Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.204
Filtrar
1.
Malar J ; 23(1): 142, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38734664

RESUMEN

BACKGROUND: The newly developed malaria vaccine called "R21/Matrix-M malaria vaccine" showed a high safety and efficacy level, and Ghana is the first country to approve this new vaccine. The present study aimed to evaluate the rate of vaccine hesitancy (VH) towards the newly developed malaria vaccine among parents who currently have children who are not eligible for the vaccine but may be eligible in the near future. Additionally, the study aimed to identify the factors that could potentially influence VH. METHODS: A cross-sectional survey using both online-based questionnaires and face-to-face interviews was conducted in Ghana from June to August 2023. The survey specifically targeted parents of ineligible children for vaccination, including those aged less than 5 months or between 3 and 12 years. The Parent Attitudes about Childhood Vaccination (PACV) scale was used to assess parental VH. RESULTS: A total of 765 people participated in this study. Their median age was 36.0 years with an interquartile range of 31.0-41.0 years, 67.7% were females, 41.8% completed their tertiary education, 63.3% were married, 81.6% worked in non-healthcare sectors, and 59.7% reported that their monthly income was insufficient. About one-third (34.5%) of the parents were hesitant to give their children the R21/Matrix-M malaria vaccine. The following predictors were associated with VH: working in the healthcare sector (adjusted odds ratio (AOR) = 0.50; 95% confidence interval (CI) 0.30-0.80; p = 0.005), having the other parent working in the healthcare sector (AOR = 0.54; 95% CI 0.30-0.94; p = 0.034), and not taking scheduled routine vaccinations (AOR = 1.90; 95% CI 1.27-2.84; p = 0.002). CONCLUSIONS: Addressing VH is crucial for optimizing R21/Matrix-M vaccine coverage in Ghana's malaria control strategy. By tackling VH issues, Ghana can effectively safeguard children's health in malaria-prone areas.


Asunto(s)
Vacunas contra la Malaria , Padres , Humanos , Ghana , Estudios Transversales , Femenino , Masculino , Vacunas contra la Malaria/administración & dosificación , Adulto , Padres/psicología , Preescolar , Niño , Vacilación a la Vacunación/estadística & datos numéricos , Vacilación a la Vacunación/psicología , Lactante , Encuestas y Cuestionarios , Vacunación/estadística & datos numéricos , Vacunación/psicología , Malaria/prevención & control , Persona de Mediana Edad
2.
Front Immunol ; 15: 1372584, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745665

RESUMEN

Among Plasmodium spp. responsible for human malaria, Plasmodium vivax ranks as the second most prevalent and has the widest geographical range; however, vaccine development has lagged behind that of Plasmodium falciparum, the deadliest Plasmodium species. Recently, we developed a multistage vaccine for P. falciparum based on a heterologous prime-boost immunization regimen utilizing the attenuated vaccinia virus strain LC16m8Δ (m8Δ)-prime and adeno-associated virus type 1 (AAV1)-boost, and demonstrated 100% protection and more than 95% transmission-blocking (TB) activity in the mouse model. In this study, we report the feasibility and versatility of this vaccine platform as a P. vivax multistage vaccine, which can provide 100% sterile protection against sporozoite challenge and >95% TB efficacy in the mouse model. Our vaccine comprises m8Δ and AAV1 viral vectors, both harboring the gene encoding two P. vivax circumsporozoite (PvCSP) protein alleles (VK210; PvCSP-Sal and VK247; -PNG) and P25 (Pvs25) expressed as a Pvs25-PvCSP fusion protein. For protective efficacy, the heterologous m8Δ-prime/AAV1-boost immunization regimen showed 100% (short-term; Day 28) and 60% (long-term; Day 242) protection against PvCSP VK210 transgenic Plasmodium berghei sporozoites. For TB efficacy, mouse sera immunized with the vaccine formulation showed >75% TB activity and >95% transmission reduction activity by a direct membrane feeding assay using P. vivax isolates in blood from an infected patient from the Brazilian Amazon region. These findings provide proof-of-concept that the m8Δ/AAV1 vaccine platform is sufficiently versatile for P. vivax vaccine development. Future studies are needed to evaluate the safety, immunogenicity, vaccine efficacy, and synergistic effects on protection and transmission blockade in a non-human primate model for Phase I trials.


Asunto(s)
Dependovirus , Vectores Genéticos , Vacunas contra la Malaria , Malaria Vivax , Plasmodium vivax , Animales , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/administración & dosificación , Plasmodium vivax/inmunología , Plasmodium vivax/genética , Malaria Vivax/prevención & control , Malaria Vivax/transmisión , Malaria Vivax/inmunología , Ratones , Dependovirus/genética , Dependovirus/inmunología , Femenino , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/genética , Anticuerpos Antiprotozoarios/inmunología , Anticuerpos Antiprotozoarios/sangre , Modelos Animales de Enfermedad , Virus Vaccinia/genética , Virus Vaccinia/inmunología , Humanos , Ratones Endogámicos BALB C , Inmunización Secundaria , Eficacia de las Vacunas
3.
Malar J ; 23(1): 136, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711053

RESUMEN

Malaria vaccine introduction in endemic countries is a game-changing milestone in the fight against the disease. This article examines the inequity in the global pharmaceutical research, development, manufacturing, and trade landscape. The role of inequity in hindering progress towards malaria elimination is explored. The analysis finds that transformational changes are required to create an equity-enabling environment. Addressing the inequity is critical to maximizing the public health impact of vaccines and attaining sustainability. Avenues to catalyze progress by leveraging malaria vaccines and messenger ribonucleic acid (mRNA) technology are discussed.


Asunto(s)
Vacunas contra la Malaria , Malaria , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/genética , Humanos , Malaria/prevención & control , Erradicación de la Enfermedad/métodos , ARN Mensajero/genética , Salud Global , Investigación Farmacéutica
4.
Vaccine ; 42(15): 3379-3383, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38704250

RESUMEN

The Immunization and Vaccine-related Implementation Research Advisory Committee (IVIR-AC) is the World Health Organization's key standing advisory body to conduct an independent review of research, particularly of transmission and economic modeling analyses that estimate the impact and value of vaccines. From 26th February-1st March 2024, at its first of two semi-annual meetings, IVIR-AC provided feedback and recommendations across four sessions; this report summarizes the proceedings and recommendations from that meeting. Session topics included modeling of the impact and cost-effectiveness of the R21/Matrix-M malaria vaccine, meta-analysis of economic evaluations of vaccines, a global analysis estimating the impact of vaccination over the last 50 years, and modeling the impact of different RTS,S malaria vaccine dose schedules in seasonal settings.


Asunto(s)
Comités Consultivos , Vacunas contra la Malaria , Organización Mundial de la Salud , Humanos , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/inmunología , Análisis Costo-Beneficio , Vacunación/métodos , Malaria/prevención & control , Inmunización/métodos
5.
Rev Med Suisse ; 20(872): 872-875, 2024 May 01.
Artículo en Francés | MEDLINE | ID: mdl-38693799

RESUMEN

A malaria vaccine represents an essential complementary tool to curb the stagnation, or even increase, in malaria cases observed over the last decade due to the emergence of resistance to insecticides impregnated on mosquito nets, wars and internal conflicts, as well as global warming. In October 2021, WHO recommended the use of the RTS,S/ASO1 vaccine for children aged 5-17 months in areas of moderate to high transmission. In October 2023, a second vaccine received WHO approval for deployment in the same population, following demonstration of around 70 % efficacy in protecting young children against malaria for one year. Given their partial efficacy, however, these vaccines are not generally recommended for travelers to endemic countries.


Un vaccin contre le paludisme représente une mesure complémentaire essentielle pour juguler la stagnation, voire l'augmentation des cas de paludisme observée durant cette dernière décade en raison de l'émergence de la résistance aux insecticides imprégnés sur les moustiquaires, des guerres et conflits internes ainsi que du réchauffement climatique. En octobre 2021, l'OMS a recommandé l'emploi du vaccin RTS,S/ASO1 pour les enfants de 5 à 17 mois dans les zones de transmission modérée à forte. En octobre 2023, un second vaccin a reçu l'aval de l'OMS pour son déploiement dans la même population, suite à la démonstration d'une efficacité d'environ 70 % pour protéger les jeunes enfants contre le paludisme pendant une année. Vu leur efficacité partielle, ces vaccins ne sont cependant généralement pas recommandés pour les voyageurs se rendant dans les pays d'endémie.


Asunto(s)
Vacunas contra la Malaria , Malaria , Humanos , Vacunas contra la Malaria/administración & dosificación , Malaria/prevención & control , Organización Mundial de la Salud , Lactante , Erradicación de la Enfermedad/métodos , Erradicación de la Enfermedad/organización & administración
6.
JCI Insight ; 9(9)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716733

RESUMEN

Vaccination of malaria-naive volunteers with a high dose of Plasmodium falciparum sporozoites chemoattenuated by chloroquine (CQ) (PfSPZ-CVac [CQ]) has previously demonstrated full protection against controlled human malaria infection (CHMI). However, lower doses of PfSPZ-CVac [CQ] resulted in incomplete protection. This provides the opportunity to understand the immune mechanisms needed for better vaccine-induced protection by comparing individuals who were protected with those not protected. Using mass cytometry, we characterized immune cell composition and responses of malaria-naive European volunteers who received either lower doses of PfSPZ-CVac [CQ], resulting in 50% protection irrespective of the dose, or a placebo vaccination, with everyone becoming infected following CHMI. Clusters of CD4+ and γδ T cells associated with protection were identified, consistent with their known role in malaria immunity. Additionally, EMRA CD8+ T cells and CD56+CD8+ T cell clusters were associated with protection. In a cohort from a malaria-endemic area in Gabon, these CD8+ T cell clusters were also associated with parasitemia control in individuals with lifelong exposure to malaria. Upon stimulation with P. falciparum-infected erythrocytes, CD4+, γδ, and EMRA CD8+ T cells produced IFN-γ and/or TNF, indicating their ability to mediate responses that eliminate malaria parasites.


Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Vacunas contra la Malaria , Malaria Falciparum , Plasmodium falciparum , Esporozoítos , Humanos , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Linfocitos T CD8-positivos/inmunología , Adulto , Esporozoítos/inmunología , Masculino , Linfocitos T CD4-Positivos/inmunología , Cloroquina/uso terapéutico , Cloroquina/farmacología , Femenino , Adulto Joven , Gabón , Vacunación/métodos , Antimaláricos/uso terapéutico , Antimaláricos/administración & dosificación , Europa (Continente) , Parasitemia/inmunología , Adolescente , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/administración & dosificación , Pueblo Europeo
8.
BMJ Glob Health ; 9(4)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688566

RESUMEN

In October 2021, the WHO recommended the world's first malaria vaccine-RTS,S/AS01-to prevent malaria in children living in areas with moderate-to-high transmission in sub-Saharan Africa (SSA). A second malaria vaccine, R21/Matrix-M, was recommended for use in October 2023 and added to the WHO list of prequalified vaccines in December 2023. This study analysis assessed the country status of implementation and delivery strategies for RTS,S/AS01 by searching websites for national malaria policies, guidelines and related documents. Direct contact with individuals working in malaria programmes was made to obtain documents not publicly available. 10 countries had documents with information relating to malaria vaccine implementation, 7 referencing RTS,S/AS01 and 3 (Burkina Faso, Kenya and Nigeria) referencing RTS,S/AS01 and R21/Matrix-M. Five other countries reported plans for malaria vaccine roll-out without specifying which vaccine. Ghana, Kenya and Malawi, which piloted RTS,S/AS01, have now integrated the vaccine into routine immunisation services. Cameroon and Burkina Faso are the first countries outside the pilot countries to incorporate the vaccine into national immunisation services. Uganda plans a phased RTS,S/AS01 introduction, while Guinea plans to first pilot RTS,S/AS01 in five districts. The RTS,S/AS01 schedule varied by country, with the first dose administered at 5 or 6 months in all countries but the fourth dose at either 18, 22 or 24 months. SSA countries have shown widespread interest in rolling out the malaria vaccine, the Global Alliance for Vaccines and Immunization having approved financial support for 20 of 30 countries which applied as of March 2024. Limited availability of RTS,S/AS01 means that some approved countries will not receive the required doses. Vaccine availability and equity must be addressed even as R21/Matrix-M becomes available.


Asunto(s)
Vacunas contra la Malaria , Organización Mundial de la Salud , Humanos , Vacunas contra la Malaria/administración & dosificación , África del Sur del Sahara , Malaria/prevención & control , Programas de Inmunización , Política de Salud
9.
Trends Parasitol ; 40(5): 367-368, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604871

RESUMEN

Recently, Day et al. identified a receptor-binding site on the malaria parasite protein PfCyRPA that binds the host sugar Neu5Ac, and they found that disrupting this interaction impedes parasite growth. A map of the receptor-binding site identifies an attractive target for antimalarial vaccines and therapeutics.


Asunto(s)
Proteínas Protozoarias , Proteínas Protozoarias/metabolismo , Sitios de Unión , Humanos , Malaria/prevención & control , Malaria/parasitología , Plasmodium falciparum/metabolismo , Vacunas contra la Malaria/inmunología , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico
11.
Int Immunopharmacol ; 132: 111982, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38569430

RESUMEN

RTS,S is the first malaria vaccine recommended for implementation among young children at risk. However, vaccine efficacy is modest and short-lived. To mitigate the risk of cerebral malaria (CM) among children under the age of 5, it is imperative to develop new vaccines. EVs are potential vaccine candidates as they obtain the ability of brain-targeted delivery and transfer plasmodium antigens and immunomodulators during infections. This study extracted EVs from BALB/c mice infected with Plasmodium yoelii 17XNL (P.y17XNL). C57BL/6J mice were intravenously immunized with EVs (EV-I.V. + CM group) or subcutaneously vaccinated with the combination of EVs and CpG ODN-1826 (EV + CPG ODN-S.C. + CM group) on days 0 and 20, followed by infection with Plasmodium berghei ANKA (P.bANKA) on day 20 post-second immunization. We monitored Parasitemia and survival rate. The integrity of the Blood-brain barrier (BBB) was examined using Evans blue staining.The levels of cytokines and adhesion molecules were evaluated using Luminex, RT-qPCR, and WB. Brain pathology was evaluated by hematoxylin and eosin and immunohistochemical staining. The serum levels of IgG, IgG1, and IgG2a were analyzed by enzyme-linked immunosorbent assay. Compared with those in the P.bANKA-infected group, parasitemia increased slowly, death was delayed (day 10 post-infection), and the survival rate reached 75 %-83.3 % in the EV-I.V. + ECM and EV + CPG ODN-S.C. + ECM groups. Meanwhile, compared with the EV + CPG ODN-S.C. + ECM group, although parasitemia was almost the same, the survival rate increased in the EV-I.V. + ECM group.Additionally, EVs immunization markedly downregulated inflammatory responses in the spleen and brain and ameliorated brain pathological changes, including BBB disruption and infected red blood cell (iRBC) sequestration. Furthermore, the EVs immunization group exhibited enhanced antibody responses (upregulation of IgG1 and IgG2a production) compared to the normal control group. EV immunization exerted protective effects, improving the integrity of the BBB, downregulating inflammation response of brain tissue, result in reduces the incidence of CM. The protective effects were determined by immunological pathways and brain targets elicited by EVs. Intravenous immunization exhibited better performance than subcutaneous immunization, which perhaps correlated with EVs, which can naturally cross BBB to play a better role in brain protection.


Asunto(s)
Barrera Hematoencefálica , Eritrocitos , Vesículas Extracelulares , Malaria Cerebral , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos , Plasmodium berghei , Animales , Malaria Cerebral/inmunología , Malaria Cerebral/parasitología , Malaria Cerebral/prevención & control , Plasmodium berghei/inmunología , Vesículas Extracelulares/inmunología , Eritrocitos/parasitología , Eritrocitos/inmunología , Barrera Hematoencefálica/inmunología , Ratones , Oligodesoxirribonucleótidos/administración & dosificación , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/administración & dosificación , Femenino , Encéfalo/parasitología , Encéfalo/inmunología , Encéfalo/patología , Citocinas/metabolismo , Citocinas/sangre , Plasmodium yoelii/inmunología , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Parasitemia/inmunología , Modelos Animales de Enfermedad , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología
12.
Vaccine ; 42(12): 3066-3074, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38584058

RESUMEN

BACKGROUND: To improve the efficacy of Plasmodium falciparum malaria vaccine RTS,S/AS02, we conducted a study in 2001 in healthy, malaria-naïve adults administered RTS,S/AS02 in combination with FMP1, a recombinant merozoite surface-protein-1, C-terminal 42kD fragment. METHODS: A double-blind Phase I/IIa study randomized N = 60 subjects 1:1:1:1 to one of four groups, N = 15/group, to evaluate safety, immunogenicity, and efficacy of intra-deltoid half-doses of RTS,S/AS02 and FMP1/AS02 administered in the contralateral (RTS,S + FMP1-separate) or same (RTS,S + FMP1-same) sites, or FMP1/AS02 alone (FMP1-alone), or RTS,S/AS02 alone (RTS,S-alone) on a 0-, 1-, 3-month schedule. Subjects receiving three doses of vaccine and non-immunized controls (N = 11) were infected with homologous P. falciparum 3D7 sporozoites by Controlled Human Malaria Infection (CHMI). RESULTS: Subjects in all vaccination groups experienced mostly mild or moderate local and general adverse events that resolved within eight days. Anti-circumsporozoite antibody levels were lower when FMP1 and RTS,S were co-administered at the same site (35.0 µg/mL: 95 % CI 20.3-63), versus separate arms (57.4 µg/mL: 95 % CI 32.3-102) or RTS,S alone (62.0 µg/mL: 95 % CI: 37.8-101.8). RTS,S-specific lymphoproliferative responses and ex vivo ELISpot CSP-specific interferon-gamma (IFN-γ) responses were indistinguishable among groups receiving RTS,S/AS02. There was no difference in antibody to FMP1 among groups receiving FMP1/AS02. After CHMI, groups immunized with a RTS,S-containing regimen had âˆ¼ 30 % sterile protection against parasitemia, and equivalent delays in time-to-parasitemia. The FMP1/AS02 alone group showed no sterile immunity or delay in parasitemia. CONCLUSION: Co-administration of RTS,S and FMP1/AS02 reduced anti-RTS,S antibody, but did not affect tolerability, cellular immunity, or efficacy in a stringent CHMI model. Absence of efficacy or delay of patency in the sporozoite challenge model in the FMP1/AS02 group did not rule out efficacy of FMP1/AS02 in an endemic population. However, a Phase IIb trial of FMP1/AS02 in children in malaria-endemic Kenya did not demonstrate efficacy against natural infection. CLINICALTRIALS: gov identifier: NCT01556945.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Adulto , Niño , Humanos , Adyuvantes Inmunológicos , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Malaria/prevención & control , Malaria Falciparum/prevención & control , Proteína 1 de Superficie de Merozoito , Parasitemia , Plasmodium falciparum , Proteínas Protozoarias , Método Doble Ciego
13.
BMJ Glob Health ; 9(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38580377

RESUMEN

Three months after the first shipment of RTS,S1/AS01 vaccines, Cameroon started, on 22 January 2024, to roll out malaria vaccines in 42 districts among the most at risk for malaria. Cameroon adopted and implemented the World Health Organization (WHO) malaria vaccine readiness assessment tool to monitor the implementation of preintroduction activities at the district and national levels. One week before the start of the vaccine rollout, overall readiness was estimated at 89% at a national level with two out of the five components of readiness assessment surpassing 95% of performance (vaccine, cold chain and logistics and training) and three components between 80% and 95% (planning, monitoring and supervision, and advocacy, social mobilisation and communication). 'Vaccine, cold chain and logistics' was the component with the highest number of districts recording below 80% readiness. The South-West and North-West, two regions with a high level of insecurity, were the regions with the highest number of districts that recorded a readiness performance below 80% in the five components. To monitor progress in vaccine rollout daily, Cameroon piloted a system for capturing immunisation data by vaccination session coupled with an interactive dashboard using the R Shiny platform. In addition to displaying data on vaccine uptake, this dashboard allows the generation of the monthly immunisation report for all antigens, ensuring linkage to the regular immunisation data system based on the end-of-month reporting through District Health Information Software 2. Such a hybrid system complies with the malaria vaccine rollout principle of full integration into routine immunisation coupled with strengthened management of operations.


Asunto(s)
Vacunas contra la Malaria , Malaria , Humanos , Camerún , Malaria/prevención & control , Vacunación , Inmunización
14.
Lancet ; 403(10437): 1660-1670, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38583454

RESUMEN

BACKGROUND: The RTS,S/AS01E malaria vaccine (RTS,S) was introduced by national immunisation programmes in Ghana, Kenya, and Malawi in 2019 in large-scale pilot schemes. We aimed to address questions about feasibility and impact, and to assess safety signals that had been observed in the phase 3 trial that included an excess of meningitis and cerebral malaria cases in RTS,S recipients, and the possibility of an excess of deaths among girls who received RTS,S than in controls, to inform decisions about wider use. METHODS: In this prospective evaluation, 158 geographical clusters (66 districts in Ghana; 46 sub-counties in Kenya; and 46 groups of immunisation clinic catchment areas in Malawi) were randomly assigned to early or delayed introduction of RTS,S, with three doses to be administered between the ages of 5 months and 9 months and a fourth dose at the age of approximately 2 years. Primary outcomes of the evaluation, planned over 4 years, were mortality from all causes except injury (impact), hospital admission with severe malaria (impact), hospital admission with meningitis or cerebral malaria (safety), deaths in girls compared with boys (safety), and vaccination coverage (feasibility). Mortality was monitored in children aged 1-59 months throughout the pilot areas. Surveillance for meningitis and severe malaria was established in eight sentinel hospitals in Ghana, six in Kenya, and four in Malawi. Vaccine uptake was measured in surveys of children aged 12-23 months about 18 months after vaccine introduction. We estimated that sufficient data would have accrued after 24 months to evaluate each of the safety signals and the impact on severe malaria in a pooled analysis of the data from the three countries. We estimated incidence rate ratios (IRRs) by comparing the ratio of the number of events in children age-eligible to have received at least one dose of the vaccine (for safety outcomes), or age-eligible to have received three doses (for impact outcomes), to that in non-eligible age groups in implementation areas with the equivalent ratio in comparison areas. To establish whether there was evidence of a difference between girls and boys in the vaccine's impact on mortality, the female-to-male mortality ratio in age groups eligible to receive the vaccine (relative to the ratio in non-eligible children) was compared between implementation and comparison areas. Preliminary findings contributed to WHO's recommendation in 2021 for widespread use of RTS,S in areas of moderate-to-high malaria transmission. FINDINGS: By April 30, 2021, 652 673 children had received at least one dose of RTS,S and 494 745 children had received three doses. Coverage of the first dose was 76% in Ghana, 79% in Kenya, and 73% in Malawi, and coverage of the third dose was 66% in Ghana, 62% in Kenya, and 62% in Malawi. 26 285 children aged 1-59 months were admitted to sentinel hospitals and 13 198 deaths were reported through mortality surveillance. Among children eligible to have received at least one dose of RTS,S, there was no evidence of an excess of meningitis or cerebral malaria cases in implementation areas compared with comparison areas (hospital admission with meningitis: IRR 0·63 [95% CI 0·22-1·79]; hospital admission with cerebral malaria: IRR 1·03 [95% CI 0·61-1·74]). The impact of RTS,S introduction on mortality was similar for girls and boys (relative mortality ratio 1·03 [95% CI 0·88-1·21]). Among children eligible for three vaccine doses, RTS,S introduction was associated with a 32% reduction (95% CI 5-51%) in hospital admission with severe malaria, and a 9% reduction (95% CI 0-18%) in all-cause mortality (excluding injury). INTERPRETATION: In the first 2 years of implementation of RTS,S, the three primary doses were effectively deployed through national immunisation programmes. There was no evidence of the safety signals that had been observed in the phase 3 trial, and introduction of the vaccine was associated with substantial reductions in hospital admission with severe malaria. Evaluation continues to assess the impact of four doses of RTS,S. FUNDING: Gavi, the Vaccine Alliance; the Global Fund to Fight AIDS, Tuberculosis and Malaria; and Unitaid.


Asunto(s)
Estudios de Factibilidad , Programas de Inmunización , Vacunas contra la Malaria , Malaria Cerebral , Humanos , Ghana/epidemiología , Malaui/epidemiología , Lactante , Femenino , Kenia/epidemiología , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/efectos adversos , Masculino , Preescolar , Malaria Cerebral/epidemiología , Malaria Cerebral/mortalidad , Estudios Prospectivos , Malaria Falciparum/prevención & control , Malaria Falciparum/epidemiología , Meningitis/epidemiología , Meningitis/prevención & control
16.
Parasite Immunol ; 46(4): e13027, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38587985

RESUMEN

Malaria in pregnancy has severe consequences for the mother and foetus. Antibody response to specific malaria vaccine candidates (MVC) has been associated with a decreased risk of clinical malaria and its outcomes. We studied Plasmodium falciparum (Pf) and Schistosoma haematobium (Sh) infections and factors that could influence antibody responses to MVC in pregnant women. A total of 337 pregnant women receiving antenatal care (ANC) and 139 for delivery participated in this study. Pf infection was detected by qPCR and Sh infection using urine filtration method. Antibody levels against CSP, AMA-1, GLURP-R0, VAR2CSA and Pfs48/45 MVC were quantified by ELISA. Multivariable linear regression models identified factors associated with the modulation of antibody responses. The prevalence of Pf and Sh infections was 27% and 4% at ANC and 7% and 4% at delivery. Pf infection, residing in Adidome and multigravidae were positively associated with specific IgG response to CSP, AMA-1, GLURP-R0 and VAR2CSA. ITN use and IPTp were negatively associated with specific IgG response to GLURP-R0 and Pfs48/45. There was no association between Sh infection and antibody response to MVC at ANC or delivery. Pf infections in pregnant women were positively associated with antibody response to CSP, GLURP-R0 and AMA-1. Antibody response to GLURP-R0 and Pfs48/45 was low for IPTp and ITN users. This could indicate a lower exposure to Pf infection and low malaria prevalence observed at delivery.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Esquistosomiasis Urinaria , Animales , Humanos , Femenino , Embarazo , Plasmodium falciparum , Schistosoma haematobium , Formación de Anticuerpos , Mujeres Embarazadas , Antígenos de Protozoos , Anticuerpos Antiprotozoarios , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malaria Falciparum/complicaciones , Esquistosomiasis Urinaria/epidemiología , Esquistosomiasis Urinaria/prevención & control , Esquistosomiasis Urinaria/complicaciones , Inmunoglobulina G
18.
BMC Med ; 22(1): 170, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649867

RESUMEN

BACKGROUND: The stalling global progress in malaria control highlights the need for novel tools for malaria elimination, including transmission-blocking vaccines. Transmission-blocking vaccines aim to induce human antibodies that block parasite development in the mosquito and mosquitoes becoming infectious. The Pfs48/45 protein is a leading Plasmodium falciparum transmission-blocking vaccine candidate. The R0.6C fusion protein, consisting of Pfs48/45 domain 3 (6C) and the N-terminal region of P. falciparum glutamate-rich protein (R0), has previously been produced in Lactococcus lactis and elicited functional antibodies in rodents. Here, we assess the safety and transmission-reducing efficacy of R0.6C adsorbed to aluminium hydroxide with and without Matrix-M™ adjuvant in humans. METHODS: In this first-in-human, open-label clinical trial, malaria-naïve adults, aged 18-55 years, were recruited at the Radboudumc in Nijmegen, the Netherlands. Participants received four intramuscular vaccinations on days 0, 28, 56 and 168 with either 30 µg or 100 µg of R0.6C and were randomised for the allocation of one of the two different adjuvant combinations: aluminium hydroxide alone, or aluminium hydroxide combined with Matrix-M1™ adjuvant. Adverse events were recorded from inclusion until 84 days after the fourth vaccination. Anti-R0.6C and anti-6C IgG titres were measured by enzyme-linked immunosorbent assay. Transmission-reducing activity of participants' serum and purified vaccine-specific immunoglobulin G was assessed by standard membrane feeding assays using laboratory-reared Anopheles stephensi mosquitoes and cultured P. falciparum gametocytes. RESULTS: Thirty-one participants completed four vaccinations and were included in the analysis. Administration of all doses was safe and well-tolerated, with one related grade 3 adverse event (transient fever) and no serious adverse events occurring. Anti-R0.6C and anti-6C IgG titres were similar between the 30 and 100 µg R0.6C arms, but higher in Matrix-M1™ arms. Neat participant sera did not induce significant transmission-reducing activity in mosquito feeding experiments, but concentrated vaccine-specific IgGs purified from sera collected two weeks after the fourth vaccination achieved up to 99% transmission-reducing activity. CONCLUSIONS: R0.6C/aluminium hydroxide with or without Matrix-M1™ is safe, immunogenic and induces functional Pfs48/45-specific transmission-blocking antibodies, albeit at insufficient serum concentrations to result in transmission reduction by neat serum. Future work should focus on identifying alternative vaccine formulations or regimens that enhance functional antibody responses. TRIAL REGISTRATION: The trial is registered with ClinicalTrials.gov under identifier NCT04862416.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Glicoproteínas de Membrana , Plasmodium falciparum , Proteínas Protozoarias , Adolescente , Adulto , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Adyuvantes Inmunológicos/administración & dosificación , Hidróxido de Aluminio/administración & dosificación , Anticuerpos Antiprotozoarios , Vacunas contra la Malaria/inmunología , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/prevención & control , Malaria Falciparum/transmisión , Malaria Falciparum/inmunología , Países Bajos , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología
19.
Front Immunol ; 15: 1331474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650939

RESUMEN

Malaria remains a global health challenge, necessitating the development of effective vaccines. The RTS,S vaccination prevents Plasmodium falciparum (Pf) malaria but is ineffective against Plasmodium vivax (Pv) disease. Herein, we evaluated the murine immunogenicity of a recombinant PvCSP incorporating prevalent polymorphisms, adjuvanted with Alhydrogel or Poly I:C. Both formulations induced prolonged IgG responses, with IgG1 dominance by the Alhydrogel group and high titers of all IgG isotypes by the Poly I:C counterpart. Poly I:C-adjuvanted vaccination increased splenic plasma cells, terminally-differentiated memory cells (MBCs), and precursors relative to the Alhydrogel-combined immunization. Splenic B-cells from Poly I:C-vaccinated mice revealed an antibody-secreting cell- and MBC-differentiating gene expression profile. Biological processes such as antibody folding and secretion were highlighted by the Poly I:C-adjuvanted vaccination. These findings underscore the potential of Poly I:C to strengthen immune responses against Pv malaria.


Asunto(s)
Hidróxido de Aluminio , Anticuerpos Antiprotozoarios , Inmunoglobulina G , Vacunas contra la Malaria , Malaria Vivax , Plasmodium vivax , Poli I-C , Proteínas Protozoarias , Animales , Vacunas contra la Malaria/inmunología , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/genética , Ratones , Plasmodium vivax/inmunología , Anticuerpos Antiprotozoarios/inmunología , Poli I-C/inmunología , Malaria Vivax/inmunología , Malaria Vivax/prevención & control , Hidróxido de Aluminio/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Femenino , Adyuvantes Inmunológicos , Inmunidad Humoral , Inmunidad Celular , Ratones Endogámicos BALB C
20.
Malar J ; 23(1): 106, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632607

RESUMEN

BACKGROUND: To gain a deeper understanding of protective immunity against relapsing malaria, this study examined sporozoite-specific T cell responses induced by a chemoprophylaxis with sporozoite (CPS) immunization in a relapsing Plasmodium cynomolgi rhesus macaque model. METHODS: The animals received three CPS immunizations with P. cynomolgi sporozoites, administered by mosquito bite, while under two anti-malarial drug regimens. Group 1 (n = 6) received artesunate/chloroquine (AS/CQ) followed by a radical cure with CQ plus primaquine (PQ). Group 2 (n = 6) received atovaquone-proguanil (AP) followed by PQ. After the final immunization, the animals were challenged with intravenous injection of 104 P. cynomolgi sporozoites, the dose that induced reliable infection and relapse rate. These animals, along with control animals (n = 6), were monitored for primary infection and subsequent relapses. Immunogenicity blood draws were done after each of the three CPS session, before and after the challenge, with liver, spleen and bone marrow sampling and analysis done after the challenge. RESULTS: Group 2 animals demonstrated superior protection, with two achieving protection and two experiencing partial protection, while only one animal in group 1 had partial protection. These animals displayed high sporozoite-specific IFN-γ T cell responses in the liver, spleen, and bone marrow after the challenge with one protected animal having the highest frequency of IFN-γ+ CD8+, IFN-γ+ CD4+, and IFN-γ+ γδ T cells in the liver. Partially protected animals also demonstrated a relatively high frequency of IFN-γ+ CD8+, IFN-γ+ CD4+, and IFN-γ+ γδ T cells in the liver. It is important to highlight that the second animal in group 2, which experienced protection, exhibited deficient sporozoite-specific T cell responses in the liver while displaying average to high T cell responses in the spleen and bone marrow. CONCLUSIONS: This research supports the notion that local liver T cell immunity plays a crucial role in defending against liver-stage infection. Nevertheless, there is an instance where protection occurs independently of T cell responses in the liver, suggesting the involvement of the liver's innate immunity. The relapsing P. cynomolgi rhesus macaque model holds promise for informing the development of vaccines against relapsing P. vivax.


Asunto(s)
Atovacuona , Vacunas contra la Malaria , Plasmodium cynomolgi , Proguanil , Animales , Primaquina/uso terapéutico , Esporozoítos , Macaca mulatta , Inmunización , Quimioprevención , Linfocitos T CD8-positivos , Combinación de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA