Vacunas Virales/química
19.
Travel Med Infect Dis ; 50: 102481, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36265732

RESUMEN

BACKGROUND: The current monkeypox virus (MPXV) spread in the non-epidemic regions raises global concern. Presently, the smallpox vaccine is used against monkeypox with several difficulties. Conversely, no next-generation vaccine is available against MPXV. Here, we proposed a novel multi-epitopic peptide-based in-silico potential vaccine candidate against the monkeypox virus. METHODS: The multi-epitopic potential vaccine construct was developed from antigen screening through whole genome-encoded 176 proteins of MPXV. Afterward, ten common B and T cell epitopes (9-mer) having the highest antigenicity and high population coverage were chosen, and a vaccine construct was developed using peptide linkers. The vaccine was characterized through bioinformatics to understand antigenicity, non-allergenicity, physicochemical properties, and binding affinity to immune receptors (TLR4/MD2-complex). Finally, the immune system simulation of the vaccine was performed through immunoinformatics and machine learning approaches. RESULTS: The highest antigenic epitopes were used to design the vaccine. The docked complex of the vaccine and TLR4/MD2 had shown significant free binding energy (-98.37 kcal/mol) with a definite binding affinity. Likewise, the eigenvalue (2.428517e-05) from NMA analysis of this docked complex reflects greater flexibility, adequate molecular motion, and reduced protein deformability, and it can provoke a robust immune response. CONCLUSIONS: The designed vaccine has shown the required effectiveness against MPXV without any side effects, a significant milestone against the neglected disease.


Asunto(s)
Epítopos de Linfocito B , Mpox , Vacunas Virales , Humanos , Epítopos de Linfocito B/química , Epítopos de Linfocito B/genética , Simulación del Acoplamiento Molecular , Monkeypox virus , Receptor Toll-Like 4 , Vacunas de Subunidad/química , Vacunas de Subunidad/genética , Mpox/prevención & control , Vacunas Virales/química , Vacunas Virales/genética
20.
Pharm Dev Technol ; 27(7): 759-765, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36004557

RESUMEN

The structural instability of inactivated Foot-and-mouth disease virus antigen hinders the development of vaccine industry. The use of an inexpensive, biocompatible formulation to slow down the degradation of antigen would address the problem. Here, phosphate-buffered saline (PBS) was showed to be effective in stabilizing 146S and hence determined as basic solution buffer. Excipients such as trehalose, sucrose, arginine, cysteine, calcium chloride, BSA and ascorbic acid were found to protect 146S from massive structural breakdown. Using orthogonal test, we confirmed the novel formulation as a combination of 5% (w/v) trehalose, 5% (w/v) sucrose, 0.05 M arginine, 0.01 M cysteine, 0.01 M calcium chloride, 1% (W/V) BSA and 0.001 M ascorbic acid in PBS. The formulation increased vaccine stabilization, with retention rate of 14% after storage at 4 °C for 14 months. Particle size for vaccine was at approximately 220 nm and physicochemical detecting findings were rarely abnormal in morphology and emulsion type. In summary, these results revealed that the novel formulation is beneficial to make the FMD vaccine more stable and effective, reducing the dependence on cold storage and delivery.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Animales , Arginina , Ácido Ascórbico , Cloruro de Calcio , Cisteína , Emulsiones , Excipientes , Fiebre Aftosa/prevención & control , Virus de la Fiebre Aftosa/química , Fosfatos , Sacarosa , Trehalosa , Vacunas Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA