Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiologyopen ; 9(10): e1111, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32856395

RESUMEN

A large variety of microbes are present in the human gut, some of which are considered to interact with each other. Most of these interactions involve bacterial metabolites. Phascolarctobacterium faecium hardly uses carbohydrates for growth and instead uses succinate as a substrate. This study investigated the growth behavior of the co-culture of the succinate-specific utilizer P. faecium and the succinogenic gut commensal Bacteroides thetaiotaomicron. Succinate production by B. thetaiotaomicron supported the growth of P. faecium and concomitant propionate production via the succinate pathway. The succinate produced was completely converted to propionate. This result was comparable with the monoculture of P. faecium in the medium supplemented with 1% (w/v) succinate. We analyzed the transcriptional response (RNA-Seq) between the mono- and co-culture of P. faecium and B. thetaiotaomicron. Comparison of the expression levels of genes of P. faecium between the mono- and co-cultured conditions highlighted that the genes putatively involved in the transportation of succinate were notably expressed under the co-cultured conditions. Differential expression analysis showed that the presence of P. faecium induced changes in the B. thetaiotaomicron transcriptional pattern, for example, expression changes in the genes for vitamin B12 transporters and reduced expression of glutamate-dependent acid resistance system-related genes. Also, transcriptome analysis of P. faecium suggested that glutamate and succinate might be used as sources of succinyl-CoA, an intermediate in the succinate pathway. This study revealed some survival strategies of asaccharolytic bacteria, such as Phascolarctobacterium spp., in the human gut.


Asunto(s)
Bacteroides thetaiotaomicron/fisiología , Ácido Succínico/metabolismo , Veillonellaceae/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/crecimiento & desarrollo , Microbioma Gastrointestinal , Interacciones Microbianas , Veillonellaceae/genética , Veillonellaceae/crecimiento & desarrollo
2.
Nat Med ; 26(4): 608-617, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32066975

RESUMEN

The involvement of host immunity in the gut microbiota-mediated colonization resistance to Clostridioides difficile infection (CDI) is incompletely understood. Here, we show that interleukin (IL)-22, induced by colonization of the gut microbiota, is crucial for the prevention of CDI in human microbiota-associated (HMA) mice. IL-22 signaling in HMA mice regulated host glycosylation, which enabled the growth of succinate-consuming bacteria Phascolarctobacterium spp. within the gut microbiome. Phascolarctobacterium reduced the availability of luminal succinate, a crucial metabolite for the growth of C. difficile, and therefore prevented the growth of C. difficile. IL-22-mediated host N-glycosylation is likely impaired in patients with ulcerative colitis (UC) and renders UC-HMA mice more susceptible to CDI. Transplantation of healthy human-derived microbiota or Phascolarctobacterium reduced luminal succinate levels and restored colonization resistance in UC-HMA mice. IL-22-mediated host glycosylation thus fosters the growth of commensal bacteria that compete with C. difficile for the nutritional niche.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Clostridioides difficile/inmunología , Infecciones por Clostridium/prevención & control , Microbioma Gastrointestinal/fisiología , Interleucinas/fisiología , Animales , Bacterias/efectos de los fármacos , Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/inmunología , Enterocolitis Seudomembranosa/inmunología , Enterocolitis Seudomembranosa/metabolismo , Enterocolitis Seudomembranosa/microbiología , Enterocolitis Seudomembranosa/prevención & control , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Glicosilación/efectos de los fármacos , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Interleucinas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Veillonellaceae/efectos de los fármacos , Veillonellaceae/crecimiento & desarrollo , Veillonellaceae/metabolismo , Interleucina-22
3.
Bioelectrochemistry ; 128: 83-93, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30959398

RESUMEN

Microbial electrosynthesis is a bioprocess where microbes reduce CO2 into multicarbon chemicals with electrons derived from the cathode of a bioelectrochemical reactor. Developing a highly productive microbial electrosynthesis reactor requires excellent electrical connection between the electrochemical setup, the cathode, and the microbes. Copper is a highly conductive cathode material widely employed in electrochemical apparatuses. However, the antimicrobial properties of copper limit its usage for bioelectrochemistry. Here, biocompatible reduced graphene oxide coated on copper foam is synthesized as a cathode material for the microbial electrosynthesis of acetate from CO2. Dense and electroactive Sporomusa ovata biofilms form on the surface of reduced graphene oxide-coated copper foam electrodes while only scattered and damaged cells cover uncoated copper electrodes. Besides the formation of metabolically-active biofilms, acetate production rate from CO2 is 21.3 and 43.5-fold higher with this novel composite cathode compared with an uncoated copper foam cathode and a reversed cathode made of reduced graphene oxide foam coated with copper, respectively. The results demonstrate that reduced graphene oxide can be employed as a biocompatible and conductive buffer between microbes and bactericidal electrode materials with excellent electrochemical property to enable highly performant microbial electrosynthesis.


Asunto(s)
Acetatos/química , Fuentes de Energía Bioeléctrica , Reactores Biológicos , Dióxido de Carbono/química , Cobre/química , Técnicas Electroquímicas/instrumentación , Electrodos , Grafito/química , Veillonellaceae/metabolismo , Materiales Biocompatibles , Biopelículas , Oxidación-Reducción , Veillonellaceae/crecimiento & desarrollo
4.
Nutrients ; 10(2)2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29373513

RESUMEN

BACKGROUND: Almond processing has been shown to differentially impact metabolizable energy; however, the effect of food form on the gastrointestinal microbiota is under-investigated. OBJECTIVE: We aimed to assess the interrelationship of almond consumption and processing on the gastrointestinal microbiota. DESIGN: A controlled-feeding, randomized, five-period, crossover study with washouts between diet periods was conducted in healthy adults (n = 18). Treatments included: (1) zero servings/day of almonds (control); (2) 1.5 servings (42 g)/day of whole almonds; (3) 1.5 servings/day of whole, roasted almonds; (4) 1.5 servings/day of roasted, chopped almonds; and (5) 1.5 servings/day of almond butter. Fecal samples were collected at the end of each three-week diet period. RESULTS: Almond consumption increased the relative abundances of Lachnospira, Roseburia, and Dialister (p ≤ 0.05). Comparisons between control and the four almond treatments revealed that chopped almonds increased Lachnospira, Roseburia, and Oscillospira compared to control (p < 0.05), while whole almonds increased Dialister compared to control (p = 0.007). There were no differences between almond butter and control. CONCLUSIONS: These results reveal that almond consumption induced changes in the microbial community composition of the human gastrointestinal microbiota. Furthermore, the degree of almond processing (e.g., roasting, chopping, and grinding into butter) differentially impacted the relative abundances of bacterial genera.


Asunto(s)
Disbiosis/prevención & control , Alimentos Funcionales , Microbioma Gastrointestinal , Nueces , Prunus dulcis , Anciano , Clostridiales/clasificación , Clostridiales/crecimiento & desarrollo , Clostridiales/aislamiento & purificación , Condimentos , Culinaria , Estudios Cruzados , Disbiosis/microbiología , Heces/microbiología , Femenino , Estudios de Seguimiento , Manipulación de Alimentos , Humanos , Masculino , Persona de Mediana Edad , Tipificación Molecular , Veillonellaceae/clasificación , Veillonellaceae/crecimiento & desarrollo , Veillonellaceae/aislamiento & purificación
5.
Br J Nutr ; 116(11): 1869-1877, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27974055

RESUMEN

Aberrant microbiota composition and function have been linked to several pathologies, including type 2 diabetes. In animal models, prebiotics induce favourable changes in the intestinal microbiota, intestinal permeability (IP) and endotoxaemia, which are linked to concurrent improvement in glucose tolerance. This is the first study to investigate the link between IP, glucose tolerance and intestinal bacteria in human type 2 diabetes. In all, twenty-nine men with well-controlled type 2 diabetes were randomised to a prebiotic (galacto-oligosaccharide mixture) or placebo (maltodextrin) supplement (5·5 g/d for 12 weeks). Intestinal microbial community structure, IP, endotoxaemia, inflammatory markers and glucose tolerance were assessed at baseline and post intervention. IP was estimated by the urinary recovery of oral 51Cr-EDTA and glucose tolerance by insulin-modified intravenous glucose tolerance test. Intestinal microbial community analysis was performed by high-throughput next-generation sequencing of 16S rRNA amplicons and quantitative PCR. Prebiotic fibre supplementation had no significant effects on clinical outcomes or bacterial abundances compared with placebo; however, changes in the bacterial family Veillonellaceae correlated inversely with changes in glucose response and IL-6 levels (r -0·90, P=0·042 for both) following prebiotic intake. The absence of significant changes to the microbial community structure at a prebiotic dosage/length of supplementation shown to be effective in healthy individuals is an important finding. We propose that concurrent metformin treatment and the high heterogeneity of human type 2 diabetes may have played a significant role. The current study does not provide evidence for the role of prebiotics in the treatment of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Disbiosis/dietoterapia , Microbioma Gastrointestinal/fisiología , Interacciones Huésped-Patógeno , Prebióticos , Trisacáridos/uso terapéutico , Adulto , Anciano , Biomarcadores/sangre , Estudios de Cohortes , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/microbiología , Método Doble Ciego , Disbiosis/complicaciones , Disbiosis/metabolismo , Disbiosis/microbiología , Endotoxemia/complicaciones , Endotoxemia/inmunología , Endotoxemia/microbiología , Endotoxemia/prevención & control , Estudios de Seguimiento , Microbioma Gastrointestinal/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/uso terapéutico , Mediadores de Inflamación/sangre , Resistencia a la Insulina , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Londres , Masculino , Metformina/efectos adversos , Metformina/uso terapéutico , Persona de Mediana Edad , Veillonellaceae/efectos de los fármacos , Veillonellaceae/crecimiento & desarrollo , Veillonellaceae/inmunología , Veillonellaceae/fisiología
6.
Appl Environ Microbiol ; 80(7): 2133-41, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24463969

RESUMEN

Corrinoids are essential cofactors of reductive dehalogenases in Dehalococcoides mccartyi, an important bacterium in bioremediation, yet sequenced D. mccartyi strains do not possess the complete pathway for de novo corrinoid biosynthesis. Pelosinus sp. and Desulfovibrio sp. have been detected in dechlorinating communities enriched from contaminated groundwater without exogenous cobalamin corrinoid. To investigate the corrinoid-related interactions among key members of these communities, we constructed consortia by growing D. mccartyi strain 195 (Dhc195) in cobalamin-free, trichloroethene (TCE)- and lactate-amended medium in cocultures with Desulfovibrio vulgaris Hildenborough (DvH) or Pelosinus fermentans R7 (PfR7) and with both in tricultures. Only the triculture exhibited sustainable dechlorination and cell growth when a physiological level of 5,6-dimethylbenzimidazole (DMB), the lower ligand of cobalamin, was provided. In the triculture, DvH provided hydrogen while PfR7 provided corrinoids to Dhc195, and the initiation of dechlorination and Dhc195 cell growth was highly dependent on the growth of PfR7. Corrinoid analysis indicated that Dhc195 imported and remodeled the phenolic corrinoids produced by PfR7 into cobalamin in the presence of DMB. Transcriptomic analyses of Dhc195 showed the induction of the CbiZ-dependent corrinoid-remodeling pathway and BtuFCD corrinoid ABC transporter genes during corrinoid salvaging and remodeling. In contrast, another operon annotated to encode a putative iron/cobalamin ABC transporter (DET1174-DET1176) was induced when cobalamin was exogenously provided. Interestingly, a global upregulation of phage-related genes was observed when PfR7 was present. These findings provide insights into both the gene regulation of corrinoid salvaging and remodeling in Dhc195 when it is grown without exogenous cobalamin and microbe-to-microbe interactions in dechlorinating microbial communities.


Asunto(s)
Chloroflexi/crecimiento & desarrollo , Chloroflexi/metabolismo , Corrinoides/metabolismo , Ácido Láctico/metabolismo , Consorcios Microbianos , Bencimidazoles/metabolismo , Cloro/metabolismo , Medios de Cultivo/química , Desulfovibrio vulgaris/crecimiento & desarrollo , Desulfovibrio vulgaris/metabolismo , Fermentación , Hidrógeno/metabolismo , Transcriptoma , Veillonellaceae/crecimiento & desarrollo , Veillonellaceae/metabolismo
7.
J Bacteriol ; 195(17): 3940-6, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23813732

RESUMEN

Using electron cryotomography, we show that the Gram-negative sporulating bacterium Acetonema longum synthesizes high-density storage granules at the leading edges of engulfing membranes. The granules appear in the prespore and increase in size and number as engulfment proceeds. Typically, a cluster of 8 to 12 storage granules closely associates with the inner spore membrane and ultimately accounts for ∼7% of the total volume in mature spores. Energy-dispersive X-ray spectroscopy (EDX) analyses show that the granules contain high levels of phosphorus, oxygen, and magnesium and therefore are likely composed of polyphosphate (poly-P). Unlike the Gram-positive Bacilli and Clostridia, A. longum spores retain their outer spore membrane upon germination. To explore the possibility that the granules in A. longum may be involved in this unique process, we imaged purified Bacillus cereus, Bacillus thuringiensis, Bacillus subtilis, and Clostridium sporogenes spores. Even though B. cereus and B. thuringiensis contain the ppk and ppx genes, none of the spores from Gram-positive bacteria had granules. We speculate that poly-P in A. longum may provide either the energy or phosphate metabolites needed for outgrowth while retaining an outer membrane.


Asunto(s)
Polifosfatos/análisis , Esporas Bacterianas/química , Esporas Bacterianas/crecimiento & desarrollo , Veillonellaceae/química , Veillonellaceae/crecimiento & desarrollo , Microscopía por Crioelectrón , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/ultraestructura , Tomografía con Microscopio Electrónico , Bacterias Grampositivas/química , Bacterias Grampositivas/ultraestructura , Magnesio/análisis , Oxígeno/análisis , Espectrometría por Rayos X , Esporas Bacterianas/ultraestructura , Veillonellaceae/ultraestructura
8.
Appl Microbiol Biotechnol ; 97(13): 5771-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23636693

RESUMEN

Propionic acid is presently mainly produced by chemical synthesis. For many applications, especially in feed and food industries, a fermentative production of propionic acid from cheap and renewable resources is of large interest. In this work, we investigated the use of a co-culture to convert household flour to propionic acid. Batch and fed-batch fermentations of hydrolyzed flour and a process of simultaneous saccharification and fermentation were examined and compared. Fed-batch culture with substrate limitation was found to be the most efficient process, reaching a propionic acid concentration of 30 g/L and a productivity of 0.33 g/L*h. This is the highest productivity so far achieved with free cells on media containing flour hydrolysate or glucose as carbon source. Batch culture and culture with controlled saccharification and fermentation delivered significantly lower propionic acid production (17-20 g/L) due to inhibition by the intermediate product lactate. It is concluded that co-culture fermentation of flour hydrolysate can be considered as an appealing bioprocess for the production of propionic acid.


Asunto(s)
Harina , Lactobacillus/crecimiento & desarrollo , Lactobacillus/metabolismo , Propionatos/metabolismo , Veillonellaceae/crecimiento & desarrollo , Veillonellaceae/metabolismo , Reactores Biológicos/microbiología , Biotecnología/métodos , Fermentación , Hidrólisis
9.
Lipids ; 48(7): 749-55, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23609414

RESUMEN

The hydrolysis of free fatty acids from lipids is a prerequisite for biohydrogenation, a process that effectively saturates free fatty acids. Anaerovibrio lipolyticus 5s and Butyrivibrio fibrisolvens have long been thought to be the major contributors to ruminal lipolysis; however, Propionibacterium avidum and acnes recently have been identified as contributing lipase activity in the rumen. In order to further characterize the lipase activity of these bacterial populations, each was grown with three different lipid substrates, olive oil, corn oil, and flaxseed oil (3 %). Because different finishing rations contain varying levels of glycogen (a source of free glucose) this study also documented the effects of glucose on lipolysis. P. avidum and A. lipolyticus 5s demonstrated the most rapid rates (P < 0.05) of lipolysis for cultures grown with olive oil and flaxseed oil, respectively. A. lipolyticus, B. fibrisolvens, and P. avidum more effectively hydrolyzed flaxseed oil than olive oil or corn oil, especially in the presence of 0.02 % glucose. Conversely, P. acnes hydrolyzed corn oil more readily than olive oil or flaxseed oil and glucose had no effect on lipolytic rate. Thus, these bacterial species demonstrated different specificities for oil substrates and different sensitivities to glucose.


Asunto(s)
Butyrivibrio/enzimología , Glucosa/metabolismo , Lipasa/metabolismo , Aceites de Plantas/metabolismo , Propionibacterium/enzimología , Rumen/microbiología , Veillonellaceae/enzimología , Animales , Butyrivibrio/efectos de los fármacos , Butyrivibrio/crecimiento & desarrollo , Bovinos , Aceite de Maíz/metabolismo , Medios de Cultivo , Glucosa/farmacología , Aceite de Linaza/metabolismo , Lipólisis/efectos de los fármacos , Aceite de Oliva , Propionibacterium/efectos de los fármacos , Propionibacterium/crecimiento & desarrollo , Rumen/efectos de los fármacos , Especificidad por Sustrato , Veillonellaceae/efectos de los fármacos , Veillonellaceae/crecimiento & desarrollo
10.
J Bacteriol ; 195(9): 1902-11, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23417488

RESUMEN

Phenolyl cobamides are unique members of a class of cobalt-containing cofactors that includes vitamin B12 (cobalamin). Cobamide cofactors facilitate diverse reactions in prokaryotes and eukaryotes. Phenolyl cobamides are structurally and chemically distinct from the more commonly used benzimidazolyl cobamides such as cobalamin, as the lower axial ligand is a phenolic group rather than a benzimidazole. The functional significance of this difference is not well understood. Here we show that in the bacterium Sporomusa ovata, the only organism known to synthesize phenolyl cobamides, several cobamide-dependent acetogenic metabolisms have a requirement or preference for phenolyl cobamides. The addition of benzimidazoles to S. ovata cultures results in a decrease in growth rate when grown on methanol, 3,4-dimethoxybenzoate, H2 plus CO2, or betaine. Suppression of native p-cresolyl cobamide synthesis and production of benzimidazolyl cobamides occur upon the addition of benzimidazoles, indicating that benzimidazolyl cobamides are not functionally equivalent to the phenolyl cobamide cofactors produced by S. ovata. We further show that S. ovata is capable of incorporating other phenolic compounds into cobamides that function in methanol metabolism. These results demonstrate that S. ovata can incorporate a wide range of compounds as cobamide lower ligands, despite its preference for phenolyl cobamides in the metabolism of certain energy substrates. To our knowledge, S. ovata is unique among cobamide-dependent organisms in its preferential utilization of phenolyl cobamides.


Asunto(s)
Bencimidazoles/metabolismo , Cobamidas/metabolismo , Veillonellaceae/crecimiento & desarrollo , Veillonellaceae/metabolismo , Regulación hacia Abajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...