Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 602
Filtrar
1.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38664022

RESUMEN

Neural stem cells (NSCs) reside in discrete regions of the adult mammalian brain where they can differentiate into neurons, astrocytes, and oligodendrocytes. Several studies suggest that mitochondria have a major role in regulating NSC fate. Here, we evaluated mitochondrial properties throughout NSC differentiation and in lineage-specific cells. For this, we used the neurosphere assay model to isolate, expand, and differentiate mouse subventricular zone postnatal NSCs. We found that the levels of proteins involved in mitochondrial fusion (Mitofusin [Mfn] 1 and Mfn 2) increased, whereas proteins involved in fission (dynamin-related protein 1 [DRP1]) decreased along differentiation. Importantly, changes in mitochondrial dynamics correlated with distinct patterns of mitochondrial morphology in each lineage. Particularly, we found that the number of branched and unbranched mitochondria increased during astroglial and neuronal differentiation, whereas the area occupied by mitochondrial structures significantly reduced with oligodendrocyte maturation. In addition, comparing the three lineages, neurons revealed to be the most energetically flexible, whereas astrocytes presented the highest ATP content. Our work identified putative mitochondrial targets to enhance lineage-directed differentiation of mouse subventricular zone-derived NSCs.


Asunto(s)
Astrocitos , Diferenciación Celular , Linaje de la Célula , Dinaminas , Mitocondrias , Dinámicas Mitocondriales , Células-Madre Neurales , Neuronas , Oligodendroglía , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Mitocondrias/metabolismo , Ratones , Diferenciación Celular/genética , Linaje de la Célula/genética , Astrocitos/metabolismo , Astrocitos/citología , Oligodendroglía/metabolismo , Oligodendroglía/citología , Neuronas/metabolismo , Neuronas/citología , Células Cultivadas , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Neurogénesis , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo
2.
Cell Rep ; 43(4): 114031, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38583153

RESUMEN

Outer radial glia (oRG) emerge as cortical progenitor cells that support the development of an enlarged outer subventricular zone (oSVZ) and the expansion of the neocortex. The in vitro generation of oRG is essential to investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 signaling pathway using leukemia inhibitory factor (LIF), which is not expressed in guided cortical organoids, we define a cortical organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The oSVZ comprises progenitor cells expressing specific oRG markers such as GFAP, LIFR, and HOPX, closely matching human fetal oRG. Finally, incorporating neural crest-derived LIF-producing cortical pericytes into cortical organoids recapitulates the effects of LIF treatment. These data indicate that increasing the cellular complexity of the organoid microenvironment promotes the emergence of oRG and supports a platform to study oRG in hPSC-derived brain organoids routinely.


Asunto(s)
Diferenciación Celular , Ventrículos Laterales , Factor Inhibidor de Leucemia , Organoides , Células Madre Pluripotentes , Humanos , Organoides/metabolismo , Organoides/citología , Factor Inhibidor de Leucemia/metabolismo , Factor Inhibidor de Leucemia/farmacología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Factor de Transcripción STAT3/metabolismo , Neuroglía/metabolismo , Neuroglía/citología , Transducción de Señal
3.
Science ; 382(6673): 958-963, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37995223

RESUMEN

Adult neural stem cells (NSCs) contribute to lifelong brain plasticity. In the adult mouse ventricular-subventricular zone, NSCs are heterogeneous and, depending on their location in the niche, give rise to different subtypes of olfactory bulb (OB) interneurons. Here, we show that multiple regionally distinct NSCs, including domains that are usually quiescent, are recruited on different gestation days during pregnancy. Synchronized activation of these adult NSC pools generates transient waves of short-lived OB interneurons, especially in layers with less neurogenesis under homeostasis. Using spatial transcriptomics, we identified molecular markers of pregnancy-associated interneurons and showed that some subsets are temporarily needed for own pup recognition. Thus, pregnancy triggers transient yet behaviorally relevant neurogenesis, highlighting the physiological relevance of adult stem cell heterogeneity.


Asunto(s)
Interneuronas , Ventrículos Laterales , Conducta Materna , Neurogénesis , Plasticidad Neuronal , Bulbo Olfatorio , Embarazo , Olfato , Animales , Femenino , Ratones , Embarazo/fisiología , Células Madre Adultas/fisiología , Interneuronas/citología , Interneuronas/fisiología , Ventrículos Laterales/citología , Ventrículos Laterales/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Bulbo Olfatorio/citología , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/metabolismo , Transcriptoma , Conducta Materna/fisiología
4.
Stem Cell Reports ; 17(6): 1411-1427, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35523180

RESUMEN

The insulin receptor (INSR) is an evolutionarily conserved signaling protein that regulates development and cellular metabolism. INSR signaling promotes neurogenesis in Drosophila; however, a specific role for the INSR in maintaining adult neural stem cells (NSCs) in mammals has not been investigated. We show that conditionally deleting the Insr gene in adult mouse NSCs reduces subventricular zone NSCs by ∼70% accompanied by a corresponding increase in progenitors. Insr deletion also produced hyposmia caused by aberrant olfactory bulb neurogenesis. Interestingly, hippocampal neurogenesis and hippocampal-dependent behaviors were unperturbed. Highly aggressive proneural and mesenchymal glioblastomas had high INSR/insulin-like growth factor (IGF) pathway gene expression, and isolated glioma stem cells had an aberrantly high ratio of INSR:IGF type 1 receptor. Moreover, INSR knockdown inhibited GBM tumorsphere growth. Altogether, these data demonstrate that the INSR is essential for a subset of normal NSCs, as well as for brain tumor stem cell self-renewal.


Asunto(s)
Células Madre Adultas , Ventrículos Laterales/metabolismo , Células-Madre Neurales , Receptor de Insulina/metabolismo , Somatomedinas , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Ventrículos Laterales/citología , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Somatomedinas/metabolismo
5.
Stem Cell Reports ; 17(2): 245-258, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35030320

RESUMEN

In the adult ventricular-subventricular zone (V-SVZ), neural stem cells (NSCs) give rise to transit-amplifying progenitor (TAP) cells. These progenitors reside in different subniche locations, implying that cell movement must accompany lineage progression, but the dynamic behaviors of adult NSCs and TAPs remain largely unexplored. Here, we performed live time-lapse imaging with computer-based image analysis of young and aged 3D V-SVZ wholemounts from transgenic mice with fluorescently distinguished NSCs and TAP cells. Young V-SVZ progenitors are highly dynamic, with regular process outgrowth and retraction and cell migration. However, these activities dramatically declined with age. An examination of single-cell RNA sequencing (RNA-seq) data revealed age-associated changes in the Rho-Rock pathway that are important for cell motility. Applying a small molecule to inhibit ROCK transformed young into old V-SVZ progenitor cell dynamic behaviors. Hence RHO-ROCK signaling is critical for normal adult NSC and TAP movement and interactions, which are compromised with age, concomitant with the loss of regenerative ability.


Asunto(s)
Envejecimiento , Células-Madre Neurales/metabolismo , Nicho de Células Madre/fisiología , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo , Amidas/farmacología , Animales , Movimiento Celular/efectos de los fármacos , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Ratones , Ratones Transgénicos , Células-Madre Neurales/citología , Piridinas/farmacología , Transducción de Señal , Imagen de Lapso de Tiempo , Quinasas Asociadas a rho/antagonistas & inhibidores
6.
Mol Neurobiol ; 59(1): 77-92, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34625907

RESUMEN

Human MYCN is an oncogene amplified in neuroblastoma and many other tumors. Both human MYCN and mouse Mycn genes are important in embryonic brain development, but their functions in adult healthy nerve system are completely unknown. Here, with Mycn-eGFP mice and quantitative RT-PCR, we found that Mycn was expressed in specific brain regions of young adult mice, including subventricular zone (SVZ), subgranular zone (SGZ), olfactory bulb (OB), subcallosal zone (SCZ), and corpus callosum (CC). With immunohistochemistry (IHC), we found that many Mycn-expressing cells expressed neuroblast marker doublecortin (DCX) and proliferation marker Ki67. With Dcx-creER and Mki67-creER mouse lines, we fate mapped Dcx-expressing neuroblasts and Mki67-expressing proliferation cells, along with deleting Mycn from these cells in adult mice. We found that knocking out Mycn from adult neuroblasts or proliferating cells significantly reduced cells in proliferation in SVZ, SGZ, OB, SCZ, and CC. We also demonstrated that the Mycn-deficient neuroblasts in SGZ matured quicker than wild-type neuroblasts, and that Mycn-deficient proliferating cells were more likely to survive in SVZ, SGZ, OB, SCZ, and CC compared to wild type. Thus, our results demonstrate that, in addition to causing tumors in the nervous system, oncogene Mycn has a crucial function in neurogenesis and oligodendrogenesis in adult healthy brain.


Asunto(s)
Proteína Proto-Oncogénica N-Myc/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Oligodendroglía/metabolismo , Animales , Proliferación Celular/fisiología , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Ratones , Ratones Transgénicos , Proteína Proto-Oncogénica N-Myc/genética , Células-Madre Neurales/citología , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Oligodendroglía/citología
7.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34768919

RESUMEN

The generation of new neurons in the adult brain is a currently accepted phenomenon. Over the past few decades, the subventricular zone and the hippocampal dentate gyrus have been described as the two main neurogenic niches. Neurogenic niches generate new neurons through an asymmetric division process involving several developmental steps. This process occurs throughout life in several species, including humans. These new neurons possess unique properties that contribute to the local circuitry. Despite several efforts, no other neurogenic zones have been observed in many years; the lack of observation is probably due to technical issues. However, in recent years, more brain niches have been described, once again breaking the current paradigms. Currently, a debate in the scientific community about new neurogenic areas of the brain, namely, human adult neurogenesis, is ongoing. Thus, several open questions regarding new neurogenic niches, as well as this phenomenon in adult humans, their functional relevance, and their mechanisms, remain to be answered. In this review, we discuss the literature and provide a compressive overview of the known neurogenic zones, traditional zones, and newly described zones. Additionally, we will review the regulatory roles of some molecular mechanisms, such as miRNAs, neurotrophic factors, and neurotrophins. We also join the debate on human adult neurogenesis, and we will identify similarities and differences in the literature and summarize the knowledge regarding these interesting topics.


Asunto(s)
Giro Dentado/citología , Ventrículos Laterales/citología , Neurogénesis/fisiología , Neuronas/citología , Estriado Ventral/citología , Adulto , Animales , Hipocampo/citología , Humanos , Ratones , MicroARNs/genética , Células-Madre Neurales/citología , Neurogénesis/genética , Ratas
8.
Cells ; 10(11)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34831271

RESUMEN

Galectin-3 (Gal-3) is an evolutionarily conserved and multifunctional protein that drives inflammation in disease. Gal-3's role in the central nervous system has been less studied than in the immune system. However, recent studies show it exacerbates Alzheimer's disease and is upregulated in a large variety of brain injuries, while loss of Gal-3 function can diminish symptoms of neurodegenerative diseases such as Alzheimer's. Several novel molecular pathways for Gal-3 were recently uncovered. It is a natural ligand for TREM2 (triggering receptor expressed on myeloid cells), TLR4 (Toll-like receptor 4), and IR (insulin receptor). Gal-3 regulates a number of pathways including stimulation of bone morphogenetic protein (BMP) signaling and modulating Wnt signalling in a context-dependent manner. Gal-3 typically acts in pathology but is now known to affect subventricular zone (SVZ) neurogenesis and gliogenesis in the healthy brain. Despite its myriad interactors, Gal-3 has surprisingly specific and important functions in regulating SVZ neurogenesis in disease. Gal-1, a similar lectin often co-expressed with Gal-3, also has profound effects on brain pathology and adult neurogenesis. Remarkably, Gal-3's carbohydrate recognition domain bears structural similarity to the SARS-CoV-2 virus spike protein necessary for cell entry. Gal-3 can be targeted pharmacologically and is a valid target for several diseases involving brain inflammation. The wealth of molecular pathways now known further suggest its modulation could be therapeutically useful.


Asunto(s)
Galectina 3/metabolismo , Enfermedades del Sistema Nervioso/patología , Neurogénesis , Animales , Encéfalo/metabolismo , Encéfalo/patología , COVID-19/metabolismo , COVID-19/patología , Movimiento Celular , Galectina 3/química , Galectina 3/genética , Humanos , Inflamación , Ventrículos Laterales/citología , Ventrículos Laterales/crecimiento & desarrollo , Ventrículos Laterales/patología , Enfermedades del Sistema Nervioso/metabolismo , Células-Madre Neurales/citología , Transducción de Señal
9.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34768936

RESUMEN

Neural precursors originating in the subventricular zone (SVZ), the largest neurogenic region of the adult brain, migrate several millimeters along a restricted migratory pathway, the rostral migratory stream (RMS), toward the olfactory bulb (OB), where they differentiate into interneurons and integrate into the local neuronal circuits. Migration of SVZ-derived neuroblasts in the adult brain differs in many aspects from that in the embryonic period. Unlike in that period, postnatally-generated neuroblasts in the SVZ are able to divide during migration along the RMS, as well as they migrate independently of radial glia. The homophilic mode of migration, i.e., using each other to move, is typical for neuroblast movement in the RMS. In addition, it has recently been demonstrated that specifically-arranged blood vessels navigate SVZ-derived neuroblasts to the OB and provide signals which promote migration. Here we review the development of vasculature in the presumptive neurogenic region of the rodent brain during the embryonic period as well as the development of the vascular scaffold guiding neuroblast migration in the postnatal period, and the significance of blood vessel reorganization during the early postnatal period for proper migration of RMS neuroblasts in adulthood.


Asunto(s)
Encéfalo/irrigación sanguínea , Ventrículos Laterales/fisiología , Neovascularización Fisiológica/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Bulbo Olfatorio/fisiología , Animales , Vasos Sanguíneos/metabolismo , Encéfalo/embriología , Movimiento Celular/fisiología , Ventrículos Laterales/citología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Neuronas/citología , Neuronas/fisiología , Bulbo Olfatorio/citología
10.
Nat Commun ; 12(1): 6298, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728600

RESUMEN

Basal progenitors (BPs), including intermediate progenitors and basal radial glia, are generated from apical radial glia and are enriched in gyrencephalic species like humans, contributing to neuronal expansion. Shortly after generation, BPs delaminate towards the subventricular zone, where they further proliferate before differentiation. Gene expression alterations involved in BP delamination and function in humans are poorly understood. Here, we study the role of LGALS3BP, so far known as a cancer biomarker, which is a secreted protein enriched in human neural progenitors (NPCs). We show that individuals with LGALS3BP de novo variants exhibit altered local gyrification, sulcal depth, surface area and thickness in their cortex. Additionally, using cerebral organoids, human fetal tissues and mice, we show that LGALS3BP regulates the position of NPCs. Single-cell RNA-sequencing and proteomics reveal that LGALS3BP-mediated mechanisms involve the extracellular matrix in NPCs' anchoring and migration within the human brain. We propose that its temporal expression influences NPCs' delamination, corticogenesis and gyrification extrinsically.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor/metabolismo , Corteza Cerebral/citología , Vesículas Extracelulares/metabolismo , Células Madre Pluripotentes Inducidas/citología , Neocórtex/citología , Células-Madre Neurales/citología , Neuroglía/metabolismo , Animales , Diferenciación Celular , Corteza Cerebral/metabolismo , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Neocórtex/metabolismo , Células-Madre Neurales/metabolismo
11.
Bull Exp Biol Med ; 171(3): 333-337, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34297290

RESUMEN

We studied the participation of JNK and p53 in the realization of the growth potential of different types of progenitors of the subventricular zone of mouse brain and secretion of neurotrophins by glial cells. The stimulating role of these signaling molecules in mitotic activity and specialization of multipotent neural stem cells was shown. It was found that JNK and p53 do not participate in the regulation of committed neuronal progenitor cells (clonogenic PSA-NCAM+ cells). A dependence of neurotrophic growth factors in individual populations of neuroglia on activity of these protein kinase and transcription factor was revealed. The role of JNK and p53 in astrocytes consists in stimulation of their secretion, and in microglial cells, on the contrary, in its inhibition. The secretory neurotrophic function of oligodendrogliocytes is not associated with JNK and p53 activity.


Asunto(s)
Astrocitos/metabolismo , MAP Quinasa Quinasa 4/genética , Células Madre Multipotentes/metabolismo , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Proteína p53 Supresora de Tumor/genética , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Benzotiazoles/farmacología , Antígeno CD56/genética , Antígeno CD56/metabolismo , Medios de Cultivo Condicionados/farmacología , Regulación de la Expresión Génica , Ventrículos Laterales/citología , Ventrículos Laterales/efectos de los fármacos , Ventrículos Laterales/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre Multipotentes/citología , Células Madre Multipotentes/efectos de los fármacos , Factores de Crecimiento Nervioso/biosíntesis , Factores de Crecimiento Nervioso/genética , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Neuroglía/citología , Neuroglía/efectos de los fármacos , Transducción de Señal , Tolueno/análogos & derivados , Tolueno/farmacología , Proteína p53 Supresora de Tumor/metabolismo
12.
Elife ; 102021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34259628

RESUMEN

The ventricular-subventricular zone (V-SVZ), on the walls of the lateral ventricles, harbors the largest neurogenic niche in the adult mouse brain. Previous work has shown that neural stem/progenitor cells (NSPCs) in different locations within the V-SVZ produce different subtypes of new neurons for the olfactory bulb. The molecular signatures that underlie this regional heterogeneity remain largely unknown. Here, we present a single-cell RNA-sequencing dataset of the adult mouse V-SVZ revealing two populations of NSPCs that reside in largely non-overlapping domains in either the dorsal or ventral V-SVZ. These regional differences in gene expression were further validated using a single-nucleus RNA-sequencing reference dataset of regionally microdissected domains of the V-SVZ and by immunocytochemistry and RNAscope localization. We also identify two subpopulations of young neurons that have gene expression profiles consistent with a dorsal or ventral origin. Interestingly, a subset of genes are dynamically expressed, but maintained, in the ventral or dorsal lineages. The study provides novel markers and territories to understand the region-specific regulation of adult neurogenesis.


Nerve cells, or neurons, are the central building blocks of brain circuits. Their damage, death or loss of function leads to cognitive decline. Neural stem/progenitor cells (NSPCs) first appear during embryo development, generating most of the neurons found in the nervous system. However, the adult brain retains a small subpopulation of NSPCs, which in some species are an important source of new neurons throughout life. In the adult mouse brain the largest population of NSPCs, known as B cells, is found in an area called the ventricular-subventricular zone (V-SVZ). These V-SVZ B cells have properties of specialized support cells known as astrocytes, but they can also divide and generate intermediate 'progenitor cells' called C cells. These, in turn, divide to generate large numbers of young 'A cells' neurons that undertake a long and complex migration from V-SVZ to the olfactory bulb, the first relay in the central nervous system for the processing of smells. Depending on their location in the V-SVZ, B cells can generate different kinds of neurons, leading to at least ten subtypes of neurons. Why this is the case is still poorly understood. To examine this question, Cebrián-Silla, Nascimento, Redmond, Mansky et al. determined which genes were expressed in B, C and A cells from different parts of the V-SVZ. While cells within each of these populations had different expression patterns, those that originated in the same V-SVZ locations shared a set of genes, many of which associated with regional specification in the developing brain. Some, however, were intriguingly linked to hormonal regulation. Salient differences between B cells depended on whether the cells originated closer to the top ('dorsal' position) or to the bottom of the brain ('ventral' position). This information was used to stain slices of mouse brains for the RNA and proteins produced by these genes in different regions. These experiments revealed dorsal and ventral territories containing B cells with distinct 'gene expression'. This study highlights the heterogeneity of NSPCs, revealing key molecular differences among B cells in dorsal and ventral areas of the V-SVZ and reinforcing the concept that the location of NSPCs determines the types of neuron they generate. Furthermore, the birth of specific types of neurons from B cells that are so strictly localized highlights the importance of neuronal migration to ensure that young neurons with specific properties reach their appropriate destination in the olfactory bulb. The work by Cebrián-Silla, Nascimento, Redmond, Mansky et al. has identified sets of genes that are differentially expressed in dorsal and ventral regions which may contribute to regional regulation. Furthering the understanding of how adult NSPCs differ according to their location will help determine how various neuron types emerge in the adult brain.


Asunto(s)
Ventrículos Laterales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Transcriptoma/genética , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Microdisección , Células-Madre Neurales/química , Células-Madre Neurales/citología , Análisis de la Célula Individual
13.
Stem Cell Reports ; 16(8): 1968-1984, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34270934

RESUMEN

Neural and oligodendrocyte precursor cells (NPCs and OPCs) in the subventricular zone (SVZ) of the brain contribute to oligodendrogenesis throughout life, in part due to direct regulation by chemokines. The role of the chemokine fractalkine is well established in microglia; however, the effect of fractalkine on SVZ precursor cells is unknown. We show that murine SVZ NPCs and OPCs express the fractalkine receptor (CX3CR1) and bind fractalkine. Exogenous fractalkine directly enhances OPC and oligodendrocyte genesis from SVZ NPCs in vitro. Infusion of fractalkine into the lateral ventricle of adult NPC lineage-tracing mice leads to increased newborn OPC and oligodendrocyte formation in vivo. We also show that OPCs secrete fractalkine and that inhibition of endogenous fractalkine signaling reduces oligodendrocyte formation in vitro. Finally, we show that fractalkine signaling regulates oligodendrogenesis in cerebellar slices ex vivo. In summary, we demonstrate a novel role for fractalkine signaling in regulating oligodendrocyte genesis from postnatal CNS precursor cells.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Ventrículos Laterales/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Transducción de Señal , Animales , Receptor 1 de Quimiocinas CX3C/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Quimiocina CX3CL1/farmacología , Expresión Génica/efectos de los fármacos , Ventrículos Laterales/citología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Células Precursoras de Oligodendrocitos/citología , Factor de Transcripción 2 de los Oligodendrocitos/genética , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Oligodendroglía/citología , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
14.
Science ; 372(6547): 1205-1209, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34112692

RESUMEN

Quiescent neural stem cells (NSCs) in the adult mouse ventricular-subventricular zone (V-SVZ) undergo activation to generate neurons and some glia. Here we show that platelet-derived growth factor receptor beta (PDGFRß) is expressed by adult V-SVZ NSCs that generate olfactory bulb interneurons and glia. Selective deletion of PDGFRß in adult V-SVZ NSCs leads to their release from quiescence, uncovering gliogenic domains for different glial cell types. These domains are also recruited upon injury. We identify an intraventricular oligodendrocyte progenitor derived from NSCs inside the brain ventricles that contacts supraependymal axons. Together, our findings reveal that the adult V-SVZ contains spatial domains for gliogenesis, in addition to those for neurogenesis. These gliogenic NSC domains tend to be quiescent under homeostasis and may contribute to brain plasticity.


Asunto(s)
Células Madre Adultas/fisiología , Ventrículos Cerebrales/fisiología , Ventrículos Laterales/fisiología , Células-Madre Neurales/fisiología , Neuroglía/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Astrocitos/citología , Astrocitos/fisiología , Axones/fisiología , Diferenciación Celular , División Celular , Ventrículos Cerebrales/citología , Epéndimo/citología , Epéndimo/fisiología , Femenino , Perfilación de la Expresión Génica , Homeostasis , Ventrículos Laterales/citología , Masculino , Ratones , Neurogénesis , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Oligodendroglía/citología , Oligodendroglía/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética
15.
Nat Commun ; 12(1): 2594, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972529

RESUMEN

Adult neural stem cells (NSCs) must tightly regulate quiescence and proliferation. Single-cell analysis has suggested a continuum of cell states as NSCs exit quiescence. Here we capture and characterize in vitro primed quiescent NSCs and identify LRIG1 as an important regulator. We show that BMP-4 signaling induces a dormant non-cycling quiescent state (d-qNSCs), whereas combined BMP-4/FGF-2 signaling induces a distinct primed quiescent state poised for cell cycle re-entry. Primed quiescent NSCs (p-qNSCs) are defined by high levels of LRIG1 and CD9, as well as an interferon response signature, and can efficiently engraft into the adult subventricular zone (SVZ) niche. Genetic disruption of Lrig1 in vivo within the SVZ NSCs leads an enhanced proliferation. Mechanistically, LRIG1 primes quiescent NSCs for cell cycle re-entry and EGFR responsiveness by enabling EGFR protein levels to increase but limiting signaling activation. LRIG1 is therefore an important functional regulator of NSC exit from quiescence.


Asunto(s)
Células Madre Adultas/metabolismo , Ventrículos Laterales/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Células Madre Adultas/citología , Células Madre Adultas/efectos de los fármacos , Animales , Proteína Morfogenética Ósea 4/farmacología , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/genética , Proteínas de Unión al ADN/metabolismo , Receptores ErbB/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Ontología de Genes , Inmunohistoquímica , Interferones/farmacología , Ventrículos Laterales/citología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Glicoproteínas de Membrana/genética , Ratones , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Proteómica , RNA-Seq , Regeneración/efectos de los fármacos , Tetraspanina 29/metabolismo , Regulación hacia Arriba
16.
Int J Dev Neurosci ; 81(5): 438-447, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33934403

RESUMEN

BACKGROUND: The distribution and growth of cells on nanofibrous scaffolds seem to be an indispensable precondition in cell tissue engineering. The potential use of biomaterial scaffolds in neural stem cell therapy is increasingly attracting attention. AIM: In this study, we produced porous nanofibrous scaffolds fabricated from random poly-L-lactic acid (PLLA) to support neurogenic differentiation of neural stem and progenitor cells (NSPCs), isolated from the subventricular zone (SVZ) of the adult mouse brain. METHODS: The viability and proliferation of the NSPCs on the nanofibrous PLLA scaffold were also tested by nuclear staining with 4, 6-diamidino-2-phenylindole dihydrochloride (DAPI), 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay and scanning electron microscopy (SEM). To investigate the differentiation potential of NSPCs on the scaffolds, the cells were treated with a neurogenic differentiation medium, and immunostaining was done to detect neuronal and glial cells after 14 and 21 days of cultivation. Furthermore, the morphology of differentiated cells on the scaffold was examined using SEM. RESULTS: The DAPI staining revealed the proliferation of NSPCs onto the surface of the nanofibrous PLLA scaffold. DAPI-positive cells were counted on days 2 and 5 after cultivation. The mean number of cells in each microscopic field was significantly (p < .05) increased (51 ± 19 on day 2 compared to 77 ± 25 cells on day 5). The results showed that the cell viability on PLLA scaffolds significantly increased compared to control groups. Moreover, cell viability was significantly increased 5 days after culturing (262.3 ± 50.2) as compared to 2 days culture in Vitro (174.2 ± 28.3, p < .05). Scanning electron micrographs also showed that the NSPCs adhered and differentiated on PLLA scaffolds. We found that the neural cell markers, microtubule-associated protein 2 (MAP2) and glial fibrillary acidic protein (GFAP), were expressed in NSPCs seeded on random PLLA scaffolds after 21 days of cultivation. CONCLUSION: These results suggest that the PLLA nano-scaffolds, due to their biocompatible property, are an appropriate structure for the proliferation, differentiation, and normal growth of NSPCs.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Nanofibras , Células-Madre Neurales/efectos de los fármacos , Poliésteres/farmacología , Células Madre/efectos de los fármacos , Andamios del Tejido , Animales , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Ventrículos Laterales/citología , Ventrículos Laterales/efectos de los fármacos , Masculino , Ensayo de Materiales , Ratones , Ratones Endogámicos BALB C , Proteínas Asociadas a Microtúbulos/metabolismo , Neuroglía/efectos de los fármacos
17.
Methods Mol Biol ; 2311: 131-145, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34033081

RESUMEN

Cell cultures constitute an important tool for research as a way to reproduce pathological processes in a controlled system. However, the culture of brain-derived cells in monolayer presents significant challenges that obscure the fidelity of in vitro results. This is because after a few number of passages, glial and neuronal cells begin to lose their morphological characteristics, and most importantly, their specific cellular markers and phenotype. In recent years, the discovery of neural progenitor cells, and the methodology to culture them in suspension maintaining their potentiality while still retaining the ability to differentiate into astrocytes, oligodendrocytes, and neurons has made significant contributions to the fields of neuroscience and neuropathology.In the brain, progenitor cells are located in the germinal matrix, in the subventricular zone and play an essential role in the homeostasis of the brain by providing the source to replace differentiated cells that have been lost or damaged by different pathological processes, such as injury, genetic conditions, or disease. The discovery of these Neural Stem Cells in an organ traditionally thought to have limited or no regenerative capacity has opened the door to the development of novel treatments, which include cell replacement therapy. Here we describe the culture and differentiation of neural progenitor cells from Neurospheres, and the phenotyping of the resulting cells using immunocytochemistry. The immunocytological methods outlined are not restricted to the analysis of neurosphere-derived cultures but are also applicable for cell typing of primary glial or cell line-derived samples.


Asunto(s)
Ventrículos Laterales/citología , Células-Madre Neurales/fisiología , Neurogénesis , Neuroglía/fisiología , Neuronas/fisiología , Animales , Neoplasias Encefálicas/patología , Técnicas de Cultivo de Célula , Linaje de la Célula , Separación Celular , Glioblastoma/patología , Humanos , Ratones , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Fenotipo , Esferoides Celulares , Células Tumorales Cultivadas
18.
Stem Cell Reports ; 16(4): 836-850, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33836145

RESUMEN

With age, neural stem cell (NSC) function in the adult ventricular-subventricular zone (V-SVZ) declines, reducing memory and cognitive function in males; however, the impact on females is not well understood. To obtain a global view of how age and sex impact the mouse V-SVZ, we constructed 3D montages after multiplex immunostaining, and used computer-based 3D image analysis to quantify data across the entire niche at 2, 18, and 22 months. We discovered dramatic sex differences in the aging of the V-SVZ niche vasculature, which regulates NSC activity: females showed increased diameter but decreased vessel density with age, while males showed decreased diameter and increased tortuosity and vessel density. Accompanying these vascular changes, males showed significant decline in NSC numbers, progenitor cell proliferation, and more disorganized migrating neuroblast chains with age; however, females did not. By examining the entire 3D niche, we found significant sex differences, with females being relatively spared through very old age.


Asunto(s)
Envejecimiento/fisiología , Imagenología Tridimensional , Ventrículos Laterales/irrigación sanguínea , Ventrículos Laterales/diagnóstico por imagen , Células-Madre Neurales/metabolismo , Nicho de Células Madre , Animales , Vasos Sanguíneos/diagnóstico por imagen , Proliferación Celular , Proteína Doblecortina , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Ventrículos Laterales/citología , Masculino , Ratones Endogámicos C57BL
19.
Cell ; 184(8): 2103-2120.e31, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33740419

RESUMEN

During cell migration or differentiation, cell surface receptors are simultaneously exposed to different ligands. However, it is often unclear how these extracellular signals are integrated. Neogenin (NEO1) acts as an attractive guidance receptor when the Netrin-1 (NET1) ligand binds, but it mediates repulsion via repulsive guidance molecule (RGM) ligands. Here, we show that signal integration occurs through the formation of a ternary NEO1-NET1-RGM complex, which triggers reciprocal silencing of downstream signaling. Our NEO1-NET1-RGM structures reveal a "trimer-of-trimers" super-assembly, which exists in the cell membrane. Super-assembly formation results in inhibition of RGMA-NEO1-mediated growth cone collapse and RGMA- or NET1-NEO1-mediated neuron migration, by preventing formation of signaling-compatible RGM-NEO1 complexes and NET1-induced NEO1 ectodomain clustering. These results illustrate how simultaneous binding of ligands with opposing functions, to a single receptor, does not lead to competition for binding, but to formation of a super-complex that diminishes their functional outputs.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas Ligadas a GPI/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Oncogénicas/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/química , Movimiento Celular , Receptor DCC/deficiencia , Receptor DCC/genética , Proteínas Ligadas a GPI/química , Conos de Crecimiento/fisiología , Humanos , Ventrículos Laterales/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Neuronas/citología , Neuronas/metabolismo , Proteínas Oncogénicas/química , Proteínas Oncogénicas/genética , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal
20.
Neurosci Lett ; 745: 135616, 2021 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-33421485

RESUMEN

Ischemic stroke is a major cause of mortality and disability. Subventricular zone (SVZ) neurogenesis following an ischemic stroke may be beneficial for improving the outcomes. Environmental enrichment (EE) has been reported to increase neurogenesis following stroke. Growth arrest and DNA-damage-inducible protein 45 ß (Gadd45b) is a crucial gene for activity-correlated neurogenesis in the adult hippocampus of mice. This study examined whether Gadd45b inhibition affects adult SVZ neurogenesis after an ischemic injury and explored the role of Gadd45b in EE-induced SVZ neurogenesis in adult male Sprague Dawley rats following middle cerebral artery occlusion (MCAO). Gadd45b expression was silenced by a lentivirus with RNA interference (RNAi). The 5-ethynyl-2-deoxyuridine (EdU) staining test was performed to detect cell proliferation. Gadd45b-RNAi after MCAO decreased SVZ proliferation and differentiation in the infarction boundary following ischemic injury, accompanied by the depressed expression of the brain-derived neurotrophic factor (BDNF). Treatment with EE following ischemic stroke upregulated Gadd45b and BDNF expressions and increased neurogenesis in the SVZ. Inhibition of Gadd45b markedly ameliorated the increased neurogenesis induced by EE. These data indicated that Gadd45b is related to SVZ neurogenesis following ischemic stroke, and Gadd45b mediates EE-induced neurogenesis via BDNF in the SVZ of rats following an ischemia stroke. These results implicate that Gadd45b can be a potential therapeutic target to enhance adult neurogenesis following cerebral ischemia.


Asunto(s)
Antígenos de Diferenciación/biosíntesis , Isquemia Encefálica/metabolismo , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Ventrículos Laterales/metabolismo , Neurogénesis/fisiología , Accidente Cerebrovascular/metabolismo , Animales , Isquemia Encefálica/terapia , Ambiente , Ventrículos Laterales/citología , Masculino , Células-Madre Neurales/metabolismo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA