Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 443
Filtrar
1.
Metab Eng ; 84: 48-58, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810867

RESUMEN

3-Hydroxy-3-methylbutyrate (HMB) is a five-carbon branch-chain hydroxy acid currently used as a dietary supplement to treat sarcopenia and exercise training. However, its current production relies on conventional chemical processes which require toxic substances and are generally non-sustainable. While bio-based syntheses of HMB have been developed, they are dependent on biotransformation of its direct precursors which are generally costly. Therefore, in this work, we developed a synthetic de novo HMB biosynthetic pathway that enables HMB production from renewable resources. This novel HMB biosynthesis employs heterologous enzymes from mevalonate pathway and myxobacterial iso-fatty acid pathway for converting acetyl-CoA to HMB-CoA. Subsequently, HMB-CoA is hydrolyzed by a thioesterase to yield HMB. Upon expression of this pathway, our initial Escherichia coli strain produced 660 mg/L of HMB from glucose in 48 hours. Through optimization of coenzyme A removal from HMB-CoA and genetic operon structure, our final strain achieved HMB production titer of 17.7 g/L in glucose minimal media using a bench-top bioreactor. This engineered strain was further demonstrated to produce HMB from other renewable carbon sources such as xylose, glycerol, and acetate. The results from this work provided a flexible and environmentally benign method for producing HMB.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Valeratos/metabolismo , Ácido Mevalónico/metabolismo
2.
J Biotechnol ; 387: 12-22, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38522773

RESUMEN

5-hydroxyvaleric acid (5-HV) is a versatile C5 intermediate of bio-based high-value chemical synthesis pathways. However, 5-HV production faces a few shortcomings involving the supply of cofactors, especially α-ketoglutaric acid (α-KG). Herein, we established a two-cell biotransformation system by introducing L-glutamate oxidase (GOX) to regenerate α-KG. Additionally, the catalase KatE was adapted to inhibit α-KG degradation by the H2O2 produced during GOX reaction. We searched for the best combination of genes and vectors and optimized the biotransformation conditions to maximize GOX effectiveness. Under the optimized conditions, 5-HV pathway with GOX showed 1.60-fold higher productivity than that of without GOX, showing 11.3 g/L titer. Further, the two-cell system with GOX and KatE was expanded to produce poly(5-hydroxyvaleric acid) (P(5HV)), and it reached at 412 mg/L of P(5HV) production and 20.5% PHA contents when using the biotransformation supernatant. Thus, the two-cell biotransformation system with GOX can potentially give the practical and economic alternative of 5-HV production using bio-based methods. We also propose direct utilization of 5-HV from bioconversion for P(5HV) production.


Asunto(s)
Aminoácido Oxidorreductasas , Biotransformación , Ácidos Cetoglutáricos , Azúcares Ácidos , Ácidos Cetoglutáricos/metabolismo , L-Aminoácido Oxidasa/metabolismo , L-Aminoácido Oxidasa/genética , Peróxido de Hidrógeno/metabolismo , Catalasa/metabolismo , Catalasa/genética , Valeratos/metabolismo
3.
J Immunol ; 212(5): 771-784, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197634

RESUMEN

Short-chain fatty acids (SCFAs) are produced by the intestinal microbiota during the fermentation of dietary fibers as secondary metabolites. Several recent studies reported that SCFAs modulate the development and function of immune-related cells. However, the molecular mechanisms by which SCFAs regulate mast cells (MCs) remain unclear. In the current study, we analyzed the function and gene expression of mouse MCs in the presence of SCFAs in vitro and in vivo. We found that the oral administration of valerate or butyrate ameliorated passive systemic anaphylaxis and passive cutaneous anaphylaxis in mice. The majority of SCFAs, particularly propionate, butyrate, valerate, and isovalerate, suppressed the IgE-mediated degranulation of bone marrow-derived MCs, which were eliminated by the Gi protein inhibitor pertussis toxin and by the knockdown of Gpr109a. A treatment with the HDAC inhibitor trichostatin A also suppressed IgE-mediated MC activation and reduced the surface expression level of FcεRI on MCs. Acetylsalicylic acid and indomethacin attenuated the suppressive effects of SCFAs on degranulation. The degranulation degree was significantly reduced by PGE2 but not by PGD2. Furthermore, SCFAs enhanced PGE2 release from stimulated MCs. The SCFA-mediated amelioration of anaphylaxis was exacerbated by COX inhibitors and an EP3 antagonist, but not by an EP4 antagonist. The administration of niacin, a ligand of GPR109A, alleviated the symptoms of passive cutaneous anaphylaxis, which was inhibited by cyclooxygenase inhibitors and the EP3 antagonist. We conclude that SCFAs suppress IgE-mediated activation of MCs in vivo and in vitro involving GPR109A, PGE2, and epigenetic regulation.


Asunto(s)
Anafilaxia , Niacina , Ratones , Animales , Anafilaxia/tratamiento farmacológico , Anafilaxia/metabolismo , Niacina/farmacología , Niacina/metabolismo , Dinoprostona/metabolismo , Butiratos/farmacología , Butiratos/metabolismo , Valeratos/metabolismo , Mastocitos/metabolismo , Epigénesis Genética , Inmunoglobulina E/metabolismo , Degranulación de la Célula
4.
J Dairy Sci ; 106(6): 4018-4029, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37059661

RESUMEN

Some cellulolytic bacteria require 1 or more branched-chain volatile fatty acids (BCVFA) for the synthesis of branched-chain AA and branched-chain long-chain fatty acids because they are not able to uptake branched-chain AA or lack 1 or more enzymes to synthesize branched-chain AA de novo. Supplemental BCVFA and valerate were included previously as a feed additive that was later removed from the market; these older studies and more current studies have noted improvements in neutral detergent fiber digestibility and milk efficiency. However, most studies provided a single BCVFA or else isobutyrate (IB), 2-methylbutyrate (MB), isovalerate, and valerate altogether without exploring optimal combinations. Our objective was to determine a combination of isoacids that is optimal for milk production. Sixty (28 primiparous and 32 multiparous) lactating Jersey cows (106 ± 54 days in milk) were blocked and assigned randomly to either a control (CON) treatment without any isoacids, MB [12.3 mmol/kg dry matter (DM)], MB + IB (7.7 and 12.6 mmol/kg DM of MB and IB, respectively), or all 4 isoacids (6.2, 7.3, 4.2, and 5.1 mmol/kg DM of MB, IB, isovalerate, and valerate, respectively). Cattle were fed the CON treatment for a 2-wk period, then were assigned randomly within a block to treatments for 8 wk (n = 15). There was a trend for an interaction of supplement and parity for milk components. There were no differences in components for primiparous cows, whereas MB + IB tended to increase protein concentration by 0.04 and 0.08 percentage units in multiparous cows compared with the CON and MB treatments, respectively. Feeding MB + IB increased fat concentration by 0.23 to 0.31 percentage units compared with all other treatments in multiparous cows. Milk yield and dry matter intake (DMI) did not change with treatment. Treatment interacted with week for milk net energy for lactation/DMI; MB + IB tended to increase milk net energy of lactation/DMI by 0.10 Mcal/kg compared with MB and approached a trend for CON, mainly during the early weeks of the treatment period, whereas differences decreased during the last 2 wk of the treatment period. Cows fed MB had the highest 15:0 anteiso fatty acids in the total milk fatty acid profile, which was greater than that for CON or MB + IB cows, but not cows supplemented with isoacids. Cows fed MB alone had the numerically lowest milk net energy for lactation/DMI. The combination of MB + IB appeared optimal for increasing feed efficiency in our study and was not at the expense of average daily gain. Further research is needed for evaluating how potential changes in supplemental isoacid dosage should vary under differing dietary conditions.


Asunto(s)
Lactancia , Leche , Embarazo , Femenino , Bovinos , Animales , Leche/metabolismo , Lactancia/fisiología , Valeratos/metabolismo , Digestión , Alimentación Animal/análisis , Ácidos Grasos/metabolismo , Dieta/veterinaria , Ácidos Grasos Volátiles/metabolismo
5.
Drug Deliv Transl Res ; 13(7): 1912-1924, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36566262

RESUMEN

Short-chain fatty acids (SCFAs) are major metabolic products of indigestible polysaccharides in the gut and mediate the function of immune cells to facilitate homeostasis. The immunomodulatory effect of SCFAs has been attributed, at least in part, to the epigenetic modulation of immune cells through the inhibition the nucleus-resident enzyme histone deacetylase (HDAC). Among the downstream effects, SCFAs enhance regulatory T cells (Treg) over inflammatory T helper (Th) cells, including Th17 cells, which can be pathogenic. Here, we characterize the potential of two common SCFAs-butyrate and pentanoate-in modulating differentiation of T cells in vitro. We show that butyrate but not pentanoate exerts a concentration-dependent effect on Treg and Th17 differentiation. Increasing the concentration of butyrate suppresses the Th17-associated RORγtt and IL-17 and increases the expression of Treg-associated FoxP3. To effectively deliver butyrate, encapsulation of butyrate in a liposomal carrier, termed BLIPs, reduced cytotoxicity while maintaining the immunomodulatory effect on T cells. Consistent with these results, butyrate and BLIPs inhibit HDAC and promote a unique chromatin landscape in T cells under conditions that otherwise promote conversion into a pro-inflammatory phenotype. Motif enrichment analysis revealed that butyrate and BLIP-mediated suppression of Th17-associated chromatin accessibility corresponded with a marked decrease in bZIP family transcription factor binding sites. These results support the utility and further evaluation of BLIPs as an immunomodulatory agent for autoimmune disorders that are characterized by chronic inflammation and pathogenic inflammatory T cells.


Asunto(s)
Butiratos , Ácidos Grasos Volátiles , Ácidos Grasos Volátiles/farmacología , Ácidos Grasos Volátiles/metabolismo , Butiratos/farmacología , Butiratos/metabolismo , Linfocitos T Reguladores/metabolismo , Valeratos/metabolismo , Valeratos/farmacología , Epigénesis Genética , Cromatina/metabolismo
6.
Mol Biol Rep ; 49(3): 1817-1825, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34837149

RESUMEN

BACKGROUND: Short-chain fatty acids (SCFAs) are a group of microbial metabolites of undigested dietary fiber, protein and unabsorbed amino acids in the colon, well-known for their gut health promoting benefits. A relatively high intestinal level of valerate was found in the healthy human subjects. However, the intestinal protection effects and the underlying mechanism of valerate are waiting to be verified and elucidated. METHODS AND RESULTS: In the present study, valerate, a SCFAs mainly converted from proteins or amino acids, was demonstrated to promote intestinal barrier function at its physiological concentrations of 0-4 mM in the Caco-2 cell monolayer model of intestinal barrier using transepithelial electrical resistance (TEER) assay and paracellular permeability assay. Valerate achieved the maximum increase in the TEER at 2 mM and reduced the paracellular permeability. Its intestinal barrier function promoting activity is similar to that of butyrate, with a broader range of effective concentrations than the later. Through western blot analysis, this activity is linked to the valerate-induced AMPK activation and tight junctions (TJs) assembly, but not to the reinforced expression of TJs related proteins. CONCLUSIONS: It provides direct experimental evidence supporting valerate's function in intestinal health, implying the once under-valued function of valerate and its amino acid precursors. The valerate's role in regulating intestine homeostasis and its possible synergetic effects with other SCFAs warranted to be further investigated.


Asunto(s)
Uniones Estrechas , Valeratos , Células CACO-2 , Células Epiteliales/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Permeabilidad , Uniones Estrechas/metabolismo , Valeratos/metabolismo , Valeratos/farmacología
8.
Curr Opin Clin Nutr Metab Care ; 25(2): 88-92, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937852

RESUMEN

PURPOSE OF REVIEW: Skeletal muscle wasting is a serious consequence of critical illness, which may impact on long term physical and functional disability. To date, no intervention has been proven to reduce skeletal muscle wasting. Leucine and it's metabolite ß-hydroxy-ß-methylbutyrate (HMB) have been proposed as interventions. This review details the mechanism of action of both leucine and HMB, discusses the most recent research for both leucine and HMB and lastly discusses considerations for future research. RECENT FINDINGS: Only one study of leucine in critical illness has recently been published. This was a feasibility study where the physiological and muscle related outcomes were not reported to be feasible. Three studies on HMB have been reported recently with no effect seen on either muscle mass or strength. The main limitation in our understanding of the potential use of leucine or HMB on skeletal muscle wasting is the lack of mechanistic studies available in this population. SUMMARY: Mechanistic studies should be a priority before embarking on further randomized controlled trials related to this topic.


Asunto(s)
Enfermedad Crítica , Músculo Esquelético , Enfermedad Crítica/terapia , Suplementos Dietéticos , Humanos , Leucina/metabolismo , Leucina/farmacología , Fuerza Muscular , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Valeratos/metabolismo , Valeratos/farmacología , Valeratos/uso terapéutico
9.
Nutrients ; 13(9)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34579098

RESUMEN

ß-Hydroxy-ß-methylbutyrate (HMB), a leucine metabolite, is used as a nutritional ingredient to improve skeletal muscle health. Preclinical studies indicate that this supplement also elicits significant benefits in the brain; it promotes neurite outgrowth and prevents age-related reductions in neuronal dendrites and cognitive performance. As orally administered HMB elicits these effects in the brain, we infer that HMB crosses the blood-brain barrier (BBB). However, there have been no reports detailing the transport mechanism for HMB in BBB. Here we show that HMB is taken up in the human BBB endothelial cell line hCMEC/D3 via H+-coupled monocarboxylate transporters that also transport lactate and ß-hydroxybutyrate. MCT1 (monocarboxylate transporter 1) and MCT4 (monocarboxylate transporter 4) belonging to the solute carrier gene family SLC16 (solute carrier, gene family 16) are involved, but additional transporters also contribute to the process. HMB uptake in BBB endothelial cells results in intracellular acidification, demonstrating cotransport with H+. Since HMB is known to activate mTOR with potential to elicit transcriptomic changes, we examined the influence of HMB on the expression of selective transporters. We found no change in MCT1 and MCT4 expression. Interestingly, the expression of LAT1 (system L amino acid transporter 1), a high-affinity transporter for branched-chain amino acids relevant to neurological disorders such as autism, is induced. This effect is dependent on mTOR (mechanistic target of rapamycine) activation by HMB with no involvement of histone deacetylases. These studies show that HMB in systemic circulation can cross the BBB via carrier-mediated processes, and that it also has a positive influence on the expression of LAT1, an important amino acid transporter in the BBB.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Barrera Hematoencefálica/citología , Portadores de Fármacos/metabolismo , Células Endoteliales/metabolismo , Simportadores/metabolismo , Valeratos/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Línea Celular , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato , Simportadores/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
10.
Nat Cell Biol ; 23(4): 413-423, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33795871

RESUMEN

Endothelial cells (ECs) adapt their metabolism to enable the growth of new blood vessels, but little is known how ECs regulate metabolism to adopt a quiescent state. Here, we show that the metabolite S-2-hydroxyglutarate (S-2HG) plays a crucial role in the regulation of endothelial quiescence. We find that S-2HG is produced in ECs after activation of the transcription factor forkhead box O1 (FOXO1), where it limits cell cycle progression, metabolic activity and vascular expansion. FOXO1 stimulates S-2HG production by inhibiting the mitochondrial enzyme 2-oxoglutarate dehydrogenase. This inhibition relies on branched-chain amino acid catabolites such as 3-methyl-2-oxovalerate, which increase in ECs with activated FOXO1. Treatment of ECs with 3-methyl-2-oxovalerate elicits S-2HG production and suppresses proliferation, causing vascular rarefaction in mice. Our findings identify a metabolic programme that promotes the acquisition of a quiescent endothelial state and highlight the role of metabolites as signalling molecules in the endothelium.


Asunto(s)
Proliferación Celular/genética , Células Endoteliales/metabolismo , Proteína Forkhead Box O1/genética , Neovascularización Fisiológica/genética , Animales , Regulación de la Expresión Génica/genética , Glutaratos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Metabolismo/genética , Ratones , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal/genética , Valeratos/metabolismo
11.
PLoS One ; 16(2): e0240642, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33626093

RESUMEN

The presented experiment focuses on assessing the impact of HMB (hydroxy-ß-methobutyrate) supplementation of mothers during pregnancy on the development of the skeletal system of their offspring. For this purpose, an experiment was carried out on 12 clinically healthy sows of the Great White Poland breed, which were divided randomly into two groups the control and the HMB group. All animals were kept under standard conditions and received the same feed for pregnant females. In contrast, females from the HMB group between 70 and 90 days were supplemented with 3-hydroxy-3-methylbutyle in the amount of 0.2g/kg b.w/day. Immediately after birth, the piglets were also divided into groups based on: sex, and presence or lack HMB supplementation, and subsequently were euthanized and humerus bones from all piglets were collected. Mother's HMB supplementation during pregnancy affected the multiple index of their offspring. The higher humerus mass and length was observed with the greater effect in males. Maternal supplementation also influenced on the geometrical and mechanical properties of the humerus as in the case of mass, this effect was higher in males. Also, the collagen structure of the compacted and trabecular bone changed under the HMB addition. Maternal supplementation also affected the expression of selected proteins in growth cartilage and trabecular bone. The obtained results show that the administration to the mother during pregnancy by the HMB significantly affects the development of the humerus in many ways. The obtained results also confirm the utility of such experiments in understanding of the importance of the pregnancy diet as an develop and adaptable factor of offspring organisms and are the base for further research in that area as well as in the protein markers expression area.


Asunto(s)
Húmero/efectos de los fármacos , Porcinos/embriología , Valeratos/farmacología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Recién Nacidos/embriología , Animales Recién Nacidos/metabolismo , Proteína Morfogenética Ósea 2/metabolismo , Huesos/efectos de los fármacos , Huesos/embriología , Cartílago , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Húmero/embriología , Masculino , Exposición Materna , Metaloproteinasa 13 de la Matriz/metabolismo , Polonia , Embarazo , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Valeratos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
12.
Enzyme Microb Technol ; 140: 109650, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32912674

RESUMEN

2,3-Dihydroxyisovalerate is an intermediate of the valine synthesis pathway. However, neither natural microorganisms nor valine producing engineered strains have been reported yet to produce this chemical. Based on the 2,3-butanediol synthesis pathway, a biological route of 2,3-dihydroxyisovalerate production was developed using a budA and ilvD disrupted Klebsiella pneumoniae strain in our previous research. We hypothesised, that other 2,3-butanediol producing bacteria could be used for 2,3-dihydroxyisovalerate production. Here a budA disrupted Enterobacter cloacae was constructed, and this strain exhibited a high 2,3-dihydroxyisovalerate producing ability. Disruption of ilvD in E. cloacae ΔbudA further increased 2,3-dihydroxyisovalerate level. The disruption of budA, encoding an acetolactate decarboxylase, resulted in the acetolactate synthesized in the 2,3-butanediol synthesis pathway to flow into the valine synthesis pathway. The additional disruption of ilvD, encoding a dihydroxy acid dehydratase, prevented the 2,3-dihydroxyisovalerate to be further metabolized in the valine synthesis pathway. Thus, the disruption of both budA and ilvD in 2,3-butanediol producing strains might be an universal strategy for 2,3-dihydroxyisovalerate accumulation. After optimization of the medium components and culture parameters 31.2 g/L of 2,3-dihydroxyisovalerate was obtained with a productivity of 0.41 g/L h and a substrate conversion ratio of 0.56 mol/mol glucose in a fed-batch fermentation. This approach provides an economic way for 2,3-dihydroxyisovalerate production.


Asunto(s)
Enterobacter cloacae/metabolismo , Valeratos/metabolismo , Reactores Biológicos , Vías Biosintéticas , Butileno Glicoles/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Medios de Cultivo/química , Enterobacter cloacae/genética , Fermentación , Glicerol/metabolismo , Hidroliasas/genética , Hidroliasas/metabolismo , Mutación , Xilosa/metabolismo
13.
Oxid Med Cell Longev ; 2020: 3938672, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32774671

RESUMEN

Beta-hydroxy-beta-methylbutyrate (HMB), a naturally occurring leucine metabolite, has been shown to attenuate plantar flexor muscle loss and increase myogenic stem cell activation during reloading after a period of significant muscle wasting by disuse in old rodents. However, it was less clear if HMB would alter dorsiflexor muscle response to unloading or reloading when there was no significant atrophy that was induced by unloading. In this study, we tested if calcium HMB (Ca-HMB) would improve muscle function and alter apoptotic signaling in the extensor digitorum longus (EDL) of aged animals that were unloaded but did not undergo atrophy. The EDL muscle was unloaded for 14 days by hindlimb suspension (HS) in aged (34-36 mo.) male Fisher 344 × Brown Norway rats. The rats were removed from HS and allowed normal cage ambulation for 14 days of reloading (R). Throughout the study, the rats were gavaged daily with 170 mg of Ca-HMB or water 7 days prior to HS, then throughout 14 days of HS and 14 days of recovery after removing HS. The animals' body weights were significantly reduced by ~18% after 14 days of HS and continued to decline by ~22% during R as compared to control conditions; however, despite unloading, EDL did not atrophy by HS, nor did it increase in mass after R. No changes were observed in EDL twitch contraction time, force production, fatigue resistance, fiber cross-sectional area, or markers of nuclear apoptosis (myonuclei + satellite cells) after HS or R. While HS and R increased the proapoptotic Bax protein abundance, BCL-2 abundance was also increased as was the frequency of TUNEL-positive myonuclei and satellite cells, yet muscle mass and fiber cross-sectional area did not change and Ca-HMB treatment had no effect reducing apoptotic signaling. These data indicate that (i) increased apoptotic signaling preceded muscle atrophy or occurred without significant EDL atrophy and (ii) that Ca-HMB treatment did not improve EDL signaling, muscle mass, or muscle function in aged rats, when HS and R did not impact mass or function.


Asunto(s)
Apoptosis , Músculo Esquelético , Enfermedades Musculares , Valeratos , Animales , Masculino , Ratas , Factores de Edad , Apoptosis/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Enfermedades Musculares/tratamiento farmacológico , Transducción de Señal , Valeratos/metabolismo
14.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32651203

RESUMEN

Purple nonsulfur bacteria are increasingly recognized for industrial applications in bioplastics, pigment, and biomass production. In order to optimize the yield of future biotechnological processes, the assimilation of different carbon sources by Rhodospirillum rubrum has to be understood. As they are released from several fermentation processes, volatile fatty acids (VFAs) represent a promising carbon source in the development of circular industrial applications. To obtain an exhaustive characterization of the photoheterotrophic metabolism of R. rubrum in the presence of valerate, we combined phenotypic, proteomic, and genomic approaches. We obtained evidence that valerate is cleaved into acetyl coenzyme A (acetyl-CoA) and propionyl-CoA and depends on the presence of bicarbonate ions. Genomic and enzyme inhibition data showed that a functional methylmalonyl-CoA pathway is essential. Our proteomic data showed that the photoheterotrophic assimilation of valerate induces an intracellular redox stress which is accompanied by an increased abundance of phasins (the main proteins present in polyhydroxyalkanoate [PHA] granules). Finally, we observed a significant increase in the production of the copolymer P(HB-co-HV), accounting for a very high (>80%) percentage of HV monomer. Moreover, an increase in the PHA content was obtained when bicarbonate ions were progressively added to the medium. The experimental conditions used in this study suggest that the redox imbalance is responsible for PHA production. These findings also reinforce the idea that purple nonsulfur bacteria are suitable for PHA production through a strategy other than the well-known feast-and-famine process.IMPORTANCE The use and the littering of plastics represent major issues that humanity has to face. Polyhydroxyalkanoates (PHAs) are good candidates for the replacement of oil-based plastics, as they exhibit comparable physicochemical properties but are biobased and biodegradable. However, the current industrial production of PHAs is curbed by the production costs, which are mainly linked to the carbon source. Volatile fatty acids issued from the fermentation processes constitute interesting carbon sources, since they are inexpensive and readily available. Among them, valerate is gaining interest regarding the ability of many bacteria to produce a copolymer of PHAs. Here, we describe the photoheterotrophic assimilation of valerate by Rhodospirillum rubrum, a purple nonsulfur bacterium mainly known for its metabolic versatility. Using a knowledge-based optimization process, we present a new strategy for the improvement of PHA production, paving the way for the use of R. rubrum in industrial processes.


Asunto(s)
Procesos Heterotróficos , Procesos Fototróficos , Polihidroxialcanoatos/metabolismo , Rhodospirillum rubrum/metabolismo , Valeratos/metabolismo , Rhodospirillum rubrum/enzimología
15.
Am J Physiol Endocrinol Metab ; 319(3): E509-E518, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32663097

RESUMEN

Dimethylguanidino valeric acid (DMGV) is a marker of fatty liver disease, incident coronary artery disease, cardiovascular mortality, and incident diabetes. Recently, it was reported that circulating DMGV levels correlated positively with consumption of sugary beverages and negatively with intake of fruits and vegetables in three Swedish community-based cohorts. Here, we validate these results in the Framingham Heart Study Third Generation Cohort. Furthermore, in mice, diets rich in sucrose or fat significantly increased plasma DMGV concentrations. DMGV is the product of metabolism of asymmetric dimethylarginine (ADMA) by the hepatic enzyme AGXT2. ADMA can also be metabolized to citrulline by the cytoplasmic enzyme DDAH1. We report that a high-sucrose diet induced conversion of ADMA exclusively into DMGV (supporting the relationship with sugary beverage intake in humans), while a high-fat diet promoted conversion of ADMA to both DMGV and citrulline. On the contrary, replacing dietary native starch with high-fiber-resistant starch increased ADMA concentrations and induced its conversion to citrulline, without altering DMGV concentrations. In a cohort of obese nondiabetic adults, circulating DMGV concentrations increased and ADMA levels decreased in those with either liver or muscle insulin resistance. This was similar to changes in DMGV and ADMA concentrations found in mice fed a high-sucrose diet. Sucrose is a disaccharide of glucose and fructose. Compared with glucose, incubation of hepatocytes with fructose significantly increased DMGV production. Overall, we provide a comprehensive picture of the dietary determinants of DMGV levels and association with insulin resistance.


Asunto(s)
Biomarcadores/metabolismo , Guanidinas/metabolismo , Cardiopatías/metabolismo , Enfermedades Metabólicas/metabolismo , Valeratos/metabolismo , Adulto , Amidohidrolasas/metabolismo , Animales , Bebidas Gaseosas , Citrulina/metabolismo , Dieta , Grasas de la Dieta/farmacología , Humanos , Resistencia a la Insulina , Hígado/enzimología , Estudios Longitudinales , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Sacarosa/farmacología , Transaminasas/metabolismo
16.
Appl Microbiol Biotechnol ; 104(15): 6601-6613, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32519119

RESUMEN

2,3-Dihydroxyisovalerate is an intermediate of valine and leucine biosynthesis pathway; however, no natural microorganism has been found yet that can accumulate this compound. Klebsiella pneumoniae is a useful bacterium that can be used as a workhorse for the production of a range of industrially desirable chemicals. Dihydroxy acid dehydratase, encoded by the ilvD gene, catalyzes the reaction of 2-ketoisovalerate formation from 2,3-dihydroxyisovalerate. In this study, an ilvD disrupted strain was constructed which resulted in the inability to synthesize 2-ketoisovalerate, yet accumulate 2,3-dihydroxyisovalerate in its culture broth. 2,3-Butanediol is the main metabolite of K. pneumoniae and its synthesis pathway and the branched-chain amino acid synthesis pathway share the same step of the α-acetolactate synthesis. By knocking out the budA gene, carbon flow into the branched-chain amino acid synthesis pathway was upregulated, which resulted in a distinct increase in 2,3-dihydroxyisovalerate levels. Lactic acid was identified as a by-product of the process and by blocking the lactic acid synthesis pathway, a further increase in 2,3-dihydroxyisovalerate levels was obtained. The culture parameters of 2,3-dihydroxyisovalerate fermentation were optimized, which include acidic pH and medium level oxygen supplementation to favor 2,3-dihydroxyisovalerate synthesis. At optimal conditions (pH 6.5, 400 rpm), 36.5 g/L of 2,3-dihydroxyisovalerate was produced in fed-batch fermentation over 45 h, with a conversion ratio of 0.49 mol/mol glucose. Thus, a biological route of 2,3-dihydroxyisovalerate production with high conversion ratio and final titer was developed, providing a basis for an industrial process. Key Points • A biological route of 2,3-dihydroxyisovalerate production was setup. • Disruption of budA causes 2,3-dihydroxuisovalerate accumulation in K. pneumoniae. • Disruption of ilvD prevents 2,3-dihydroxyisovalerate reuse by the cell. • 36.5 g/L of 2,3-dihydroxyisovalerate was obtained in fed-batch fermentation.


Asunto(s)
Vías Biosintéticas , Fermentación , Klebsiella pneumoniae/metabolismo , Valeratos/metabolismo , Butileno Glicoles/metabolismo , Medios de Cultivo/química , Concentración de Iones de Hidrógeno , Microbiología Industrial , Klebsiella pneumoniae/genética , Ácido Láctico/metabolismo , Leucina/biosíntesis , Oxígeno/metabolismo , Valina/biosíntesis
17.
Nutrients ; 12(5)2020 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-32456217

RESUMEN

ß-hydroxy-ß-methylbutyrate (HMB) is a leucine metabolite that is purported to increase fat-free mass (FFM) gain and performance in response to resistance exercise training (RET). The aim of this systematic review and meta-analysis was to determine the efficacy of HMB supplementation in augmenting FFM and strength gains during RET in young adults. Outcomes investigated were: total body mass (TBM), FFM, fat mass (FM), total single repetition maximum (1RM), bench press (BP) 1RM, and lower body (LwB) 1RM. Databases consulted were: Medical Literature Analysis and Retrieval System Online (Medline), Excerpta Medica database (Embase), The Cumulative Index to Nursing and Allied Health Literature (CINAHL), and SportDiscus. Fourteen studies fit the inclusion criteria; however, 11 were analyzed after data extraction and funnel plot analysis exclusion. A total of 302 participants (18-45 y) were included in body mass and composition analysis, and 248 were included in the strength analysis. A significant effect was found on TBM. However, there were no significant effects for FFM, FM, or strength outcomes. We conclude that HMB produces a small effect on TBM gain, but this effect does not translate into significantly greater increases in FFM, strength or decreases in FM during periods of RET. Our findings do not support the use of HMB aiming at improvement of body composition or strength with RET.


Asunto(s)
Suplementos Dietéticos , Leucina/administración & dosificación , Entrenamiento de Fuerza , Adolescente , Adulto , Composición Corporal/efectos de los fármacos , Índice de Masa Corporal , Bases de Datos Factuales , Femenino , Humanos , Masculino , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Ensayos Clínicos Controlados Aleatorios como Asunto , Sensibilidad y Especificidad , Valeratos/metabolismo , Adulto Joven
18.
Nutrients ; 12(2)2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32098129

RESUMEN

The leucine metabolite, ß-hydroxy-ß-methyl butyrate (HMB), is widely used in human nutrition and animal production as a nutritional supplement. Although the HMB usage during late gestation has been demonstrated to have a positive effect on fetal development, knowledge on net absorption and metabolism of HMB and impact of HMB on branched chain amino acids (BCAAs) metabolism is lacking. To address this, we conducted a study using pigs during the perinatal period as a model organism. Eight-second parity sows were fitted with indwelling catheters in the femoral artery and in the portal, hepatic, femoral, and mesenteric veins. Eight hourly sets of blood samples were taken starting 30 min before the morning meal on day -10 and day -3 relative to parturition. Four control (CON) sows were fed a standard lactation diet from day -15 and throughout the experiment, and 4 HMB sows were fed the control diet supplemented with 15 mg Ca(HMB)2/kg body weight mixed in one third of the morning meal from day -10 until parturition. Blood gases, plasma metabolites, milk compositions, and apparent total tract digestibility of nutrients were measured. Arterial plasma concentrations of HMB (p < 0.001), Cys (p < 0.001), and Lys (p < 0.10) were increased in HMB supplemented sows, while arterial plasma triglycerides concentration was decreased (p < 0.05). The net portal recovery of Ala and Asp were increased in HMB sows (p < 0.05). Sows fed HMB had increased hepatic vein flow and net hepatic fluxes of Met, Asn, and Gln (p < 0.05). In contrast, the femoral extraction rates of Ala and Ser were decreased by dietary HMB supplementation (p < 0.05). Dietary HMB treatment and sampling time relative to feeding had an interaction on arterial concentrations, net portal fluxes, and femoral extraction rates of BCAAs. The net portal recovery of HMB was 88%, while 14% of supplemented HMB was excreted through urine and 4% through feces. Moreover, the gastrointestinal tract metabolized 8% while the liver metabolized 12%. Finally, 26% of the daily intake of HMB was secreted via colostrum at the day of farrowing. This study demonstrated that dietary HMB supplementation increased net uptake of amino acids and increased fatty acid oxidation through improving blood flow and insulin sensitivity during the late gestation. Most importantly, oral HMB administration could maintain a stable postprandial absorption and altered metabolism in BCAAs. Net portal flux of HMB at 5.5 to 6.5 h after feeding approached zero, indicating that HMB ideally should be administrated two or three times, daily.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Suplementos Dietéticos , Preñez/metabolismo , Valeratos/metabolismo , Aminoácidos de Cadena Ramificada/sangre , Alimentación Animal , Animales , Ácidos Grasos/sangre , Ácidos Grasos/metabolismo , Femenino , Absorción Gastrointestinal/fisiología , Insulina/sangre , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Modelos Animales , Oxidación-Reducción , Embarazo , Preñez/sangre , Porcinos , Valeratos/administración & dosificación , Valeratos/sangre
19.
Gastroenterology ; 158(8): 2266-2281.e27, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32105727

RESUMEN

BACKGROUND & AIMS: Nonalcoholic fatty liver disease is characterized by excessive hepatic accumulation of triglycerides. We aimed to identify metabolites that differ in plasma of patients with liver steatosis vs healthy individuals (controls) and investigate the mechanisms by which these might contribute to fatty liver in mice. METHODS: We obtained blood samples from 15 patients with liver steatosis and 15 controls from a single center in China (discovery cohort). We performed untargeted liquid chromatography with mass spectrometry analysis of plasma to identify analytes associated with liver steatosis. We then performed targeted metabolomic analysis of blood samples from 2 independent cohorts of individuals who underwent annual health examinations in China (1157 subjects with or without diabetes and 767 subjects with or without liver steatosis; replication cohorts). We performed mass spectrometry analysis of plasma from C57BL/6J mice, germ-free, and mice given antibiotics. C57BL/6J mice were given 0.325% (m/v) N,N,N-trimethyl-5-aminovaleric acid (TMAVA) in their drinking water and placed on a 45% high-fat diet (HFD) for 2 months. Plasma, liver tissues, and fecal samples were collected; fecal samples were analyzed by 16S ribosomal RNA gene sequencing. C57BL/6J mice with CRISPR-mediated disruption of the gene encoding γ-butyrobetaine hydroxylase (BBOX-knockout mice) were also placed on a 45% HFD for 2 months. Hepatic fatty acid oxidation (FAO) in liver tissues was determined by measuring liberation of 3H2O from [3H] palmitic acid. Liver tissues were analyzed by electron microscopy, to view mitochondria, and proteomic analyses. We used surface plasmon resonance analysis to quantify the affinity of TMAVA for BBOX. RESULTS: Levels of TMAVA, believed to be a metabolite of intestinal microbes, were increased in plasma from subjects with liver steatosis compared with controls, in the discovery and replication cohorts. In 1 replication cohort, the odds ratio for fatty liver in subjects with increased liver plasma levels of TMAVA was 1.82 (95% confidence interval [CI], 1.14-2.90; P = .012). Plasma from mice given antibiotics or germ-free mice had significant reductions in TMAVA compared with control mice. We found the intestinal bacteria Enterococcus faecalis and Pseudomonas aeruginosa to metabolize trimethyllysine to TMAVA; levels of trimethyllysine were significantly higher in plasma from patients with steatosis than controls. We found TMAVA to bind and inhibit BBOX, reducing synthesis of carnitine. Mice given TMAVA had alterations in their fecal microbiomes and reduced cold tolerance; their plasma and liver tissue had significant reductions in levels of carnitine and acyl-carnitine and their hepatocytes had reduced mitochondrial FAO compared with mice given only an HFD. Mice given TMAVA on an HFD developed liver steatosis, which was reduced by carnitine supplementation. BBOX-knockout mice had carnitine deficiency and decreased FAO, increasing uptake and liver accumulation of free fatty acids and exacerbating HFD-induced fatty liver. CONCLUSIONS: Levels of TMAVA are increased in plasma from subjects with liver steatosis. In mice, intestinal microbes metabolize trimethyllysine to TMAVA, which reduces carnitine synthesis and FAO to promote steatosis.


Asunto(s)
Bacterias/metabolismo , Microbioma Gastrointestinal , Intestinos/microbiología , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Valeratos/metabolismo , gamma-Butirobetaína Dioxigenasa/antagonistas & inhibidores , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores/sangre , Estudios de Casos y Controles , Estudios Transversales , Dieta Alta en Grasa , Disbiosis , Ácidos Grasos no Esterificados/metabolismo , Heces/microbiología , Femenino , Humanos , Lipólisis/efectos de los fármacos , Hígado/enzimología , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/enzimología , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/patología , Oxidación-Reducción , Regulación hacia Arriba , Valeratos/sangre , Valeratos/toxicidad , Adulto Joven , gamma-Butirobetaína Dioxigenasa/genética , gamma-Butirobetaína Dioxigenasa/metabolismo
20.
J Cachexia Sarcopenia Muscle ; 11(2): 564-577, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31994349

RESUMEN

BACKGROUND: Sarcopenia is an aging-induced deterioration of skeletal muscle mass and function. Low-magnitude high-frequency vibration (LMHFV) was shown to improve muscle functions and ß-hydroxy-ß-methylbutyrate (HMB) to increase muscle mass and strength. Muscle-derived stem cells (MDSCs) are progenitor cells important for muscle regeneration. We hypothesized that LMHFV and HMB could retard sarcopenia by reducing fat infiltration through inhibiting adipogenesis in MDSCs. METHODS: Senescence-accelerated mouse P8 male mice were randomized into control (CTL), HMB, LMHFV (VIB), and combined (COM) groups. Interventions started at age of month 7 and assessed at 1, 2, and 3 months post-intervention by densitometry, histology, and functional tests. In vitro, MDSCs isolated from gastrocnemius of senescence-accelerated mouse P8 mice were characterized, randomized into CTL, VIB, HMB, and COM groups, and assessed by oil red O staining, mRNA, and protein expression. RESULTS: At 2 months post-intervention, percentage lean mass of HMB, VIB, and COM groups were significantly higher than CTL group. Twitch, tetanic, and specific tetanic forces of COM group were higher, while specific twitch force of both VIB and COM groups were higher. Grip strength of HMB, VIB, and COM groups were higher. Histologically, both VIB and COM groups presented lower oil red O area than CTL group. Type I muscle fibre in CTL group was higher than HMB, VIB, and COM groups. MDSC were detected in situ by immunofluorescence stain with stem cell antigen-1 signals confirmed with higher ß-catenin expression in the COM group. The observations were also confirmed in vitro, MDSCs in the HMB, VIB, and COM groups presented lower adipogenesis vs. the CTL group. ß-Catenin mRNA and protein expressions were lower in the CTL group while their relationship was further validated through ß-catenin knock-down approach. CONCLUSIONS: Our results showed that combined LMHFV and HMB interventions enhanced muscle strength and decreased percentage fat mass and intramuscular fat infiltration as compared with either treatment alone. Additive effect of LMHFV and HMB was demonstrated in ß-catenin expression than either treatment in MDSCs and altered cell fate from adipogenesis to myogenesis, leading to inhibition of intramuscular lipid accumulation. Wnt/ß-catenin signalling pathway was found to be the predominant regulatory mechanism through which LMHFV and HMB combined treatment suppressed MDSCs adipogenesis.


Asunto(s)
Adipogénesis/fisiología , Sarcopenia/fisiopatología , Valeratos/metabolismo , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Humanos , Inyecciones Intramusculares , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...