Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biotechnol Lett ; 44(11): 1313-1322, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36161539

RESUMEN

OBJECTIVES: The aim of the present work was to identify a time-saving, effective, and low-cost strategy to produce in Escherichia coli a protein chimera representing a fusion anti-SARS-CoV-2 candidate vaccine, consisting of immunogenic and antigenic moieties. RESULTS: We overexpressed in E. coli BL21(DE3) a synthetic gene coding for CRM197-RBD, and the target protein was detected in inclusion bodies. CRM197-RBD was solubilized with 1 % (w/v) of the anionic detergent N-lauroylsarcosine (sarkosyl), the removal of which from the protein solution was conveniently accomplished with Amberlite XAD-4. The detergent-free CRM197-RBD was then separated from contaminating DNA using polyethylenimine (PEI), and finally purified from PEI by salting out with ammonium sulfate. Structural (CD spectrum) and functional (DNase activity) assays revealed that the CRM197-RBD chimera featured a native and active conformation. Remarkably, we determined a yield of purified CRM197-RBD equal to 23 mg per litre of culture. CONCLUSIONS: To produce CRM197-RBD, we devised the use of sarkosyl as an alternative to urea to solubilize the target protein from E. coli inclusion bodies, and the easy removal of sarkosyl by means of Amberlite XAD-4.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19/biosíntesis , Escherichia coli , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
Infect Genet Evol ; 97: 105188, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34920098

RESUMEN

The best and most effective way to combat pandemics is to use effective vaccines and live attenuated vaccines are among the most effective vaccines. However, one of the major problems is the length of time it takes to get the attenuated vaccines. Today, the CRISPR toolkit (Clustered Regularly Inerspaced Short Palindromic Repeats) has made it possible to make changes with high efficiency and speed. Using this toolkit to make point mutations on the RNA virus's genome in a coculture of permissive and nonpermissive cells and under controlled conditions can accelerate changes in the genome and accelerate natural selection to obtain live attenuated vaccines.


Asunto(s)
Vacunas contra la COVID-19/genética , COVID-19/prevención & control , Sistemas CRISPR-Cas , Edición Génica/métodos , Tasa de Mutación , SARS-CoV-2/genética , Proteínas Virales/genética , Desaminasas APOBEC/genética , Desaminasas APOBEC/inmunología , Adenosina Desaminasa/genética , Adenosina Desaminasa/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , COVID-19/inmunología , Vacunas contra la COVID-19/biosíntesis , Endonucleasas/genética , Endonucleasas/inmunología , Expresión Génica , Genoma Viral , Humanos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , SARS-CoV-2/inmunología , Selección Genética , Vacunas Atenuadas , Proteínas Virales/inmunología
3.
Biotechnol Lett ; 44(1): 45-57, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34837582

RESUMEN

After its emergence in late 2019 SARS-CoV-2 was declared a pandemic by the World Health Organization on 11 March 2020 and has claimed more than 2.8 million lives. There has been a massive global effort to develop vaccines against SARS-CoV-2 and the rapid and low cost production of large quantities of vaccine is urgently needed to ensure adequate supply to both developed and developing countries. Virus-like particles (VLPs) are composed of viral antigens that self-assemble into structures that mimic the structure of native viruses but lack the viral genome. Thus they are not only a safer alternative to attenuated or inactivated vaccines but are also able to induce potent cellular and humoral immune responses and can be manufactured recombinantly in expression systems that do not require viral replication. VLPs have successfully been produced in bacteria, yeast, insect and mammalian cell cultures, each production platform with its own advantages and limitations. Plants offer a number of advantages in one production platform, including proper eukaryotic protein modification and assembly, increased safety, low cost, high scalability as well as rapid production speed, a critical factor needed to control outbreaks of potential pandemics. Plant-based VLP-based viral vaccines currently in clinical trials include, amongst others, Hepatitis B virus, Influenza virus and SARS-CoV-2 vaccines. Here we discuss the importance of plants as a next generation expression system for the fast, scalable and low cost production of VLP-based vaccines.


Asunto(s)
Vacunas contra la COVID-19/biosíntesis , Plantas Modificadas Genéticamente/metabolismo , SARS-CoV-2/inmunología , Vacunas de Partículas Similares a Virus/biosíntesis , Antígenos Virales/genética , Antígenos Virales/metabolismo , Vacunas contra la COVID-19/economía , Vacunas contra la COVID-19/genética , Expresión Génica , Plantas Modificadas Genéticamente/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vacunas de Partículas Similares a Virus/economía , Vacunas de Partículas Similares a Virus/genética , Vacunas Virales/biosíntesis , Vacunas Virales/genética
4.
J Cell Mol Med ; 26(1): 25-34, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34904376

RESUMEN

Transmission electron microscopy has historically been indispensable for virology research, as it offers unique insight into virus function. In the past decade, as cryo-electron microscopy (cryo-EM) has matured and become more accessible, we have been able to peer into the structure of viruses at the atomic level and understand how they interact with the host cell, with drugs or with antibodies. Perhaps, there was no time in recent history where cryo-EM was more needed, as SARS-CoV-2 has spread around the globe, causing millions of deaths and almost unquantifiable economic devastation. In this concise review, we aim to mark the most important contributions of cryo-EM to understanding the structure and function of SARS-CoV-2 proteins, from surface spikes to the virus core and from virus-receptor interactions to antibody binding.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Anticuerpos Antivirales/química , Vacunas contra la COVID-19/química , COVID-19/prevención & control , Receptores Virales/química , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Antivirales/biosíntesis , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/biosíntesis , Microscopía por Crioelectrón , Epítopos/química , Epítopos/inmunología , Epítopos/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Receptores Virales/inmunología , Receptores Virales/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , SARS-CoV-2/ultraestructura , Serina Endopeptidasas/química , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Virión/efectos de los fármacos , Virión/patogenicidad , Virión/ultraestructura
6.
Nucleic Acid Ther ; 31(5): 321-323, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33960839

RESUMEN

The utilization of the mRNA-based Pfizer-BioNTech and Moderna coronavirus disease 2019 (COVID-19) vaccines represents the culmination of many years of nonviral nucleic acid delivery, but more importantly, they signify a massive clinical scientific success. Scientists working in the area of nucleic acid delivery using lipid nanoparticles will undoubtedly be energized by the success of these vaccines and begin to collect much needed data in the realm of nonviral-based RNA and DNA delivery, specifically, the use of lipid nanoparticles, the immune response, safety, and efficacy. It is easily conceivable that in the future we can utilize these data to help streamline our approach for the delivery of DNA for gene therapy and regulatory RNAs for therapeutic and regenerative medicine (ie, wound repair) applications.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , ADN/farmacocinética , Técnicas de Transferencia de Gen , ARN Mensajero/farmacocinética , Vacuna nCoV-2019 mRNA-1273 , Vacuna BNT162 , Biotecnología/tendencias , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/biosíntesis , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/genética , ADN/química , Minería de Datos , Dependovirus/genética , Dependovirus/inmunología , Humanos , Liposomas/química , Liposomas/farmacocinética , Nanopartículas/administración & dosificación , Nanopartículas/química , ARN Mensajero/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad
7.
OMICS ; 25(4): 234-241, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33794117

RESUMEN

A key lesson emerging from COVID-19 is that pandemic proofing planetary health against future ecological crises calls for systems science and preventive medicine innovations. With greater proximity of the human and animal natural habitats in the 21st century, it is also noteworthy that zoonotic infections such as COVID-19 that jump from animals to humans are increasingly plausible in the coming decades. In this context, glycomics technologies and the third alphabet of life, the sugar code, offer veritable prospects to move omics systems science from discovery to diverse applications of relevance to global public health and preventive medicine. In this expert review, we discuss the science of glycomics, its importance in vaccine development, and the recent progress toward discoveries on the sugar code that can help prevent future infectious outbreaks that are looming on the horizon in the 21st century. Glycomics offers veritable prospects to boost planetary health, not to mention the global scientific capacity for vaccine innovation against novel and existing infectious agents.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/epidemiología , Glicómica/organización & administración , Pandemias/prevención & control , SARS-CoV-2/patogenicidad , Zoonosis/epidemiología , Animales , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/transmisión , Vacunas contra la COVID-19/biosíntesis , Ecosistema , Salud Global/economía , Salud Global/tendencias , Humanos , Cooperación Internacional , Vacunación Masiva/métodos , Medicina Preventiva/métodos , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/biosíntesis , Zoonosis/inmunología , Zoonosis/prevención & control , Zoonosis/transmisión , Vacunas de ARNm
8.
Mol Ther ; 29(6): 1970-1983, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33823303

RESUMEN

A self-transcribing and replicating RNA (STARR)-based vaccine (LUNAR-COV19) has been developed to prevent SARS-CoV-2 infection. The vaccine encodes an alphavirus-based replicon and the SARS-CoV-2 full-length spike glycoprotein. Translation of the replicon produces a replicase complex that amplifies and prolongs SARS-CoV-2 spike glycoprotein expression. A single prime vaccination in mice led to robust antibody responses, with neutralizing antibody titers increasing up to day 60. Activation of cell-mediated immunity produced a strong viral antigen-specific CD8+ T lymphocyte response. Assaying for intracellular cytokine staining for interferon (IFN)γ and interleukin-4 (IL-4)-positive CD4+ T helper (Th) lymphocytes as well as anti-spike glycoprotein immunoglobulin G (IgG)2a/IgG1 ratios supported a strong Th1-dominant immune response. Finally, single LUNAR-COV19 vaccination at both 2 µg and 10 µg doses completely protected human ACE2 transgenic mice from both mortality and even measurable infection following wild-type SARS-CoV-2 challenge. Our findings collectively suggest the potential of LUNAR-COV19 as a single-dose vaccine.


Asunto(s)
Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/administración & dosificación , Alphavirus/genética , Alphavirus/inmunología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Vacunas contra la COVID-19/biosíntesis , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Femenino , Expresión Génica , Humanos , Inmunidad Celular/efectos de los fármacos , Inmunidad Humoral/efectos de los fármacos , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-4/genética , Interleucina-4/inmunología , Ratones , Ratones Transgénicos , Replicón/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células TH1/virología , Transgenes , Resultado del Tratamiento , Vacunación/métodos , Vacunas Sintéticas/biosíntesis , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas de ARNm
9.
Virology ; 557: 70-85, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33676349

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged into the human population in late 2019 and caused the global COVID-19 pandemic. SARS-CoV-2 has spread to more than 215 countries and infected many millions of people. Despite the introduction of numerous governmental and public health measures to control disease spread, infections continue at an unabated pace, suggesting that effective vaccines and antiviral drugs will be required to curtail disease, end the pandemic, and restore societal norms. Here, we review the current developments in antibody and vaccine countermeasures to limit or prevent disease.


Asunto(s)
Anticuerpos Antivirales/biosíntesis , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Pandemias , SARS-CoV-2/inmunología , Animales , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/terapia , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/biosíntesis , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Vectores Genéticos/química , Vectores Genéticos/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunización Pasiva/métodos , Inmunogenicidad Vacunal , Seguridad del Paciente , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Vacunas Atenuadas , Vacunas de ADN , Vacunas de Subunidad , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/biosíntesis , Vacunas de Partículas Similares a Virus/inmunología , Sueroterapia para COVID-19
10.
J Nanobiotechnology ; 19(1): 59, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632278

RESUMEN

Virus-like particles (VLPs) are virus-derived structures made up of one or more different molecules with the ability to self-assemble, mimicking the form and size of a virus particle but lacking the genetic material so they are not capable of infecting the host cell. Expression and self-assembly of the viral structural proteins can take place in various living or cell-free expression systems after which the viral structures can be assembled and reconstructed. VLPs are gaining in popularity in the field of preventive medicine and to date, a wide range of VLP-based candidate vaccines have been developed for immunization against various infectious agents, the latest of which is the vaccine against SARS-CoV-2, the efficacy of which is being evaluated. VLPs are highly immunogenic and are able to elicit both the antibody- and cell-mediated immune responses by pathways different from those elicited by conventional inactivated viral vaccines. However, there are still many challenges to this surface display system that need to be addressed in the future. VLPs that are classified as subunit vaccines are subdivided into enveloped and non- enveloped subtypes both of which are discussed in this review article. VLPs have also recently received attention for their successful applications in targeted drug delivery and for use in gene therapy. The development of more effective and targeted forms of VLP by modification of the surface of the particles in such a way that they can be introduced into specific cells or tissues or increase their half-life in the host is likely to expand their use in the future. Recent advances in the production and fabrication of VLPs including the exploration of different types of expression systems for their development, as well as their applications as vaccines in the prevention of infectious diseases and cancers resulting from their interaction with, and mechanism of activation of, the humoral and cellular immune systems are discussed in this review.


Asunto(s)
Vacunas contra la COVID-19/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Vacunas contra la COVID-19/biosíntesis , Vacunas contra la COVID-19/inmunología , Humanos , Inmunidad/fisiología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Vacunación/métodos , Vacunas de Partículas Similares a Virus/biosíntesis , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/uso terapéutico
11.
Rev Med Virol ; 31(3): e2183, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33594794

RESUMEN

Coronavirus disease 2019 (Covid-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which is responsible for a global pandemic that started in late 2019 in Wuhan, China. To prevent the worldwide spread of this highly pathogenic virus, development of an effective and safe vaccine is urgently needed. The SARS-CoV-2 and SARS-CoV share a high degree of genetic and pathologic identity and share safety and immune-enhancement concerns regarding vaccine development. Prior animal studies with first generation (whole virus-based) preparations of SARS-CoV vaccines (inactivated and attenuated vaccine modalities) indicated the possibility of increased infectivity or eosinophilic infiltration by immunization. Therefore, development of second and third generation safer vaccines (by using modern vaccine platforms) is actively sought for this viral infection. The spike (S) protein of SARS-CoVs is the main determinant of cell entry and tropism and is responsible for facilitating zoonosis into humans and sustained person-to-person transmission. Furthermore, 'S' protein contains multiple neutralizing epitopes that play an essential role in the induction of neutralizing antibodies (nAbs) and protective immunity. Moreover, T-cell responses against the SARS-CoV-2 'S' protein have also been characterized that correlate to the IgG and IgA antibody titres in Covid-19 patients. Thus, S protein is an obvious candidate antigen for inclusion into vaccine platforms against SARS-CoV-2 viral infection. This manuscript reviews different characteristics of S protein, its potency and 'state of the art' of the vaccine development strategies and platforms using this antigen, for construction of a safe and effective SARS-CoV-2 vaccine.


Asunto(s)
Anticuerpos Antivirales/biosíntesis , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Genoma Viral/inmunología , Pandemias , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/biosíntesis , Ensayos Clínicos como Asunto , Vectores Genéticos/química , Vectores Genéticos/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Esquemas de Inmunización , Inmunogenicidad Vacunal , Seguridad del Paciente , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Atenuadas , Vacunas de ADN , Vacunas de Subunidad
13.
Clin Microbiol Infect ; 27(1): 130.e5-130.e8, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33007476

RESUMEN

OBJECTIVES: Investigation whether in depth characterization of virus variant patterns can be used for epidemiological analysis of the first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection clusters in Hamburg, Germany. METHODS: Metagenomic RNA-sequencing and amplicon-sequencing and subsequent variant calling in 25 respiratory samples from SARS-CoV-2 infected patients involved in the earliest infection clusters in Hamburg. RESULTS: Amplikon sequencing and cluster analyses of these SARS-CoV-2 sequences allowed the identification of the first infection cluster and five non-related infection clusters occurring at the beginning of the viral entry of SARS-CoV-2 in the Hamburg metropolitan region. Viral genomics together with epidemiological analyses revealed that the index patient acquired the infection in northern Italy and transmitted it to two out of 134 contacts. Single nucleotide polymorphisms clearly distinguished the virus variants of the index and other clusters and allowed us to track in which sequences worldwide these mutations were first described. Minor variant analyses identified the transmission of intra-host variants in the index cluster and household clusters. CONCLUSIONS: SARS-CoV-2 variant tracing allows the identification of infection clusters and the follow up of infection chains occurring in the population. Furthermore, the follow up of minor viral variants in infection clusters can provide further resolution on transmission events indistinguishable at a consensus sequence level.


Asunto(s)
Vacunas contra la COVID-19/genética , COVID-19/epidemiología , COVID-19/transmisión , Genoma Viral , Pandemias/prevención & control , SARS-CoV-2/genética , Adulto , COVID-19/virología , Vacunas contra la COVID-19/biosíntesis , Vacunas contra la COVID-19/inmunología , Trazado de Contacto/estadística & datos numéricos , Evolución Molecular , Femenino , Alemania/epidemiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Italia/epidemiología , Masculino , Familia de Multigenes , Filogenia , Polimorfismo de Nucleótido Simple , SARS-CoV-2/clasificación , SARS-CoV-2/patogenicidad , Viaje
14.
Vaccine ; 39(2): 197-201, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33279318

RESUMEN

The threat of the current coronavirus disease pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is accelerating the development of potential vaccines. Candidate vaccines have been generated using existing technologies that have been applied for developing vaccines against other infectious diseases. Two new types of platforms, mRNA- and viral vector-based vaccines, have been gaining attention owing to the rapid advancement in their methodologies. In clinical trials, setting appropriate immunological endpoints plays a key role in evaluating the efficacy and safety of candidate vaccines. Updated information about immunological features from individuals who have or have not been exposed to SARS-CoV-2 continues to guide effective vaccine development strategies. This review highlights key strategies for generating candidate SARS-CoV-2 vaccines and considerations for vaccine development and clinical trials.


Asunto(s)
Anticuerpos Antivirales/biosíntesis , Vacunas contra la COVID-19/biosíntesis , COVID-19/prevención & control , Pandemias/prevención & control , SARS-CoV-2/inmunología , Síndrome Respiratorio Agudo Grave/epidemiología , Síndrome Respiratorio Agudo Grave/prevención & control , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Ensayos Clínicos como Asunto , Vectores Genéticos/química , Vectores Genéticos/inmunología , Humanos , Inmunidad Innata/efectos de los fármacos , Esquemas de Inmunización , Inmunogenicidad Vacunal , Seguridad del Paciente , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/virología , Vacunas Atenuadas , Vacunas de ADN , Vacunas de Subunidad , Vacunas de Partículas Similares a Virus
15.
Vaccine ; 39(2): 309-316, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33334616

RESUMEN

A vaccine for COVID-19 is urgently needed. Several vaccine trial designs may significantly accelerate vaccine testing and approval, but also increase risks to human subjects. Concerns about whether the public would see such designs as ethical represent an important roadblock to their implementation; accordingly, both the World Health Organization and numerous scholars have called for consulting the public regarding them. We answered these calls by conducting a cross-national survey (n = 5920) in Australia, Canada, Hong Kong, New Zealand, South Africa, Singapore, the United Kingdom, and the United States. The survey explained key differences between traditional vaccine trials and two accelerated designs: a challenge trial or a trial integrating a Phase II safety and immunogenicity trial into a larger Phase III efficacy trial. Respondents' answers to comprehension questions indicate that they largely understood the key differences and ethical trade-offs between the designs from our descriptions. We asked respondents whether they would prefer scientists to conduct traditional trials or one of these two accelerated designs. We found broad majorities prefer for scientists to conduct challenge trials (75%) and integrated trials (63%) over standard trials. Even as respondents acknowledged the risks, they perceived both accelerated trials as similarly ethical to standard trial designs. This high support is consistent across every geography and demographic subgroup we examined, including vulnerable populations. These findings may help assuage some of the concerns surrounding accelerated designs.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Toma de Decisiones , Pandemias/prevención & control , Proyectos de Investigación , SARS-CoV-2/inmunología , Vacunación/psicología , Asia/epidemiología , Australia/epidemiología , COVID-19/epidemiología , COVID-19/psicología , COVID-19/virología , Vacunas contra la COVID-19/biosíntesis , Vacunas contra la COVID-19/provisión & distribución , Conducta de Elección , Ensayos Clínicos como Asunto , Femenino , Humanos , Inmunidad Innata/efectos de los fármacos , Esquemas de Inmunización , Inmunogenicidad Vacunal , Masculino , América del Norte/epidemiología , Seguridad del Paciente , Salud Pública , SARS-CoV-2/patogenicidad , Encuestas y Cuestionarios , Factores de Tiempo , Reino Unido/epidemiología , Vacunación/métodos
16.
J Biol Chem ; 296: 100025, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33154165

RESUMEN

Virtually all SARS-CoV-2 vaccines currently in clinical testing are stored in a refrigerated or frozen state prior to use. This is a major impediment to deployment in resource-poor settings. Furthermore, several of them use viral vectors or mRNA. In contrast to protein subunit vaccines, there is limited manufacturing expertise for these nucleic-acid-based modalities, especially in the developing world. Neutralizing antibodies, the clearest known correlate of protection against SARS-CoV-2, are primarily directed against the receptor-binding domain (RBD) of the viral spike protein, suggesting that a suitable RBD construct might serve as a more accessible vaccine ingredient. We describe a monomeric, glycan-engineered RBD protein fragment that is expressed at a purified yield of 214 mg/l in unoptimized, mammalian cell culture and, in contrast to a stabilized spike ectodomain, is tolerant of exposure to temperatures as high as 100 °C when lyophilized, up to 70 °C in solution and stable for over 4 weeks at 37 °C. In prime:boost guinea pig immunizations, when formulated with the MF59-like adjuvant AddaVax, the RBD derivative elicited neutralizing antibodies with an endpoint geometric mean titer of ∼415 against replicative virus, comparing favorably with several vaccine formulations currently in the clinic. These features of high yield, extreme thermotolerance, and satisfactory immunogenicity suggest that such RBD subunit vaccine formulations hold great promise to combat COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , Anticuerpos Antivirales/biosíntesis , Vacunas contra la COVID-19/biosíntesis , COVID-19/prevención & control , Receptores Virales/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Animales , Anticuerpos Neutralizantes/biosíntesis , Sitios de Unión , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Femenino , Cobayas , Células HEK293 , Calor , Humanos , Inmunogenicidad Vacunal , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Receptores Virales/química , Receptores Virales/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación , Potencia de la Vacuna
17.
J Med Virol ; 93(2): 892-898, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32691875

RESUMEN

Since its emergence in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into a global pandemic within a matter of months. While subunit vaccines are one of the prominent options for combating coronavirus disease 2019 (COVID-19), the immunogenicity of spike protein-based antigens remains unknown. When immunized in mice, the S1 domain induced much higher IgG and IgA antibody levels than the receptor-binding domain (RBD) and more efficiently neutralized SARS-CoV-2 when adjuvanted with alum. It is inferred that a large proportion of these neutralization epitopes are located in the S1 domain but outside the RBD and that some of these are spatial epitopes. This finding indicates that expression systems with posttranslational modification abilities are important to maintain the natural configurations of recombinant spike protein antigens and are critical for effective COVID-19 vaccines. Further, adjuvants prone to a Th1 response should be considered for S1-based subunit COVID-19 vaccines to reduce the potential risk of antibody-dependent enhancement of infection.


Asunto(s)
Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Antígenos Virales/inmunología , Vacunas contra la COVID-19/biosíntesis , COVID-19/prevención & control , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Compuestos de Alumbre/administración & dosificación , Animales , Antígenos Virales/genética , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Femenino , Células HEK293 , Humanos , Inmunidad Humoral/efectos de los fármacos , Inmunización , Esquemas de Inmunización , Inmunogenicidad Vacunal , Inmunoglobulina A/biosíntesis , Inmunoglobulina G/biosíntesis , Ratones , Ratones Endogámicos BALB C , Dominios Proteicos/inmunología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células Th2/efectos de los fármacos , Células Th2/inmunología
18.
J Med Virol ; 93(2): 741-754, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32936465

RESUMEN

Coronaviruses (CoVs) are nonsegmented, single-stranded, positive-sense RNA viruses highly pathogenic to humans. Some CoVs are known to cause respiratory and intestinal diseases, posing a threat to the global public health. Against this backdrop, it is of critical importance to develop safe and effective vaccines against these CoVs. This review discusses human vaccine candidates in any stage of development and explores the viral characteristics, molecular epidemiology, and immunology associated with CoV vaccine development. At present, there are many obstacles and challenges to vaccine research and development, including the lack of knowledge about virus transmission, pathogenesis, and immune response, absence of the most appropriate animal models.


Asunto(s)
Vacunas contra la COVID-19/biosíntesis , COVID-19/prevención & control , Infecciones por Coronavirus/prevención & control , Síndrome Respiratorio Agudo Grave/prevención & control , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , COVID-19/inmunología , COVID-19/virología , Camelus , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Cricetulus , Modelos Animales de Enfermedad , Humanos , Macaca mulatta , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/virología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas de Subunidad , Vacunas Sintéticas/biosíntesis , Vacunas de Partículas Similares a Virus/biosíntesis , Vacunas de ARNm
19.
Med Hypotheses ; 144: 109948, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32516733

RESUMEN

With the number of cases crossing six million (and more than three hundred and seventy thousand deaths) worldwide, there is a dire need of a vaccine (and repurposing of drugs) for SARS-CoV-2 disease (COVID-19). It can be argued that a vaccine may be the most efficient way to contain the spread of this disease and prevent its future onset. While many attempts are being made to design and develop a vaccine for SARS-CoV-2, pertinent technological hitches do exist. That is perhaps one of the reasons that we don't have vaccine for coronaviruses (including SARS-CoV-1 and MERS). Recently developed CRISPR-mediated genome editing approach can be repurposed into a cell-modification endeavor in addition to (and rather than) correcting defective parts of genome. With this premise, B-cells can be engineered into universal donor, antigen specific, perpetually viable, long lasting, non-oncogenic, relatively benign, antibody producing cells which may serve as an effective vaccine for SARS-CoV-2 and, by the same rationale, other viruses and pathogens.


Asunto(s)
Linfocitos B/inmunología , Vacunas contra la COVID-19/biosíntesis , COVID-19/inmunología , COVID-19/prevención & control , Ingeniería Genética/métodos , Animales , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/genética , Linfocitos B/virología , COVID-19/virología , Vacunas contra la COVID-19/genética , Ingeniería Celular/métodos , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Ratones , Modelos Genéticos , Modelos Inmunológicos , Pandemias/prevención & control , SARS-CoV-2/genética , SARS-CoV-2/inmunología
20.
J Biosci ; 452020.
Artículo en Inglés | MEDLINE | ID: mdl-33410425

RESUMEN

An unprecedented worldwide spread of the SARS-CoV-2 has imposed severe challenges on healthcare facilities and medical infrastructure. The global research community faces urgent calls for the development of rapid diagnostic tools, effective treatment protocols, and most importantly, vaccines against the pathogen. Pooling together expertise across broad domains to innovate effective solutions is the need of the hour. With these requirements in mind, in this review, we provide detailed critical accounts on the leading efforts at developing diagnostics tools, therapeutic agents, and vaccine candidates. Importantly, we furnish the reader with a multidisciplinary perspective on how conventional methods like serology and RT-PCR, as well as cutting-edge technologies like CRISPR/Cas and artificial intelligence/machine learning, are being employed to inform and guide such investigations. We expect this narrative to serve a broad audience of both active and aspiring researchers in the field of biomedical sciences and engineering and help inspire radical new approaches towards effective detection, treatment, and prevention of this global pandemic.


Asunto(s)
Antivirales/uso terapéutico , Prueba de Ácido Nucleico para COVID-19/métodos , Vacunas contra la COVID-19/biosíntesis , COVID-19/prevención & control , Pandemias/prevención & control , SARS-CoV-2/patogenicidad , Antivirales/síntesis química , Inteligencia Artificial , COVID-19/inmunología , COVID-19/terapia , COVID-19/virología , Vacunas contra la COVID-19/genética , Sistemas CRISPR-Cas , Manejo de la Enfermedad , Descubrimiento de Drogas/métodos , Reposicionamiento de Medicamentos/métodos , Humanos , Inmunización Pasiva/métodos , Técnicas de Diagnóstico Molecular , Simulación del Acoplamiento Molecular , Técnicas de Amplificación de Ácido Nucleico , Ingeniería de Proteínas/métodos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Sueroterapia para COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...