Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.233
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125879

RESUMEN

This study investigates whether hAFSCs can improve bladder function in partial bladder outlet obstruction (pBOO) rats by targeting specific cellular pathways. Thirty-six female rats were divided into sham and pBOO groups with and without hAFSCs single injection into the bladder wall. Cystometry, inflammation/hypoxia, collagen/fibrosis/gap junction proteins, and smooth muscle myosin/muscarinic receptors were examined at 2 and 6 weeks after pBOO or sham operation. In pBOO bladders, significant increases in peak voiding pressure and residual volume stimulated a significant upregulation of inflammatory and hypoxic factors, TGF-ß1 and Smad2/3. Collagen deposition proteins, collagen 1 and 3, were significantly increased, but bladder fibrosis markers, caveolin 1 and 3, were significantly decreased. Gap junction intercellular communication protein, connexin 43, was significantly increased, but the number of caveolae was significantly decreased. Markers for the smooth muscle phenotype, myosin heavy chain 11 and guanylate-dependent protein kinase, as well as M2 muscarinic receptors, were significantly increased in cultured detrusor cells. However, hAFSCs treatment could significantly ameliorate bladder dysfunction by inactivating the TGFß-Smad signaling pathway, reducing collagen deposition, disrupting gap junctional intercellular communication, and modifying the expressions of smooth muscle myosin and caveolae/caveolin proteins. The results support the potential value of hAFSCs-based treatment of bladder dysfunction in BOO patients.


Asunto(s)
Conexina 43 , Obstrucción del Cuello de la Vejiga Urinaria , Vejiga Urinaria , Animales , Obstrucción del Cuello de la Vejiga Urinaria/metabolismo , Obstrucción del Cuello de la Vejiga Urinaria/patología , Femenino , Ratas , Vejiga Urinaria/metabolismo , Vejiga Urinaria/fisiopatología , Vejiga Urinaria/patología , Conexina 43/metabolismo , Trasplante de Células Madre/métodos , Transducción de Señal , Ratas Sprague-Dawley , Proteína Smad2/metabolismo , Modelos Animales de Enfermedad , Uniones Comunicantes/metabolismo , Colágeno/metabolismo
2.
Bull Exp Biol Med ; 177(1): 47-50, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38955852

RESUMEN

Ectonucleotidases play an important role in regulating the level of extracellular nucleotides and nucleosides and are an important part of the regulation of the effects of adenosine and ATP on adenosine and P2 receptors, respectively. We have previously established the ambiguous effect of P2 receptor agonists on the contractile activity of smooth muscle tissue in rats with the valproate model of autism. In this work, HPLC was used to evaluate the activity of ectonucleotidases in the smooth muscle tissues of the internal organs of rats with a valproate model of autism. The activity of ectonucleotidases was significantly higher in the smooth muscle tissues of the duodenum, vas deferens, and bladder, but lower in the ileum and uterus. The results obtained make it possible to compare the activity of ectonucleotidases identified here with changes in P2 receptor-mediated contractility of smooth muscle tissues revealed in our previous experiments.


Asunto(s)
Trastorno Autístico , Contracción Muscular , Músculo Liso , Vejiga Urinaria , Ácido Valproico , Conducto Deferente , Animales , Ratas , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Ácido Valproico/farmacología , Trastorno Autístico/metabolismo , Trastorno Autístico/inducido químicamente , Trastorno Autístico/tratamiento farmacológico , Masculino , Femenino , Conducto Deferente/efectos de los fármacos , Conducto Deferente/metabolismo , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo , Vejiga Urinaria/enzimología , Contracción Muscular/efectos de los fármacos , Útero/efectos de los fármacos , Útero/metabolismo , Íleon/efectos de los fármacos , Íleon/metabolismo , Íleon/enzimología , Modelos Animales de Enfermedad , Ratas Wistar , Receptores Purinérgicos P2/metabolismo , Adenosina Trifosfatasas/metabolismo
3.
Eur J Med Res ; 29(1): 381, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039528

RESUMEN

Bladder cancer remains a significant health challenge due to its high recurrence and progression rates. This study aims to evaluate the role of POLR3G in the development and progression of bladder cancer and the potential of POLR3G to serve as a novel therapeutic target. We constructed a bladder cancer model in Wistar rats by administering N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN), which successfully induced a transition from normal mucosa to hyperplasia and ultimately to urothelial carcinoma. We observed a progressive upregulation of POLR3G expression during the bladder cancer development and progression. To investigate the functional role of POLR3G, we performed functional experiments in bladder cancer cell lines. The results demonstrated that knocking down POLR3G significantly inhibited cell proliferation, migration, and invasion. We further conducted RNA sequencing on POLR3G-knockdown bladder cancer cells, and Metascape was employed to perform the functional enrichment analysis of the differentially expressed genes (DEGs). Enrichment analysis revealed the enrichment of DEGs in the RNA polymerase and apoptotic cleavage of cellular proteins pathways, as well as their involvement in the Wnt and MAPK signaling pathways. The downregulation of Wnt pathway-related proteins such as Wnt5a/b, DVL2, LRP-6, and phosphorylated LRP-6 upon POLR3G knockdown was further confirmed by Western blotting, indicating that POLR3G might influence bladder cancer behavior through the Wnt signaling pathway. Our findings suggest that POLR3G plays a crucial role in bladder cancer progression and could serve as a potential therapeutic target. Future studies should focus on the detailed mechanisms by which POLR3G regulates these signaling pathways and its potential as a biomarker for early detection and prognosis of bladder cancer.


Asunto(s)
Regulación hacia Arriba , Neoplasias de la Vejiga Urinaria , Urotelio , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Animales , Ratas , Humanos , Urotelio/metabolismo , Urotelio/patología , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Ratas Wistar , Movimiento Celular/genética , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Línea Celular Tumoral , Vía de Señalización Wnt/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
4.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999984

RESUMEN

Enhanced electrical activity in detrusor smooth muscle (DSM) cells is a key factor in detrusor overactivity which causes overactive bladder pathological disorders. Transient receptor potential melastatin-4 (TRPM4) channels, which are calcium-activated cation channels, play a role in regulating DSM electrical activities. These channels likely contribute to depolarizing the DSM cell membrane, leading to bladder overactivity. Our research focuses on understanding TRPM4 channel function in the DSM cells of mice, using computational modeling. We aimed to create a detailed computational model of the TRPM4 channel based on existing electrophysiological data. We employed a modified Hodgkin-Huxley model with an incorporated TRP-like current to simulate action potential firing in response to current and synaptic stimulus inputs. Validation against experimental data showed close agreement with our simulations. Our model is the first to analyze the TRPM4 channel's role in DSM electrical activity, potentially revealing insights into bladder overactivity. In conclusion, TRPM4 channels are pivotal in regulating human DSM function, and TRPM4 channel inhibitors could be promising targets for treating overactive bladder.


Asunto(s)
Simulación por Computador , Canales Catiónicos TRPM , Vejiga Urinaria Hiperactiva , Animales , Humanos , Ratones , Potenciales de Acción , Fenómenos Electrofisiológicos , Músculo Liso/metabolismo , Músculo Liso/fisiopatología , Canales Catiónicos TRPM/metabolismo , Vejiga Urinaria/metabolismo , Vejiga Urinaria/fisiopatología , Vejiga Urinaria Hiperactiva/metabolismo , Vejiga Urinaria Hiperactiva/fisiopatología
5.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000291

RESUMEN

Urinary bladder cancer (BC) inflicts a significant impairment of life quality and poses a high mortality risk. Schistosoma haematobium infection can cause BC, and the urinary microbiota of BC patients differs from healthy controls. Importantly, intravesical instillation of the bacterium Bacillus Calmette-Guerin stands as the foremost therapy for non-muscle invasive BC. Hence, studying the receptors and signaling molecules orchestrating bacterial recognition and the cellular response in the context of BC is of paramount importance. Thus, we challenged Toll-like receptor 4 (Tlr4) and myeloid differentiation factor 88 (Myd88) knock-out (KO) mice with N-butyl-N-(4-hydroxylbutyl)-nitrosamine (BBN), a well-known urinary bladder carcinogen. Gut microbiota, gene expression, and urinary bladder pathology were followed. Acute exposure to BBN did not reveal a difference in bladder pathology despite differences in the animal's ability to recognize and react to bacteria. However, chronic treatment resulted in reduced cancer invasiveness among Myd88KO mice while the absence of functional Tlr4 did not influence BC development or progression. These differences correlate with a heightened abundance of the Faecalibaculum genus and the lowest microbial diversity observed among Myd88KO mice. The presented data underscore the important role of microbiota composition and MyD88-mediated signaling during bladder carcinogenesis.


Asunto(s)
Microbioma Gastrointestinal , Ratones Noqueados , Factor 88 de Diferenciación Mieloide , Transducción de Señal , Receptor Toll-Like 4 , Neoplasias de la Vejiga Urinaria , Animales , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/microbiología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Ratones , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Butilhidroxibutilnitrosamina/toxicidad , Carcinogénesis , Vejiga Urinaria/patología , Vejiga Urinaria/microbiología , Vejiga Urinaria/metabolismo , Femenino , Ratones Endogámicos C57BL , Microbiota , Humanos
6.
J Physiol ; 602(15): 3693-3713, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38970617

RESUMEN

Transient receptor potential vanilloid 1 (TRPV1) is a calcium-permeable ion channel that is gated by the pungent constituent of red chili pepper, capsaicin, and by related chemicals from the group of vanilloids, in addition to noxious heat. It is expressed mostly in sensory neurons to act as a detector of painful stimuli produced by pungent chemicals and high temperatures. Although TRPV1 is also found outside the sensory nervous system, its expression and function in the bladder detrusor smooth muscle (DSM) remain controversial. Here, by using Ca2+ imaging and patch clamp on isolated rat DSM cells, in addition to tensiometry on multicellular DSM strips, we show that TRPV1 is expressed functionally in only a fraction of DSM cells, in which it acts as an endoplasmic reticulum Ca2+-release channel responsible for the capsaicin-activated [Ca2+]i rise. Carbachol-stimulated contractions of multicellular DSM strips contain a TRPV1-dependent component, which is negligible in the circular DSM but reaches ≤50% in the longitudinal DSM. Activation of TRPV1 in rat DSM during muscarinic cholinergic stimulation is ensured by phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists. Immunofluorescence detection of TRPV1 protein in bladder sections and isolated DSM cells confirmed both its preferential expression in the longitudinal DSM sublayer and its targeting to the endoplasmic reticulum. We conclude that TRPV1 is an essential contributor to the cholinergic contraction of bladder longitudinal DSM, which might be important for producing spatial and/or temporal anisotropy of bladder wall deformation in different regions during parasympathetic stimulation. KEY POINTS: The transient receptor potential vanilloid 1 (TRPV1) heat/capsaicin receptor/channel is localized in the endoplasmic reticulum membrane of detrusor smooth muscle (DSM) cells of the rat bladder, operating as a calcium-release channel. Isolated DSM cells are separated into two nearly equal groups, within which the cells either show or do not show TRPV1-dependent [Ca2+]i rise. Carbachol-stimulated, muscarinic ACh receptor-mediated contractions of multicellular DSM strips contain a TRPV1-dependent component. This component is negligible in the circular DSM but reaches ≤50% in longitudinal DSM. Activation of TRPV1 in rat DSM during cholinergic stimulation involves phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists.


Asunto(s)
Contracción Muscular , Músculo Liso , Canales Catiónicos TRPV , Vejiga Urinaria , Animales , Canales Catiónicos TRPV/metabolismo , Vejiga Urinaria/fisiología , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo , Contracción Muscular/fisiología , Músculo Liso/fisiología , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Ratas , Masculino , Carbacol/farmacología , Capsaicina/farmacología , Calcio/metabolismo , Ratas Sprague-Dawley , Ratas Wistar
7.
Sci Rep ; 14(1): 16134, 2024 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997336

RESUMEN

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a complex chronic pain disorder with an elusive etiology and nonspecific symptoms. Although numerous animal models with phenotypes similar to human disease have been established, no available regimen can consistently alleviate clinical symptoms. This dilemma led us to question whether current animal models adequately represent IC/BPS. We compared four commonly used IC/BPS rat models to determine their diverse histopathological and molecular patterns. Female rats were given single treatments with hydrochloric acid (HCL), acetic acid (AA), protamine sulfate plus lipopolysaccharide (PS + LPS), or cyclophosphamide (CYP) to induce IC/BPS. Bladder sections were stained for histopathologic evaluation, and mRNA expression profiles were examined using next-generation sequencing and gene set analyses. Mast cell counts were significantly higher in the HCL and AA groups than in the PS + LPS, CYP, and control groups, but only the AA group showed significant collagen accumulation. The models differed substantially in terms of their gene ontology and Kyoto encyclopedia of genes and genomes pathways. Our observations suggest that none of these rat models fully reflects the complexity of IC/BPS. We recommend that future studies apply and compare multiple models simultaneously to fully replicate the complicated features of IC/BPS.


Asunto(s)
Cistitis Intersticial , Modelos Animales de Enfermedad , Animales , Cistitis Intersticial/patología , Cistitis Intersticial/inducido químicamente , Cistitis Intersticial/metabolismo , Femenino , Ratas , Vejiga Urinaria/patología , Vejiga Urinaria/metabolismo , Vejiga Urinaria/efectos de los fármacos , Ratas Sprague-Dawley , Mastocitos/metabolismo , Ciclofosfamida/efectos adversos , Ácido Clorhídrico/efectos adversos , Ácido Clorhídrico/toxicidad , Lipopolisacáridos
8.
Sci Rep ; 14(1): 15757, 2024 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-38977772

RESUMEN

Urinary bladder dysfunction can be caused by environmental, genetic, and developmental insults. Depending upon insult severity, the bladder may lose its ability to maintain volumetric capacity and intravesical pressure resulting in renal deterioration. Bladder augmentation enterocystoplasty (BAE) is utilized to increase bladder capacity to preserve renal function using autologous bowel tissue as a "patch." To avoid the clinical complications associated with this procedure, we have engineered composite grafts comprised of autologous bone marrow mesenchymal stem cells (MSCs) co-seeded with CD34+ hematopoietic stem/progenitor cells (HSPCs) onto a pliable synthetic scaffold [poly(1,8-octamethylene-citrate-co-octanol)(POCO)] or a biological scaffold (SIS; small intestinal submucosa) to regenerate bladder tissue in our baboon bladder augmentation model. We set out to determine the global protein expression profile of bladder tissue that has undergone regeneration with the aforementioned stem cell seeded scaffolds along with baboons that underwent BAE. Data demonstrate that POCO and SIS grafted animals share high protein homogeneity between native and regenerated tissues while BAE animals displayed heterogeneous protein expression between the tissues following long-term engraftment. We posit that stem cell-seeded scaffolds can recapitulate tissue that is nearly indistinguishable from native tissue at the protein level and may be used in lieu of procedures such as BAE.


Asunto(s)
Papio , Regeneración , Andamios del Tejido , Vejiga Urinaria , Animales , Vejiga Urinaria/metabolismo , Andamios del Tejido/química , Proteómica/métodos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos/métodos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología
9.
Front Endocrinol (Lausanne) ; 15: 1384115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38883607

RESUMEN

Background: Estrogen homeostasis is crucial for bladder function, and estrogen deprivation resulting from menopause, ovariectomy or ovarian dysfunction may lead to various bladder dysfunctions. However, the specific mechanisms are not fully understood. Methods: We simulated estrogen deprivation using a rat ovariectomy model and supplemented estrogen through subcutaneous injections. The metabolic characteristics of bladder tissue were analyzed using non-targeted metabolomics, followed by bioinformatics analysis to preliminarily reveal the association between estrogen deprivation and bladder function. Results: We successfully established a rat model with estrogen deprivation and, through multivariate analysis and validation, identified several promising biomarkers represented by 3, 5-tetradecadiencarnitine, lysoPC (15:0), and cortisol. Furthermore, we explored estrogen deprivation-related metabolic changes in the bladder primarily characterized by amino acid metabolism imbalance. Conclusion: This study, for the first time, depicts the metabolic landscape of bladder resulting from estrogen deprivation, providing an important experimental basis for future research on bladder dysfunctions caused by menopause.


Asunto(s)
Estrógenos , Metabolómica , Ovariectomía , Ratas Sprague-Dawley , Vejiga Urinaria , Animales , Femenino , Ratas , Metabolómica/métodos , Vejiga Urinaria/metabolismo , Estrógenos/metabolismo , Metaboloma , Menopausia/metabolismo , Biomarcadores/metabolismo
10.
Am J Physiol Regul Integr Comp Physiol ; 327(3): R291-R303, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38881411

RESUMEN

Multidrug resistance proteins type 4 (MRP4) and 5 (MRP5) play pivotal roles in the transport of cyclic nucleotides in various tissues. However, their specific functions within the lower urinary tract remain relatively unexplored. This study aimed to investigate the effect of pharmacological inhibition of MRPs on cyclic nucleotide signaling in isolated pig bladder. The relaxation responses of the bladder were assessed in the presence of the MRP inhibitor, MK571. The temporal changes in intra- and extracellular levels of cAMP and cGMP in stimulated tissues were determined by mass spectrometry. The gene (ABCC4) and protein (MRP4) expression were also determined. MK571 administration resulted in a modest relaxation effect of approximately 26% in carbachol-precontracted bladders. The relaxation induced by phosphodiesterase inhibitors such as cilostazol, tadalafil, and sildenafil was significantly potentiated in the presence of MK571. In contrast, no significant potentiation was observed in the relaxation induced by substances elevating cAMP levels or stimulators of soluble guanylate cyclase. Following forskolin stimulation, both intracellular and extracellular cAMP concentrations increased by approximately 15.8-fold and 12-fold, respectively. Similarly, stimulation with tadalafil + BAY 41-2272 resulted in roughly 8.2-fold and 3.4-fold increases in intracellular and extracellular cGMP concentrations, respectively. The presence of MK571 reduced only the extracellular levels of cGMP. This study reveals the presence and function of MRP4 transporters within the porcine bladder and paves the way for future research exploring the role of this transporter in both underactive and overactive bladder disorders.NEW & NOTEWORTHY This study investigates the impact of pharmacological inhibition of MRP4 and MRP5 transporters on cyclic nucleotide signaling in isolated pig bladders. MK571 administration led to modest relaxation, with enhanced effects observed in the presence of phosphodiesterase inhibitors. However, substances elevating cAMP levels remained unaffected. MK571 selectively reduced extracellular cGMP levels. These findings shed light on the role of MRP4 transporters in the porcine bladder, opening avenues for further research into bladder disorders.


Asunto(s)
GMP Cíclico , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Vejiga Urinaria , Animales , Vejiga Urinaria/metabolismo , Vejiga Urinaria/efectos de los fármacos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , GMP Cíclico/metabolismo , Porcinos , Quinolinas/farmacología , AMP Cíclico/metabolismo , Relajación Muscular/efectos de los fármacos , Masculino , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Femenino , Transducción de Señal , Inhibidores de Fosfodiesterasa/farmacología , Propionatos
11.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732143

RESUMEN

This study explores low-intensity extracorporeal shock wave therapy (LiESWT)'s efficacy in alleviating detrusor hyperactivity with impaired contractility (DHIC) induced by ovarian hormone deficiency (OHD) in ovariectomized rats. The rats were categorized into the following four groups: sham group; OVX group, subjected to bilateral ovariectomy (OVX) for 12 months to induce OHD; OVX + SW4 group, underwent OHD for 12 months followed by 4 weeks of weekly LiESWT; and OVX + SW8 group, underwent OHD for 12 months followed by 8 weeks of weekly LiESWT. Cystometrogram studies and voiding behavior tracing were used to identify the symptoms of DHIC. Muscle strip contractility was evaluated through electrical-field, carbachol, ATP, and KCl stimulations. Western blot and immunofluorescence analyses were performed to assess the expressions of various markers related to bladder dysfunction. The OVX rats exhibited significant bladder deterioration and overactivity, alleviated by LiESWT. LiESWT modified transient receptor potential vanilloid (TRPV) channel expression, regulating calcium concentration and enhancing bladder capacity. It also elevated endoplasmic reticulum (ER) stress proteins, influencing ER-related Ca2+ channels and receptors to modulate detrusor muscle contractility. OHD after 12 months led to neuronal degeneration and reduced TRPV1 and TRPV4 channel activation. LiESWT demonstrated potential in enhancing angiogenic remodeling, neurogenesis, and receptor response, ameliorating DHIC via TRPV channels and cellular signaling in the OHD-induced DHIC rat model.


Asunto(s)
Modelos Animales de Enfermedad , Tratamiento con Ondas de Choque Extracorpóreas , Contracción Muscular , Canales Catiónicos TRPV , Vejiga Urinaria , Animales , Femenino , Ratas , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Tratamiento con Ondas de Choque Extracorpóreas/métodos , Vejiga Urinaria/fisiopatología , Vejiga Urinaria/metabolismo , Vejiga Urinaria Hiperactiva/terapia , Vejiga Urinaria Hiperactiva/metabolismo , Vejiga Urinaria Hiperactiva/fisiopatología , Vejiga Urinaria Hiperactiva/etiología , Ovariectomía , Ratas Sprague-Dawley , Ovario/metabolismo
12.
Turk J Med Sci ; 54(1): 26-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812622

RESUMEN

Background/aim: To investigate the roles of vascular endothelial growth inhibitor (VEGI) and hypoxia-inducible factor-1α (HIF-1α) in the treatment of refractory interstitial cystitis/bladder pain syndrome (IC/BPS) with hyperbaric oxygen (HBO). Materials and methods: A total of 38 patients were included. They were assessed before and 6 months after HBO treatment. Three-day voiding diaries were recorded, and O'leary-Sant scores, visual analog scale (VAS) scores, quality of life (QoL) scores, pelvic pain, and urgency/frequency (PUF) scores were evaluated. Bladder capacity was assessed by cystoscopy. Bladder mucosa was collected for Western blot, qRT-PCR, and immunofluorescence staining to compare the expression of VEGI and HIF-1α before and after treatment. Results: Compared with before treatment, patients showed significant improvements in 24-h voiding frequency (15.32 ± 5.38 times), nocturia (3.71 ± 1.80 times), O'leary-Sant score (20.45 ± 5.62 points), VAS score (41.76 ± 17.88 points), QoL score (3.03 ± 1.44 points), and PUF score (19.95 ± 6.46 points) after treatment (p < 0.05). There was no significant difference in bladder capacity before and after treatment (p ≥ 0.05). The expression levels of VEGI and HIF-1α protein and mRNA were significantly decreased 6 months after treatment compared with before treatment. Immunofluorescence staining results showed that the double positive expression of VEGI and HIF-1α protein in bladder tissue of IC/BPS patients after HBO treatment quantitatively decreased significantly. Conclusion: This study identified a possible mechanism by which VEGI and HIF-1α expression decreased after HBO treatment due to hypoxia reversal, which improved symptoms in IC/BPS patients.


Asunto(s)
Cistitis Intersticial , Oxigenoterapia Hiperbárica , Subunidad alfa del Factor 1 Inducible por Hipoxia , Humanos , Oxigenoterapia Hiperbárica/métodos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Femenino , Persona de Mediana Edad , Masculino , Cistitis Intersticial/terapia , Cistitis Intersticial/metabolismo , Adulto , Calidad de Vida , Vejiga Urinaria/metabolismo , Anciano , Resultado del Tratamiento
13.
Int Immunopharmacol ; 134: 111997, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759370

RESUMEN

Cystitis is a common disease closely associated with urinary tract infections, and the specific mechanisms underlying its occurrence and development remain largely unknown. In this study, we discovered that IGFBP1 suppresses the occurrence and development of cystitis by stabilizing the expression of Umod through m6A modification, inhibiting the NF-κB and ERK signaling pathways. Initially, we obtained a bladder cystitis-related transcriptome dataset from the GEO database and identified the characteristic genes Umod and IGFBP1. Further exploration revealed that IGFBP1 in primary cells of cystitis can stabilize the expression of Umod through m6A modification. Overexpression of both IGFBP1 and Umod significantly inhibited cell apoptosis and the NF-κB and ERK signaling pathways, ultimately suppressing the production of pro-inflammatory factors. Finally, using a rat model of cystitis, we demonstrated that overexpression of IGFBP1 stabilizes the expression of Umod, inhibits the NF-κB and ERK signaling pathways, reduces the production of pro-inflammatory factors, and thus prevents the occurrence and development of cystitis. Our study elucidates the crucial role of IGFBP1 and Umod in cystitis and reveals the molecular mechanisms that inhibit the occurrence and development of cystitis. This research holds promise for offering new insights into the treatment of cystitis in the future.


Asunto(s)
Cistitis , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina , Sistema de Señalización de MAP Quinasas , FN-kappa B , Ratas Sprague-Dawley , Animales , Femenino , Humanos , Ratas , Apoptosis , Cistitis/metabolismo , Modelos Animales de Enfermedad , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , FN-kappa B/metabolismo , Vejiga Urinaria/patología , Vejiga Urinaria/metabolismo
14.
Prostate ; 84(11): 1016-1024, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38804836

RESUMEN

BACKGROUND: Our research focused on the assessment of the impact of systemic inhibition of Trk receptors, which bind to nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), on bladder hypersensitivity in two distinct rodent models of prostatic inflammation (PI). METHODS: Male Sprague-Dawley rats were divided into three groups (n = 6 each): the control group (no PI, vehicle administration), the untreated group (PI, vehicle administration), and the treated group (PI, nonselective Trk inhibitor, GNF 5837, administration). PI in rats was induced by a intraprostatic injection of 5% formalin. Posttreatment, we carried out conscious cystometry and a range of histological and molecular analyses. Moreover, the study additionally evaluated the effects of a nonselective Trk inhibitor on bladder overactivity in a mouse model of PI, which was induced by prostate epithelium-specific conditional deletion of E-cadherin. RESULTS: The rat model of PI showed upregulations of NGF and BDNF in both bladder and prostate tissues in association with bladder overactivity and inflammation in the ventral lobes of the prostate. GNF 5837 treatment effectively mitigated these PI-induced changes, along with reductions in TrkA, TrkB, TrkC, and TRPV1 mRNA expressions in L6-S1 dorsal root ganglia. Also, in the mouse PI model, GNF 5837 treatment similarly improved bladder overactivity. CONCLUSIONS: The findings of our study suggest that Trk receptor inhibition, which reduced bladder hypersensitivity and inflammatory responses in the prostate, along with a decrease in overexpression of Trk and TRPV1 receptors in sensory pathways, could be an effective treatment strategy for male lower urinary tract symptoms associated with PI and bladder overactivity.


Asunto(s)
Prostatitis , Receptor trkA , Vejiga Urinaria Hiperactiva , Animales , Masculino , Ratones , Ratas , Administración Oral , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Factor de Crecimiento Nervioso/antagonistas & inhibidores , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Próstata/efectos de los fármacos , Próstata/patología , Próstata/metabolismo , Prostatitis/tratamiento farmacológico , Prostatitis/patología , Prostatitis/metabolismo , Ratas Sprague-Dawley , Receptor trkA/antagonistas & inhibidores , Receptor trkA/metabolismo , Receptor trkB/antagonistas & inhibidores , Receptor trkB/metabolismo , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/patología , Vejiga Urinaria/metabolismo , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Vejiga Urinaria Hiperactiva/etiología
15.
J Pharmacol Exp Ther ; 390(2): 213-221, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38777604

RESUMEN

Following colonic inflammation, the uninjured bladder afferent neurons are also activated. The mechanisms and pathways underlying this sensory neuron cross-activation (from injured neurons to uninjured neurons) are not fully understood. Colonic and bladder afferent neurons reside in the same spinal segments and are separated by satellite glial cells (SGCs) and extracellular matrix in dorsal root ganglia (DRG). SGCs communicate with sensory neurons in a bidirectional fashion. This review summarizes the differentially regulated genes/proteins in the injured and uninjured DRG neurons and explores the role of SGCs in regulation of sensory neuron crosstalk in visceral cross-organ sensitization. The review also highlights the paracrine pathways in mediating neuron-SGC and SGC-neuron coupling with an emphasis on the neurotrophins and purinergic systems. Finally, I discuss the results from recent RNAseq profiling of SGCs to reveal useful molecular markers for characterization, functional study, and therapeutic targets of SGCs. SIGNIFICANCE STATEMENT: Satellite glial cells (SGCs) are the largest glial subtypes in sensory ganglia and play a critical role in mediating sensory neuron crosstalk, an underlying mechanism in colon-bladder cross-sensitization. Identification of novel and unique molecular markers of SGCs can advance the discovery of therapeutic targets in treatment of chronic pain including visceral pain comorbidity.


Asunto(s)
Neuroglía , Células Receptoras Sensoriales , Dolor Visceral , Animales , Humanos , Dolor Visceral/metabolismo , Dolor Visceral/fisiopatología , Neuroglía/metabolismo , Células Receptoras Sensoriales/metabolismo , Ganglios Espinales/metabolismo , Células Satélites Perineuronales/metabolismo , Vejiga Urinaria/inervación , Vejiga Urinaria/metabolismo , Colon/metabolismo , Colon/inervación
16.
Int Urogynecol J ; 35(6): 1119-1129, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38771505

RESUMEN

INTRODUCTION AND HYPOTHESIS: Bladder pain syndrome (BPS) is poorly understood with both the aetiology and pathophysiology being unknown. Symptoms overlap with other disorders, such as overactive bladder (OAB) and chronic pelvic pain disorders such as endometriosis, making a consensus on how to diagnosis and manage patients challenging. The development of biomarkers for BPS may be the key to understanding more about its pathophysiology, as well as aiding diagnosis, subclassification, and discovering new drug targets for its management. As inflammation is widely understood to hold a central role in BPS, the evaluation of cytokines has gained interest. This article summarises the current literature and understanding of urinary, serum, and bladder tissue cytokines found elevated in patients with bladder pain syndrome. METHODS: literature search using Pub Med with the keywords "bladder pain syndrome", "painful bladder syndrome", "bladder pain", "Interstitial cystitis" AND "cytokines" or "inflammation". This study was except from institutional approval. RESULTS: Thirty-six cytokines have been identified as being statistically significantly elevated in either the serum, urine, or bladder tissue of patients with bladder pain syndrome in the 22 studies identified in this review of the literature. These cytokines include those from the interleukin group (n = 14), the CXC chemokine group (n = 5), and the C-C chemokine group (n = 7). CONCLUSIONS: CXCL-1, CXCL-8, CXCL-9, CXCL-10, CXCL-11 from the CXC chemokine group, and CCL2, CCL4, CCL5, CCL7, and CCL11 from the C-C chemokine group have been found to be significantly elevated in patients with bladder pain in the literature. Many of these analytes also have supporting evidence for their roles in bladder pain from animal models and studies in other chronic inflammatory conditions. It is likely that a single cytokine will not serve as an adequate biomarker of disease in bladder pain syndrome for either diagnosis or disease severity. Instead, panels of inflammatory mediators may reveal more about the different pathways of inflammation leading to similar presentations of bladder pain in patients.


Asunto(s)
Cistitis Intersticial , Citocinas , Humanos , Cistitis Intersticial/diagnóstico , Citocinas/sangre , Citocinas/metabolismo , Biomarcadores/sangre , Biomarcadores/orina , Vejiga Urinaria/fisiopatología , Vejiga Urinaria/metabolismo , Femenino , Dolor Pélvico/etiología , Dolor Pélvico/sangre , Dolor Pélvico/diagnóstico
17.
Mymensingh Med J ; 33(2): 461-465, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557526

RESUMEN

Urothelial carcinoma (UC) is the most common malignancy of urinary bladder. It is the 9th leading cause of death worldwide and second most common genitourinary malignancy among male. Incidence is increasing in developing countries like Bangladesh. About 80% of patients are found between 50 to 80 years of age. It is 3-4 times more common in male than in female. Determination of therapeutic strategy and prediction of progression of urothelial carcinoma is a major clinical challenge. Treatment of urothelial carcinoma still now mostly depends on pathological stages. Amplification or genomic alteration of Cyclin D1 (a proto-oncogene) may cause protein overexpression which is frequently realized as a clonal pathology in various human neoplasms including bladder cancer. Evaluation of Cyclin D1 expression is promising for guiding therapeutic strategies, risk stratification and prediction of tumor progression. The aim of the study was to determine the expression of Cyclin D1 in urothelial carcinoma of urinary bladder and its association with tumour grade. This cross-sectional observational study was conducted in Department of Pathology, Dhaka Medical College, Dhaka, Bangladesh from July 2019 to June 2021. Histomorphologically diagnosed 51 urothelial carcinomas were included. Sections were stained with hematoxylin and eosin. Immunostaining with Cyclin D1 antibody was also done. Relevant information was collected and recorded in a predesigned data sheet. Statistical analysis was carried out as required. Mean age ±SD was 57.8±10.55 years. Male female ratio was 4.6:1. In this study 39(76.5%) patients were smoker. Regarding clinical presentations 36(70.6%) patients presented with painless hematuria alone. Lateral wall (64.7%) was the most frequent tumor location. Among 51 cases, 38(74.5%) cases were high grade urothelial carcinoma (HGUC) and 13(25.5%) cases were low grade urothelial carcinoma (LGUC). Considering Cyclin D1 expression, most of the LGUC cases showed high level of expression by both percentage (84.6%) and intensity (84.6%). Most of the HGUC cases showed low level of expression by both percentage (63.2%) and intensity (60.5%). Cyclin D1 showed significant inverse association with HGUC (p<0.05). In urothelial carcinoma of urinary bladder, Cyclin D1 expression was decreased with increasing grade of the tumor. Cyclin D1 expression was inversely associated with tumour grade.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Femenino , Humanos , Masculino , Bangladesh/epidemiología , Carcinoma de Células Transicionales/metabolismo , Carcinoma de Células Transicionales/patología , Estudios Transversales , Ciclina D1/metabolismo , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
18.
Bratisl Lek Listy ; 125(5): 311-317, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38624056

RESUMEN

OBJECTIVES: In this study, we analyzed pTa bladder cancer (BC) for molecular markers BCL2, TP53, FOXA1, and GATA3 in relation to cancer recurrence. METHODS: We analyzed samples of 79 patients with the pTa stage of BC using a real-time polymerase chain reaction (real-time PCR) between September 2018 and September 2020. The expression levels of BCL2, TP53, FOXA1, and GATA3 were compared with homologous non-tumor bladder tissue. RESULTS: Expression of FOXA1, GATA3, and TP53 was significantly higher (p<0.01) in NMIBC samples compared to homologous non-tumor tissue. The expression of TP53 and FOXA1 in pTa was significantly lower (p<0.01) in the high-grade (HG) tumor when compared to the low-grade (LG) tumor. In contrast, the relative quantification (RQ) of GATA3 was significantly higher (p<0.01) in HG pTa. Patients with recurrence (pTa=33) had significantly higher expression of TP53, and GATA3 (p<0.01), and the gene of FOXA1 (p<0.01) had a significantly lower expression when compared to pTa tumors without recurrence. The expression of Bcl-2 was not statistically significant. CONCLUSION: Our results, indicate, that comparing expression levels of these genes in cancer and cancer-free tissue could provide valuable data, as patients with pTa BC recurrence within up to 54 months of follow-up had a significantly higher RQ of TP53, GATA3, and FOXA1 when compared to pTa BC patients without recurrence (Tab. 2, Fig. 8, Ref. 54). Text in PDF www.elis.sk Keywords: bladder cancer, gene expression, recurrence, GATA3, FOXA1, TP53, BCL2.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Vejiga Urinaria , Humanos , Vejiga Urinaria/química , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Biomarcadores de Tumor/análisis , Proteína p53 Supresora de Tumor/genética , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo
19.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38674069

RESUMEN

Bladder pain is a prominent symptom in Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS). We studied spinal mechanisms of bladder pain in mice using a model where repeated activation of intravesical Protease Activated Receptor-4 (PAR4) results in persistent bladder hyperalgesia (BHA) with little or no bladder inflammation. Persistent BHA is mediated by spinal macrophage migration inhibitory factor (MIF), and is associated with changes in lumbosacral proteomics. We investigated the contribution of individual spinal MIF receptors to persistent bladder pain as well as the spinal proteomics changes associated with relief of persistent BHA by spinal MIF antagonism. Female mice with persistent BHA received either intrathecal (i.t.) MIF monoclonal antibodies (mAb) or mouse IgG1 (isotype control antibody). MIF antagonism temporarily reversed persistent BHA (peak effect: 2 h), while control IgG1 had no effect. Moreover, i.t. antagonism of the MIF receptors CD74 and C-X-C chemokine receptor type 4 (CXCR4) partially reversed persistent BHA. For proteomics experiments, four separate groups of mice received either repeated intravesical scrambled peptide and sham i.t. injection (control, no pain group) or repeated intravesical PAR4 and: sham i.t.; isotype IgG1 i.t. (15 µg); or MIF mAb (15 µg). L6-S1 spinal segments were excised 2 h post-injection and examined for proteomics changes using LC-MS/MS. Unbiased proteomics analysis identified and relatively quantified 6739 proteins. We selected proteins that showed significant changes compared to control (no pain group) after intravesical PAR4 (sham or IgG i.t. treatment) and showed no significant change after i.t. MIF antagonism. Six proteins decreased during persistent BHA (V-set transmembrane domain-containing protein 2-like confirmed by immunohistochemistry), while two proteins increased. Spinal MIF antagonism reversed protein changes. Therefore, spinal MIF and MIF receptors mediate persistent BHA and changes in specific spinal proteins. These novel MIF-modulated spinal proteins represent possible new targets to disrupt spinal mechanisms that mediate persistent bladder pain.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos , Proteómica , Receptores CXCR4 , Animales , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Factores Inhibidores de la Migración de Macrófagos/antagonistas & inhibidores , Femenino , Ratones , Proteómica/métodos , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inhibidores , Hiperalgesia/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Cistitis Intersticial/metabolismo , Cistitis Intersticial/patología , Médula Espinal/metabolismo , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Modelos Animales de Enfermedad , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/antagonistas & inhibidores
20.
Front Biosci (Landmark Ed) ; 29(4): 154, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38682210

RESUMEN

BACKGROUND: Diabetic bladder dysfunction (DBD) is driven in part by inflammation which dysregulates prostaglandin release in the bladder. Precise inflammatory mechanisms responsible for such dysregulation have been elusive. Since prostaglandins impact bladder contractility, elucidating these mechanisms may yield potential therapeutic targets for DBD. In female Type 1 diabetic Akita mice, inflammation mediated by the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome is responsible for DBD. Here, we utilized female Akita mice crossbred with NLRP3 knock-out mice to determine how NLRP3-driven inflammation impacts prostaglandin release within the bladder and prostaglandin-mediated bladder contractions. METHODS: Akita mice were crossbred with NLRP3-⁣/- mice to yield four groups of non-diabetics and diabetics with and without the NLRP3 gene. Females were aged to 30 weeks when Akitas typically exhibit DBD. Urothelia and detrusors were stretched ex vivo to release prostaglandins. Prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α) were quantified using enzyme linked immunosorbent assays (ELISA). In separate samples, ex vivo contractile force to PGE2 and PGF2α +/- the prostaglandin F (FP) receptor antagonist, AL8810, was measured. FP receptor protein expression was determined via western blotting. RESULTS: Stretch-induced PGE2 release increases in urothelia but decreases in detrusors of diabetics. However, PGE2-mediated bladder contractions are not impacted. Conversely, diabetics show no changes in PGF2α release, but PGF2α-mediated contractions increase significantly. This is likely due to signaling through the FP receptors as FP receptor antagonism prevents this increase and diabetics demonstrate a four-fold increase in FP receptor proteins. Without NLRP3-mediated inflammation, changes in prostaglandin release, contractility, and receptor expression do not occur. CONCLUSION: NLRP3-dependent inflammation dysregulates prostaglandin release and prostaglandin-mediated bladder contractions in diabetic female Akita mice via FP receptor upregulation.


Asunto(s)
Diabetes Mellitus Tipo 1 , Ratones Noqueados , Contracción Muscular , Proteína con Dominio Pirina 3 de la Familia NLR , Receptores de Prostaglandina , Vejiga Urinaria , Animales , Femenino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Vejiga Urinaria/metabolismo , Vejiga Urinaria/fisiopatología , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina/genética , Diabetes Mellitus Tipo 1/fisiopatología , Diabetes Mellitus Tipo 1/metabolismo , Ratones , Inflamación/metabolismo , Inflamación/fisiopatología , Ratones Endogámicos C57BL , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Experimental/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...