Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.053
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2400213121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38954546

RESUMEN

The brain's neuroreparative capacity after injuries such as ischemic stroke is partly contained in the brain's neurogenic niches, primarily the subventricular zone (SVZ), which lies in close contact with the cerebrospinal fluid (CSF) produced by the choroid plexus (ChP). Despite the wide range of their proposed functions, the ChP/CSF remain among the most understudied compartments of the central nervous system (CNS). Here, we report a mouse genetic tool (the ROSA26iDTR mouse line) for noninvasive, specific, and temporally controllable ablation of CSF-producing ChP epithelial cells to assess the roles of the ChP and CSF in brain homeostasis and injury. Using this model, we demonstrate that ChP ablation causes rapid and permanent CSF volume loss in both aged and young adult brains, accompanied by disruption of ependymal cilia bundles. Surprisingly, ChP ablation did not result in overt neurological deficits at 1 mo postablation. However, we observed a pronounced decrease in the pool of SVZ neuroblasts (NBs) following ChP ablation, which occurs due to their enhanced migration into the olfactory bulb. In the middle cerebral artery occlusion model of ischemic stroke, NB migration into the lesion site was also reduced in the CSF-depleted mice. Thus, our study establishes an important role of ChP/CSF in regulating the regenerative capacity of the adult brain under normal conditions and after ischemic stroke.


Asunto(s)
Plexo Coroideo , Ventrículos Laterales , Neurogénesis , Animales , Plexo Coroideo/metabolismo , Neurogénesis/fisiología , Ratones , Ventrículos Laterales/metabolismo , Ventrículos Laterales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología , Masculino , Movimiento Celular , Ventrículos Cerebrales/metabolismo
2.
Cell Rep ; 43(6): 114331, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38843394

RESUMEN

The choroid plexus (ChP) produces cerebrospinal fluid (CSF). It also contributes to brain development and serves as the CSF-blood barrier. Prior studies have identified transporters on the epithelial cells that transport water and ions from the blood vasculature to the ventricles and tight junctions involved in the CSF-blood barrier. Yet, how the ChP epithelial cells control brain physiology remains unresolved. We use zebrafish to provide insights into the physiological roles of the ChP. Upon histological and transcriptomic analyses, we identify that the zebrafish ChP is conserved with mammals and expresses transporters involved in CSF secretion. Next, we show that the ChP epithelial cells secrete proteins into CSF. By ablating the ChP epithelial cells, we identify a reduction of the ventricular sizes without alterations of the CSF-blood barrier. Altogether, our findings reveal that the zebrafish ChP is conserved and contributes to the size and homeostasis of the brain ventricles.


Asunto(s)
Ventrículos Cerebrales , Plexo Coroideo , Homeostasis , Pez Cebra , Animales , Pez Cebra/metabolismo , Plexo Coroideo/metabolismo , Ventrículos Cerebrales/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Líquido Cefalorraquídeo/metabolismo , Células Epiteliales/metabolismo , Evolución Biológica , Barrera Hematoencefálica/metabolismo
3.
Neuroimage ; 294: 120631, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701993

RESUMEN

INTRODUCTION: Spatial normalization is a prerequisite step for the quantitative analysis of SPECT or PET brain images using volume-of-interest (VOI) template or voxel-based analysis. MRI-guided spatial normalization is the gold standard, but the wide use of PET/CT or SPECT/CT in routine clinical practice makes CT-guided spatial normalization a necessary alternative. Ventricular enlargement is observed with aging, and it hampers the spatial normalization of the lateral ventricles and striatal regions, limiting their analysis. The aim of the present study was to propose a robust spatial normalization method based on CT scans that takes into account features of the aging brain to reduce bias in the CT-guided striatal analysis of SPECT images. METHODS: We propose an enhanced CT-guided spatial normalization pipeline based on SPM12. Performance of the proposed pipeline was assessed on visually normal [123I]-FP-CIT SPECT/CT images. SPM12 default CT-guided spatial normalization was used as reference method. The metrics assessed were the overlap between the spatially normalized lateral ventricles and caudate/putamen VOIs, and the computation of caudate and putamen specific binding ratios (SBR). RESULTS: In total 231 subjects (mean age ± SD = 61.9 ± 15.5 years) were included in the statistical analysis. The mean overlap between the spatially normalized lateral ventricles of subjects and the caudate VOI and the mean SBR of caudate were respectively 38.40 % (± SD = 19.48 %) of the VOI and 1.77 (± 0.79) when performing SPM12 default spatial normalization. The mean overlap decreased to 9.13 % (± SD = 1.41 %, P < 0.001) of the VOI and the SBR of caudate increased to 2.38 (± 0.51, P < 0.0001) when performing the proposed pipeline. Spatially normalized lateral ventricles did not overlap with putamen VOI using either method. The mean putamen SBR value derived from the proposed spatial normalization (2.75 ± 0.54) was not significantly different from that derived from the default SPM12 spatial normalization (2.83 ± 0.52, P > 0.05). CONCLUSION: The automatic CT-guided spatial normalization used herein led to a less biased spatial normalization of SPECT images, hence an improved semi-quantitative analysis. The proposed pipeline could be implemented in clinical routine to perform a more robust SBR computation using hybrid imaging.


Asunto(s)
Cuerpo Estriado , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/metabolismo , Tomografía Computarizada por Rayos X/métodos , Tomografía Computarizada por Rayos X/normas , Tomografía Computarizada de Emisión de Fotón Único/métodos , Ventrículos Cerebrales/diagnóstico por imagen , Ventrículos Cerebrales/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Tropanos
4.
Fluids Barriers CNS ; 20(1): 89, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38049798

RESUMEN

Reissner's fiber (RF) is an extracellular polymer comprising the large monomeric protein SCO-spondin (SSPO) secreted by the subcommissural organ (SCO) that extends through cerebrospinal fluid (CSF)-filled ventricles into the central canal of the spinal cord. In zebrafish, RF and CSF-contacting neurons (CSF-cNs) form an axial sensory system that detects spinal curvature, instructs morphogenesis of the body axis, and enables proper alignment of the spine. In mammalian models, RF has been implicated in CSF circulation. However, challenges in manipulating Sspo, an exceptionally large gene of 15,719 nucleotides, with traditional approaches has limited progress. Here, we generated a Sspo knockout mouse model using CRISPR/Cas9-mediated genome-editing. Sspo knockout mice lacked RF-positive material in the SCO and fibrillar condensates in the brain ventricles. Remarkably, Sspo knockout brain ventricle sizes were reduced compared to littermate controls. Minor defects in thoracic spine curvature were detected in Sspo knockouts, which did not alter basic motor behaviors tested. Altogether, our work in mouse demonstrates that SSPO and RF regulate ventricle size during development but only moderately impact spine geometry.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Ventrículos Cerebrales , Pez Cebra , Animales , Ratones , Moléculas de Adhesión Celular Neuronal/metabolismo , Ventrículos Cerebrales/metabolismo , Médula Espinal/metabolismo , Pez Cebra/metabolismo
5.
Cell Stem Cell ; 30(8): 1054-1071.e8, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541211

RESUMEN

White matter injuries (WMIs) are the leading cause of neurologic impairment in infants born premature. There are no treatment options available. The most common forms of WMIs in infants occur prior to the onset of normal myelination, making its pathophysiology distinctive, thus requiring a tailored approach to treatment. Neonates present a unique opportunity to repair WMIs due to a transient abundance of neural stem/progenitor cells (NSPCs) present in the germinal matrix with oligodendrogenic potential. We identified an endogenous oxysterol, 20-αHydroxycholesterol (20HC), in human maternal breast milk that induces oligodendrogenesis through a sonic hedgehog (shh), Gli-dependent mechanism. Following WMI in neonatal mice, injection of 20HC induced subventricular zone-derived oligodendrogenesis and improved myelination in the periventricular white matter, resulting in improved motor outcomes. Targeting the oligodendrogenic potential of postnatal NSPCs in neonates with WMIs may be further developed into a novel approach to mitigate this devastating complication of preterm birth.


Asunto(s)
Lesiones Encefálicas , Nacimiento Prematuro , Sustancia Blanca , Femenino , Humanos , Animales , Ratones , Recién Nacido , Sustancia Blanca/metabolismo , Leche Humana/metabolismo , Proteínas Hedgehog/metabolismo , Ventrículos Cerebrales/metabolismo , Oligodendroglía/fisiología
6.
Fluids Barriers CNS ; 20(1): 45, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328833

RESUMEN

Regulation of the volume and electrolyte composition of the cerebrospinal fluid (CSF) is vital for brain development and function. The Na-K-Cl co-transporter NKCC1 in the choroid plexus (ChP) plays key roles in regulating CSF volume by co-transporting ions and mediating same-direction water movements. Our previous study showed ChP NKCC1 is highly phosphorylated in neonatal mice as the CSF K+ level drastically decreases and that overexpression of NKCC1 in the ChP accelerates CSF K+ clearance and reduces ventricle size [1]. These data suggest that NKCC1 mediates CSF K+ clearance following birth in mice. In this current study, we used CRISPR technology to create a conditional NKCC1 knockout mouse line and evaluated CSF K+ by Inductively Coupled Plasma Optical Emission spectroscopy (ICP-OES). We demonstrated ChP-specific reduction of total and phosphorylated NKCC1 in neonatal mice following embryonic intraventricular delivery of Cre recombinase using AAV2/5. ChP-NKCC1 knockdown was accompanied by a delayed perinatal clearance of CSF K+. No gross morphological disruptions were observed in the cerebral cortex. We extended our previous results by showing embryonic and perinatal rats shared key characteristics with mice, including decreased ChP NKCC1 expression level, increased ChP NKCC1 phosphorylation state, and increased CSF K+ levels compared to adult. Collectively, these follow up data support ChP NKCC1's role in age-appropriate CSF K+ clearance during neonatal development.


Asunto(s)
Plexo Coroideo , Potasio , Miembro 2 de la Familia de Transportadores de Soluto 12 , Animales , Femenino , Ratones , Embarazo , Ratas , Corteza Cerebral/metabolismo , Ventrículos Cerebrales/metabolismo , Líquido Cefalorraquídeo/metabolismo , Plexo Coroideo/metabolismo , Potasio/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo
7.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37047646

RESUMEN

Hydrocephalus is a devastating condition characterized by excess cerebrospinal fluid (CSF) in the brain. Currently, the only effective treatment is surgical intervention, usually involving shunt placement, a procedure prone to malfunction, blockage, and infection that requires additional, often repetitive, surgeries. There are no long-term pharmaceutical treatments for hydrocephalus. To initiate an intelligent drug design, it is necessary to understand the biochemical changes underlying the pathology of this chronic condition. One potential commonality in the various forms of hydrocephalus is an imbalance in fluid-electrolyte homeostasis. The choroid plexus, a complex tissue found in the brain ventricles, is one of the most secretory tissues in the body, producing approximately 500 mL of CSF per day in an adult human. In this manuscript, two key transport proteins of the choroid plexus epithelial cells, transient receptor potential vanilloid 4 and sodium, potassium, 2 chloride co-transporter 1, will be considered. Both appear to play key roles in CSF production, and their inhibition or genetic manipulation has been shown to affect CSF volume. As with most transporters, these proteins are regulated by kinases. Therefore, specific kinase inhibitors are also potential targets for the development of pharmaceuticals to treat hydrocephalus.


Asunto(s)
Hidrocefalia , Humanos , Adulto , Hidrocefalia/metabolismo , Ventrículos Cerebrales/metabolismo , Plexo Coroideo/metabolismo , Células Epiteliales/metabolismo , Resultado del Tratamiento , Proteínas Portadoras/metabolismo
8.
Cell Tissue Res ; 392(2): 535-551, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36764939

RESUMEN

Motile cilia are protruding organelles on specialized epithelia that beat in a synchronous fashion to propel extracellular fluids. Coordination and orientation of cilia beating on individual cells and across tissues is a complex process dependent on planar cell polarity (PCP) signaling. Asymmetric sorting of PCP pathway components, essential to establish planar polarity, involves trafficking along the endocytic path, but the underlying regulatory processes remain incompletely understood. Here, we identified the endocytic receptor LRP2 as regulator of PCP component trafficking in ependyma, a multi-ciliated cell type that is involved in facilitating flow of the cerebrospinal fluid in the brain ventricular system. Lack of receptor expression in gene-targeted mice results in a failure to sort PCP core proteins to the anterior or posterior cell side and, consequently, in the inability to coordinate cilia arrangement and to aligned beating (loss of rotational and translational polarity). LRP2 deficiency coincides with a failure to sort NHERF1, a cytoplasmic LRP2 adaptor to the anterior cell side. As NHERF1 is essential to translocate PCP core protein Vangl2 to the plasma membrane, these data suggest a molecular mechanism whereby LRP2 interacts with PCP components through NHERF1 to control their asymmetric sorting along the endocytic path. Taken together, our findings identified the endocytic receptor LRP2 as a novel regulator of endosomal trafficking of PCP proteins, ensuring their asymmetric partition and establishment of translational and rotational planar cell polarity in the ependyma.


Asunto(s)
Polaridad Celular , Cilios , Animales , Ratones , Cilios/metabolismo , Epéndimo/metabolismo , Ventrículos Cerebrales/metabolismo , Proteínas Portadoras/metabolismo , Vía de Señalización Wnt , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo
9.
J Anat ; 241(3): 820-830, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35638289

RESUMEN

The subcommissural organ (SCO) is a part of the circumventricular organs located in the dorsocaudal region of the third ventricle at the entrance of the aqueduct of Sylvius. The SCO comprises epithelial cells and produces high molecular weight glycoproteins, which are secreted into the third ventricle and become part of Reissner's fibre in the cerebrospinal fluid. Abnormal development of the SCO has been linked with congenital hydrocephalus, a condition characterized by excessive accumulation of cerebrospinal fluid in the brain. In the present study, we characterized the SCO cells in the adult mouse brain to gain insights into the possible role of this brain region. Immunohistochemical analyses revealed that expression of Pax6, a transcription factor essential for SCO differentiation during embryogenesis, is maintained in the SCO at postnatal stages from P0 to P84. SCO cells in the adult brain expressed known neural stem/progenitor cell (NSPC) markers, Sox2 and vimentin. The adult SCO cells also expressed proliferating marker PCNA, although expression of another proliferation marker Ki67, indicating a G2 /M phase, was not detected. The SCO cells did not incorporate BrdU, a marker for DNA synthesis in the S phase. Therefore, the SCO cells have a potential for proliferation but are quiescent for cell division in the adult. The SCO cells also expressed GFAP, a marker for astrocytes or NSPCs, but not NeuN (for neurons). A few cells positive for Iba1 (microglia), Olig2 (for oligodendrocytes) and PDGFRα (oligodendrocyte progenitors) existed within or on the periphery of the SCO. These findings revealed that the SCO cells have a unique feature as secretory yet immature neuroepithelial cells in the adult mouse brain.


Asunto(s)
Hidrocefalia , Órgano Subcomisural , Animales , Ventrículos Cerebrales/metabolismo , Glicoproteínas/metabolismo , Hidrocefalia/líquido cefalorraquídeo , Hidrocefalia/genética , Ratones , Células Neuroepiteliales
10.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35216129

RESUMEN

Hepatic encephalopathy is a major cause of liver failure. However, the pathophysiological role of ventricle enlargement in brain edema remains unclear. Here, we used an acute hepatic encephalopathy mouse model to examine the sequential pathological changes in the brain associated with this condition. We collected tissue samples from experimental animals treated with ammonium acetate at 3 and 24 h post-injection. Despite the normalization of the animal's ammonia levels, samples taken at 24 h after injection exhibited distinct enlargement of lateral ventricles. The choroid plexus samples obtained at 3 h post-ammonium acetate treatment indicated enlargement; however, this swelling was reduced at the later timepoint. The aquaporin-1 proteins that regulate the choroid plexus were localized both in the apical membrane and the cytoplasm of the epithelia in the control; however, they translocated to the apical membranes of the epithelia in response to ammonia treatment. Therefore, severe acute hepatic encephalopathy induced by ammonium acetate administration caused enlargement of the ventricles, through swelling of the choroid plexus and aquaporin-1 transport and aggregation within the apical membranes.


Asunto(s)
Acetatos/efectos adversos , Ventrículos Cerebrales/efectos de los fármacos , Plexo Coroideo/efectos de los fármacos , Encefalopatía Hepática/inducido químicamente , Ventrículos Laterales/efectos de los fármacos , Animales , Acuaporina 1/metabolismo , Edema Encefálico/inducido químicamente , Edema Encefálico/metabolismo , Ventrículos Cerebrales/metabolismo , Plexo Coroideo/metabolismo , Modelos Animales de Enfermedad , Encefalopatía Hepática/metabolismo , Ventrículos Laterales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
11.
Sci Rep ; 11(1): 19115, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34580355

RESUMEN

Amyloid precursor protein (APP) is expressed in many tissues in human, mice and in zebrafish. In zebrafish, there are two orthologues, Appa and Appb. Interestingly, some cellular processes associated with APP overlap with cilia-mediated functions. Whereas the localization of APP to primary cilia of in vitro-cultured cells has been reported, we addressed the presence of APP in motile and in non-motile sensory cilia and its potential implication for ciliogenesis using zebrafish, mouse, and human samples. We report that Appa and Appb are expressed by ciliated cells and become localized at the membrane of cilia in the olfactory epithelium, otic vesicle and in the brain ventricles of zebrafish embryos. App in ependymal cilia persisted in adult zebrafish and was also detected in mouse and human brain. Finally, we found morphologically abnormal ependymal cilia and smaller brain ventricles in appa-/-appb-/- mutant zebrafish. Our findings demonstrate an evolutionary conserved localisation of APP to cilia and suggest a role of App in ciliogenesis and cilia-related functions.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo , Ventrículos Cerebrales/metabolismo , Proteínas de Pez Cebra/metabolismo , Precursor de Proteína beta-Amiloide/análisis , Precursor de Proteína beta-Amiloide/genética , Proteínas Amiloidogénicas/análisis , Proteínas Amiloidogénicas/genética , Animales , Animales Modificados Genéticamente , Ventrículos Cerebrales/citología , Cilios/metabolismo , Embrión no Mamífero , Epéndimo/citología , Epéndimo/metabolismo , Humanos , Ratones , Modelos Animales , Mutación , Mucosa Olfatoria/citología , Mucosa Olfatoria/metabolismo , Pez Cebra , Proteínas de Pez Cebra/análisis , Proteínas de Pez Cebra/genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-34500089

RESUMEN

Mammalian claudin-5 (cldn5), a zebrafish cldn5a homolog, is essential to blood-brain barrier (BBB) integrity. Previously, the existence of an endothelial tight junction-based BBB with cldn5a expression in the cerebral microvessels was reported in zebrafish. However, the role of cldn5a in the cerebral microvessels of developing zebrafish has not been elucidated. Here, we further investigated the functional integrity of cldn5a in developing zebrafish by injecting cldn5a morpholinos. At 7 days post-fertilization, cldn5a immunoreactivity was detected on the brain surface, ventricular ependyma, and cerebral mircovessels but disappeared following cldna5a knockdown. Cldn5a morphants showed size-selective leakage of tracers through the BBB and downregulated expression of glucose transporter 1 (glut1) in the cerebral microvessels. In addition, leakiness in the blood-cerebrospinal fluid barrier was observed, implying the overall abnormal development of blood-neural barriers. The results of our study suggest that cldn5a is required for building and maintaining the blood-neural barrier during zebrafish development.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Claudina-5/antagonistas & inhibidores , Proteínas de Pez Cebra/antagonistas & inhibidores , Pez Cebra/fisiología , Animales , Transporte Biológico , Barrera Hematoencefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Ventrículos Cerebrales/metabolismo , Ventrículos Cerebrales/patología , Claudina-5/genética , Claudina-5/metabolismo , Morfolinos/farmacología , Uniones Estrechas/metabolismo , Uniones Estrechas/patología , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
13.
Neuroimage ; 244: 118542, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34530134

RESUMEN

Ketogenic diet (KD) is a high-fat and low-carbohydrate therapy for medically intractable epilepsy, and its applications in other neurological conditions, including those occurring in children, have been increasingly tested. However, how KD affects childhood neurodevelopment, a highly sensitive and plastic process, is not clear. In this study, we explored structural, metabolic, and functional consequences of a brief treatment of a strict KD (weight ratio of fat to carbohydrate plus protein is approximately 6.3:1) in naive juvenile mice of different inbred strains, using a multidisciplinary approach. Systemic measurements using magnetic resonance imaging revealed that unexpectedly, the volumes of most brain structures in KD-fed mice were about 90% of those in mice of the same strain but fed a standard diet. The reductions in volumes were nonselective, including different regions throughout the brain, the ventricles, and the white matter. The relative volumes of different brain structures were unaltered. Additionally, as KD is a metabolism-based treatment, we performed untargeted metabolomic profiling to explore potential means by which KD affected brain growth and to identify metabolic changes in the brain. We found that brain metabolomic profile was significantly impacted by KD, through both distinct and common pathways in different mouse strains. To explore whether the volumetric and metabolic changes induced by this KD treatment were associated with functional consequences, we recorded spontaneous EEG to measure brain network activity. Results demonstrated limited alterations in EEG patterns in KD-fed animals. In addition, we observed that cortical levels of brain-derived neurotrophic factor (BDNF), a critical molecule in neurodevelopment, did not change in KD-fed animals. Together, these findings indicate that a strict KD could affect volumetric development and metabolic profile of the brain in inbred juvenile mice, while global network activities and BDNF signaling in the brain were mostly preserved. Whether the volumetric and metabolic changes are related to any core functional consequences during neurodevelopment and whether they are also observed in humans need to be further investigated. In addition, our results indicate that certain outcomes of KD are specific to the individual mouse strains tested, suggesting that the physiological profiles of individuals may need to be examined to maximize the clinical benefit of KD.


Asunto(s)
Encéfalo/metabolismo , Dieta Cetogénica , Metaboloma/fisiología , Animales , Ventrículos Cerebrales/metabolismo , Imagen por Resonancia Magnética , Ratones , Sustancia Blanca/metabolismo
14.
Genes Cells ; 26(6): 399-410, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33811429

RESUMEN

An expanded and folded neocortex is characteristic of higher mammals, including humans and other primates. The neocortical surface area was dramatically enlarged during the course of mammalian brain evolution from lissencephalic to gyrencephalic mammals, and this bestowed higher cognitive functions especially to primates, including humans. In this study, we generated transgenic (Tg) mice in which the expression of Sonic hedgehog (Shh) could be controlled in neural stem cells (NSCs) and neural progenitors by using the Tet-on system. Shh overexpression during embryogenesis promoted the symmetric proliferative division of NSCs in the neocortical region, leading to the expansion of lateral ventricles and tangential extension of the ventricular zone. Moreover, Shh-overexpressing Tg mice showed dramatic expansion of the neocortical surface area and exhibited a wrinkled brain when overexpression was commenced at early stages of neural development. These results indicate that Shh is able to increase the neocortical NSCs and contribute to expansion of the neocortex.


Asunto(s)
Proteínas Hedgehog/metabolismo , Neocórtex/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Proliferación Celular , Ventrículos Cerebrales/metabolismo , Regulación de la Expresión Génica , Ratones Transgénicos , Neuronas/citología , Transducción de Señal
15.
Brain Res ; 1757: 147312, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33539798

RESUMEN

Progranulin (PGRN), a secreted glycosylated protein, has been reported to attenuate ischemia-induced cerebral injury through anti-inflammation, attenuation of blood-brain barrier disruption and neuroprotection. However, the effect of PGRN on neurogenesis in the subventricular zone (SVZ) after cerebral ischemia remains unclear. In this study, adult C57BL/6 mice were subjected to permanent middle cerebral artery occlusion (pMCAO), and different doses of recombinant mouse PGRN (r-PGRN, 0.3 ng, 1 ng, 5 ng) were intracerebroventricularly administered 30 min after pMCAO. Results showed that 1 ng r-PGRN markedly reduced infarct volume and rescued functional deficits 24 h after pMCAO. Meanwhile, 1 ng r-PGRN increased SVZ cell proliferation, as shown by a high number of bromodeoxyuridine-positive (BrdU+) cells and Ki-67+ cells in the ischemic ipsilateral SVZ 7 d after pMCAO. Additionally, PGRN increased the percentage of BrdU+/Doublecortin (DCX)+ cells in the ipsilateral SVZ 14 d after pMCAO and increased the percentage of new neurons (BrdU+/NeuN+ cells) in the peri-infarct striatum 28 d after pMCAO, suggesting that PGRN promotes neuronal differentiation. PGRN also upregulated phosphorylation of ERK1/2 and Akt in the ipsilateral SVZ 3 d after pMCAO. Our data indicate that PGRN treatment promotes acute functional recovery; most importantly, it also stimulates neurogenesis in the SVZ, which could be beneficial for long-term recovery after cerebral ischemia. The increase in neurogenesis could be associated with activation of the MAPK/ERK and PI3K/Akt pathways. These results suggest a potential new strategy utilizing PGRN in ischemic stroke therapy.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Neurogénesis/efectos de los fármacos , Progranulinas/farmacología , Recuperación de la Función/efectos de los fármacos , Animales , Isquemia Encefálica/fisiopatología , Ventrículos Cerebrales/efectos de los fármacos , Ventrículos Cerebrales/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/fisiopatología , Ventrículos Laterales/efectos de los fármacos , Ventrículos Laterales/metabolismo , Masculino , Ratones Endogámicos C57BL , Neurogénesis/fisiología , Neuronas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo
16.
FASEB J ; 35(2): e21329, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33484186

RESUMEN

L1 syndrome is a rare developmental disorder characterized by hydrocephalus of varying severity, intellectual deficits, spasticity of the legs, and adducted thumbs. Therapy is limited to symptomatic relief. Numerous gene mutations in the L1 cell adhesion molecule (L1CAM, hereafter abbreviated L1) were identified in L1 syndrome patients, and those affecting the extracellular domain of this transmembrane type 1 glycoprotein show the most severe phenotypes. Previously analyzed rodent models of the L1 syndrome focused on L1-deficient animals or mouse mutants with abrogated cell surface expression of L1, making it difficult to test L1 function-triggering mimetic compounds with potential therapeutic value. To overcome this impasse, we generated a novel L1 syndrome mouse with a mutation of aspartic acid at position 201 in the extracellular part of L1 (p.D201N, hereafter termed L1-201) that displays a cell surface-exposed L1 accessible to the L1 mimetics. Behavioral assessment revealed an increased neurological deficit score and increased locomotor activity in male L1-201 mice carrying the mutation on the X-chromosome. Histological analyses of L1-201 mice showed features of the L1 syndrome, including enlarged ventricles and reduced size of the corpus callosum. Expression levels of L1-201 protein as well as extent of cell surface biotinylation and immunofluorescence labelling of cultured cerebellar neurons were normal. Importantly, treatment of these cultures with the L1 mimetic compounds duloxetine, crotamiton, and trimebutine rescued impaired cell migration and survival as well as neuritogenesis. Altogether, the novel L1 syndrome mouse model provides a first experimental proof-of-principle for the potential therapeutic value of L1 mimetic compounds.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X/tratamiento farmacológico , Discapacidad Intelectual/tratamiento farmacológico , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Peptidomiméticos/uso terapéutico , Paraplejía Espástica Hereditaria/tratamiento farmacológico , Animales , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Cerebelo/patología , Ventrículos Cerebrales/metabolismo , Ventrículos Cerebrales/patología , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Clorhidrato de Duloxetina/farmacología , Clorhidrato de Duloxetina/uso terapéutico , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Locomoción , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Molécula L1 de Adhesión de Célula Nerviosa/genética , Neurogénesis , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Peptidomiméticos/farmacología , Fenotipo , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/patología , Toluidinas/farmacología , Toluidinas/uso terapéutico , Trimebutino/farmacología , Trimebutino/uso terapéutico
17.
Cell Tissue Res ; 383(2): 835-852, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32902807

RESUMEN

Development of the brain ventricular system of vertebrates and the molecular mechanisms involved are not fully understood. The developmental genes expressed in the elements of the brain ventricular system such as the ependyma and circumventricular organs act as molecular determinants of cell adhesion critical for the formation of brain ventricular system. They control brain development and function, including the flow of cerebrospinal fluid. Here, we describe the novel distantly related member of the zebrafish L1-CAM family of genes-camel. Whereas its maternal transcripts distributed uniformly, the zygotic transcripts demonstrate clearly defined expression patterns, in particular in the axial structures: floor plate, hypochord, and roof plate. camel expresses in several other cell lineages with access to the brain ventricular system, including the midbrain roof plate, subcommissural organ, organum vasculosum lamina terminalis, median eminence, paraventricular organ, flexural organ, and inter-rhombomeric boundaries. This expression pattern suggests a role of Camel in neural development. Several isoforms of Camel generated by differential splicing of exons encoding the sixth fibronectin type III domain enhance cell adhesion differentially. The antisense oligomer morpholino-mediated loss-of-function of Camel affects cell adhesion and causes hydrocephalus and scoliosis manifested via the tail curled down phenotype. The subcommissural organ's derivative-the Reissner fiber-participates in the flow of cerebrospinal fluid. The Reissner fiber fails to form upon morpholino-mediated Camel loss-of-function. The Camel mRNA-mediated gain-of-function causes the Reissner fiber misdirection. This study revealed a link between Chl1a/Camel and Reissner fiber formation, and this supports the idea that CHL1 is one of the scoliosis factors.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Ventrículos Cerebrales/embriología , Ventrículos Cerebrales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Animales , Adhesión Celular , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Hidrocefalia/genética , Hidrocefalia/patología , Morfolinos/farmacología , Fenotipo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
18.
Clin Neurol Neurosurg ; 200: 106374, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33290887

RESUMEN

While CDD directly to the CSF can provide a constant delivery of the dopaminergic drug resulting in a more stable treatment effect without the limitations of traditional oral therapy without peripheral effects, it is still young and longitudinal data is lacking. These experimental therapies show promise and further investigation into their efficacy and safety could extend the frontiers for management of PD.


Asunto(s)
Dopamina/administración & dosificación , Dopamina/sangre , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/tratamiento farmacológico , Ventrículos Cerebrales/efectos de los fármacos , Ventrículos Cerebrales/metabolismo , Humanos , Inyecciones Intraventriculares , Inyecciones Espinales
19.
Clin Transl Oncol ; 23(3): 459-467, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32617871

RESUMEN

PURPOSE: This study investigated the degree of tumor cell infiltration in the tumor cavity and ventricle wall based on fluorescent signals of 5-aminolevulinic acid (5-ALA) after removal of the magnetic resonance (MR)-enhancing area and analyzed its prognostic significance in glioblastoma. METHODS: Twenty-five newly developed isocitrate dehydrogenase (IDH)-wildtype glioblastomas with complete resection both of MR-enhancing lesions and strong purple fluorescence on resection cavity were retrospectively analyzed. The fluorescent signals of 5-ALA were divided into strong purple, vague pink, and blue colors. The pathologic findings were classified into massively infiltrating tumor cells, infiltrating tumor cells, suspicious single-cell infiltration, and normal-appearing cells. The pathological findings were analyzed according to the fluorescent signals in the resection cavity and ventricle wall. RESULTS: There was no correlation between fluorescent signals and infiltrating tumor cells in the resection cavity (p = 0.199) and ventricle wall (p = 0.704) after resection of the MR-enhancing lesion. The median progression-free survival (PFS) and median overall survival (OS) were 12.5 (± 2.1) and 21.1 (± 3.5) months, respectively. In univariate analysis, the presence of definitive infiltrating tumor cells in the resection cavity and ventricle wall was significantly related to the PFS (p = 0.002) and OS (p = 0.027). In multivariate analysis, the absence of definitive infiltrating tumor cells improved PFS (hazard ratio: 0.184; 95% CI: 0.049-0.690, p = 0.012) and OS (hazard ratio: 0.124; 95% CI: 0.015-0.998, p = 0.050). CONCLUSIONS: After resection both of the MR-enhancing lesions and strong purple fluorescence on resection cavity, there was no correlation between remnant fluorescent signals and infiltrating tumor cells. The remnant definitive infiltrating tumor cells in the resection cavity and ventricle wall significantly influenced the prognosis of patients with glioblastoma. Aggressive surgical removal of infiltrating tumor cells may improve their prognosis.


Asunto(s)
Ácido Aminolevulínico/metabolismo , Neoplasias Encefálicas/patología , Movimiento Celular , Glioblastoma/patología , Isocitrato Deshidrogenasa , Fármacos Fotosensibilizantes/metabolismo , Anciano , Ácido Aminolevulínico/administración & dosificación , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/cirugía , Ventrículos Cerebrales/metabolismo , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Femenino , Fluorescencia , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Glioblastoma/cirugía , Humanos , Estimación de Kaplan-Meier , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Fármacos Fotosensibilizantes/administración & dosificación , Pronóstico , Supervivencia sin Progresión , Protoporfirinas/metabolismo , Estudios Retrospectivos , Proteínas Supresoras de Tumor/genética
20.
Int J Mol Sci ; 21(21)2020 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-33113879

RESUMEN

White matter lesions (WML) are a common feature of the ageing brain associated with cognitive impairment. The gene expression profiles of periventricular lesions (PVL, n = 7) and radiologically-normal-appearing (control) periventricular white matter cases (n = 11) obtained from the Cognitive Function and Ageing Study (CFAS) neuropathology cohort were interrogated using microarray analysis and NanoString to identify novel mechanisms potentially underlying their formation. Histological characterisation of control white matter cases identified a subgroup (n = 4) which contained high levels of MHC-II immunoreactive microglia, and were classified as "pre-lesional." Microarray analysis identified 2256 significantly differentially-expressed genes (p ≤ 0.05, FC ≥ 1.2) in PVL compared to non-lesional control white matter (1378 upregulated and 878 downregulated); 2649 significantly differentially-expressed genes in "pre-lesional" cases compared to PVL (1390 upregulated and 1259 downregulated); and 2398 significantly differentially-expressed genes in "pre-lesional" versus non-lesional control cases (1527 upregulated and 871 downregulated). Whilst histological evaluation of a single marker (MHC-II) implicates immune-activated microglia in lesion pathology, transcriptomic analysis indicates significant downregulation of a number of activated microglial markers and suggests established PVL are part of a continuous spectrum of white matter injury. The gene expression profile of "pre-lesional" periventricular white matter suggests upregulation of several signalling pathways may be a neuroprotective response to prevent the pathogenesis of PVL.


Asunto(s)
Envejecimiento/genética , Ventrículos Cerebrales/metabolismo , Perfilación de la Expresión Génica/métodos , Inmunidad/genética , Transcriptoma/genética , Sustancia Blanca/metabolismo , Factores de Edad , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Masculino , Microglía/metabolismo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...