Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Plant ; 15(10): 1533-1542, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36081349

RESUMEN

Biological systems are the sum of their dynamic three-dimensional (3D) parts. Therefore, it is critical to study biological structures in 3D and at high resolution to gain insights into their physiological functions. Electron microscopy of metal replicas of unroofed cells and isolated organelles has been a key technique to visualize intracellular structures at nanometer resolution. However, many of these methods require specialized equipment and personnel to complete them. Here, we present novel accessible methods to analyze biological structures in unroofed cells and biochemically isolated organelles in 3D and at nanometer resolution, focusing on Arabidopsis clathrin-coated vesicles (CCVs). While CCVs are essential trafficking organelles, their detailed structural information is lacking due to their poor preservation when observed via classical electron microscopy protocols experiments. First, we establish a method to visualize CCVs in unroofed cells using scanning transmission electron microscopy tomography, providing sufficient resolution to define the clathrin coat arrangements. Critically, the samples are prepared directly on electron microscopy grids, removing the requirement to use extremely corrosive acids, thereby enabling the use of this method in any electron microscopy lab. Secondly, we demonstrate that this standardized sample preparation allows the direct comparison of isolated CCV samples with those visualized in cells. Finally, to facilitate the high-throughput and robust screening of metal replicated samples, we provide a deep learning analysis method to screen the "pseudo 3D" morphologies of CCVs imaged with 2D modalities. Collectively, our work establishes accessible ways to examine the 3D structure of biological samples and provide novel insights into the structure of plant CCVs.


Asunto(s)
Cáusticos , Vesículas Cubiertas por Clatrina , Cáusticos/análisis , Clatrina , Vesículas Cubiertas por Clatrina/química , Vesículas Cubiertas por Clatrina/ultraestructura , Endocitosis/fisiología , Imagenología Tridimensional
3.
Microvasc Res ; 138: 104219, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34214572

RESUMEN

Dynamin is recognized as a crucial regulator for membrane fission and has three isoforms in mammals. But the expression patterns of dynamin isoforms and their roles in non-neuronal cells are incompletely understood. In this study, the expression profiles of dynamin isoforms and their roles in endocytosis was investigated in brain endothelial cells. We found that Dyn2 was expressed at highest levels, whereas the expression of Dyn1 and Dyn3 were far less than Dyn2. Live-cell imaging was used to investigate the effects of siRNA-mediated knockdown of individual dynamin isoforms on transferrin uptake, and we found that Dyn2, but not Dyn1 or Dyn3, is required for the endocytosis in brain endothelial cells. Results of dextran uptake assay showed that dynamin isoforms are not involved in the clathrin-independent fluid-phase internalization of brain endothelial cells, suggesting the specificity of the role of Dyn2 in clathrin-dependent endocytosis. Immunofluorescence and electron microscopy analysis showed that Dyn2 co-localizes with clathrin and acts at the late stage of vesicle fission in the process of endocytosis. Further results showed that Dyn2 is necessary for the basolateral-to-apical internalization of amyloid-ß into brain endothelial cells. We concluded that Dyn2, but not Dyn1 or Dyn3, mediates the clathrin-dependent endocytosis for amyloid-ß internalization particularly from basolateral to apical side into brain endothelial cells.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Encéfalo/irrigación sanguínea , Membrana Celular/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Clatrina/metabolismo , Dinamina II/metabolismo , Endocitosis , Células Endoteliales/metabolismo , Microvasos/metabolismo , Membrana Celular/ultraestructura , Polaridad Celular , Células Cultivadas , Vesículas Cubiertas por Clatrina/ultraestructura , Dinamina II/genética , Células Endoteliales/ultraestructura , Humanos , Factores de Tiempo , Transferrina/metabolismo
4.
Nat Commun ; 12(1): 1180, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608524

RESUMEN

3D single molecule localization microscopy (SMLM) is an emerging superresolution method for structural cell biology, as it allows probing precise positions of proteins in cellular structures. In supercritical angle localization microscopy (SALM), z-positions of single fluorophores are extracted from the intensity of supercritical angle fluorescence, which strongly depends on their distance to the coverslip. Here, we realize the full potential of SALM and improve its z-resolution by more than four-fold compared to the state-of-the-art by directly splitting supercritical and undercritical emission, using an ultra-high NA objective, and applying fitting routines to extract precise intensities of single emitters. We demonstrate nanometer isotropic localization precision on DNA origami structures, and on clathrin coated vesicles and microtubules in cells, illustrating the potential of SALM for cell biology.


Asunto(s)
Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Conformación Molecular , Imagen Individual de Molécula/instrumentación , Imagen Individual de Molécula/métodos , Vesículas Cubiertas por Clatrina/ultraestructura , ADN/ultraestructura , Fluorescencia , Colorantes Fluorescentes/química , Microtúbulos/ultraestructura , Modelos Biológicos
5.
Mol Brain ; 13(1): 141, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33066817

RESUMEN

Clathrin-mediated endocytosis plays an important role in the recycling of synaptic vesicle in presynaptic terminals, and in the recycling of transmitter receptors in neuronal soma/dendrites. The present study uses electron microscopy (EM) and immunogold EM to document the different categories of clathrin-coated vesicles (CCV) and pits (CCP) in axons compared to soma/dendrites, and the depolarization-induced redistribution of clathrin in these two polarized compartments of the neuron. The size of CCVs in presynaptic terminals (~ 40 nm; similar to the size of synaptic vesicles) is considerably smaller than the size of CCVs in soma/dendrites (~ 90 nm). Furthermore, neuronal stimulation induces an increase in the number of CCV/CCP in presynaptic terminals, but a decrease in soma/dendrites. Immunogold labeling of clathrin revealed that in presynaptic terminals under resting conditions, the majority of clathrin molecules are unassembled and concentrated outside of synaptic vesicle clusters. Upon depolarization with high K+, label for clathrin became scattered among de-clustered synaptic vesicles and moved closer to the presynaptic active zone. In contrast to axons, clathrin-labeled CCVs and CCPs were prominent in soma/dendrites under resting conditions, and became inconspicuous upon depolarization with high K+. Thus, EM examination suggests that the regulation and mechanism of clathrin-mediated endocytosis differ between axon and dendrite, and that clathrin redistributes differently in these two neuronal compartments upon depolarization.


Asunto(s)
Axones/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Clatrina/metabolismo , Dendritas/metabolismo , Animales , Axones/ultraestructura , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Vesículas Cubiertas por Clatrina/ultraestructura , Dendritas/ultraestructura , Ratones , Cuerpos Multivesiculares/metabolismo , Cuerpos Multivesiculares/ultraestructura , Densidad Postsináptica/metabolismo , Terminales Presinápticos/metabolismo , Ratas
7.
Elife ; 92020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31971511

RESUMEN

In plants, clathrin mediated endocytosis (CME) represents the major route for cargo internalisation from the cell surface. It has been assumed to operate in an evolutionary conserved manner as in yeast and animals. Here we report characterisation of ultrastructure, dynamics and mechanisms of plant CME as allowed by our advancement in electron microscopy and quantitative live imaging techniques. Arabidopsis CME appears to follow the constant curvature model and the bona fide CME population generates vesicles of a predominantly hexagonal-basket type; larger and with faster kinetics than in other models. Contrary to the existing paradigm, actin is dispensable for CME events at the plasma membrane but plays a unique role in collecting endocytic vesicles, sorting of internalised cargos and directional endosome movement that itself actively promote CME events. Internalized vesicles display a strongly delayed and sequential uncoating. These unique features highlight the independent evolution of the plant CME mechanism during the autonomous rise of multicellularity in eukaryotes.


Asunto(s)
Arabidopsis , Clatrina , Invaginaciones Cubiertas de la Membrana Celular , Endocitosis/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Evolución Biológica , Clatrina/química , Clatrina/metabolismo , Clatrina/ultraestructura , Vesículas Cubiertas por Clatrina/química , Vesículas Cubiertas por Clatrina/metabolismo , Vesículas Cubiertas por Clatrina/ultraestructura , Invaginaciones Cubiertas de la Membrana Celular/química , Invaginaciones Cubiertas de la Membrana Celular/metabolismo , Invaginaciones Cubiertas de la Membrana Celular/ultraestructura , Microscopía Electrónica , Modelos Biológicos
8.
Small ; 15(6): e1803788, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30589216

RESUMEN

The Bunyavirales is one of the largest groups of RNA viruses, which encompasses many strains that are highly pathogenic to animals and humans. Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus that causes severe disease in humans, with a high fatality rate of up to 30%. To date, the entry process of bunyavirus infection remains obscure. Here, using quantum dot (QD)-based single-particle tracking and multicolor imaging, the dynamic molecular process of SFTSV entry and penetration is systematically dissected. The results show that internalization of SFTSV into host cells is initiated by recruiting clathrin onto the cell membrane for the formation of clathrin-coated pits and further pinching off from the plasma membrane to form discrete vesicles. These vesicular carriers further deliver virions to Rab5+ early endosomes, and then to Rab7+ late endosomes. The intracellular transport of virion-carrying endocytic vesicles is dependent first on actin filaments at the cell periphery, and then on microtubules toward the cell interior. The final fusion events occur at ≈15-60 min post-entry, and are triggered by the acidic environment at ≈pH5.6 within the late endosomes. These results reveal the multistep SFTSV entry process and the dynamic virus-host interactions involved.


Asunto(s)
Phlebovirus/fisiología , Imagen Individual de Molécula , Internalización del Virus , Citoesqueleto de Actina/metabolismo , Animales , Transporte Biológico , Membrana Celular/metabolismo , Chlorocebus aethiops , Clatrina/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Vesículas Cubiertas por Clatrina/ultraestructura , Endosomas/metabolismo , Endosomas/ultraestructura , Concentración de Iones de Hidrógeno , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Modelos Biológicos , Phlebovirus/ultraestructura , Células Vero , Proteínas de Unión al GTP rab5/metabolismo
9.
ACS Infect Dis ; 4(11): 1585-1600, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30200751

RESUMEN

Clathrin-mediated endocytosis (CME) is an important entry pathway for viruses. Here, we applied click chemistry to covalently immobilize reovirus on surfaces to study CME during early host-pathogen interactions. To uncouple chemical and physical properties of viruses and determine their impact on CME initiation, we used the same strategy to covalently immobilize nanoparticles of different sizes. Using fluorescence live microscopy and electron microscopy, we confirmed that clathrin recruitment depends on particle size and discovered that the maturation into clathrin-coated vesicles (CCVs) is independent from cargo internalization. Surprisingly, we found that the final size of CCVs appears to be imprinted on the clathrin coat at early stages of cargo-cell interactions. Our approach has allowed us to unravel novel aspects of early interactions between viruses and the clathrin machinery that influence late stages of CME and CCVs formation. This method can be easily and broadly applied to the field of nanotechnology, endocytosis, and virology.


Asunto(s)
Vesículas Cubiertas por Clatrina/fisiología , Química Clic/métodos , Endocitosis , Nanopartículas/metabolismo , Reoviridae/fisiología , Internalización del Virus , Línea Celular , Vesículas Cubiertas por Clatrina/ultraestructura , Vidrio , Interacciones Microbiota-Huesped , Microscopía Electrónica , Microscopía Fluorescente , Propiedades de Superficie , Fenómenos Fisiológicos de los Virus
10.
Nat Commun ; 9(1): 3825, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30237420

RESUMEN

It is generally assumed that cells interrogate the mechanical properties of their environment by pushing and pulling on the extracellular matrix (ECM). For instance, acto-myosin-dependent contraction forces exerted at focal adhesions (FAs) allow the cell to actively probe substrate elasticity. Here, we report that a subset of long-lived and flat clathrin-coated structures (CCSs), also termed plaques, are contractility-independent mechanosensitive signaling platforms. We observed that plaques assemble in response to increasing substrate rigidity and that this is independent of FAs, actin and myosin-II activity. We show that plaque assembly depends on αvß5 integrin, and is a consequence of frustrated endocytosis whereby αvß5 tightly engaged with the stiff substrate locally stalls CCS dynamics. We also report that plaques serve as platforms for receptor-dependent signaling and are required for increased Erk activation and cell proliferation on stiff environments. We conclude that CCSs are mechanotransduction structures that sense substrate rigidity independently of cell contractility.


Asunto(s)
Vesículas Cubiertas por Clatrina/metabolismo , Endocitosis , Mecanotransducción Celular , Línea Celular , Proliferación Celular , Vesículas Cubiertas por Clatrina/ultraestructura , Humanos , Sistema de Señalización de MAP Quinasas , Receptores de Vitronectina/metabolismo
11.
Methods Mol Biol ; 1847: 83-94, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30129011

RESUMEN

Clathrin-mediated endocytosis (CME) occurs continuously at the plasma membrane of eukaryotic cells. However, when a vesicle forms and what cargo it contains are unpredictable. We recently developed a system to trigger CME on-demand. This means that we can control when endocytosis is triggered and the design means that the cargo that is internalized is predetermined. The method is called hot-wired CME because several steps and proteins are bypassed in our system. In this chapter, we describe in detail how to use the hot-wiring system to trigger endocytosis in human cell lines and how to image the vesicles that form using microscopy and finally, how to analyze those images.


Asunto(s)
Vesículas Cubiertas por Clatrina/metabolismo , Clatrina/metabolismo , Endocitosis/fisiología , Imagen Molecular , Clatrina/química , Vesículas Cubiertas por Clatrina/ultraestructura , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Microscopía Confocal , Imagen Molecular/métodos
12.
Methods Mol Biol ; 1847: 121-146, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30129014

RESUMEN

The disassembly of the clathrin lattice surrounding coated vesicles is the obligatory last step in their life cycle. It is mediated by the coordinated recruitment of auxilin and Hsc70, an ATP-driven molecular clamp. Here, we describe the preparation of reagents and the single-particle fluorescence microscopy imaging assay in which we visualize directly the Hsc70-driven uncoating of synthetic clathrin coats or clathrin-coated vesicles.


Asunto(s)
Vesículas Cubiertas por Clatrina/metabolismo , Clatrina/metabolismo , Microscopía Fluorescente , Imagen Molecular , Auxilinas/metabolismo , Transporte Biológico , Cromatografía de Afinidad , Clatrina/genética , Clatrina/aislamiento & purificación , Vesículas Cubiertas por Clatrina/ultraestructura , Proteínas del Choque Térmico HSC70/aislamiento & purificación , Proteínas del Choque Térmico HSC70/metabolismo , Liposomas/metabolismo , Técnicas Analíticas Microfluídicas , Imagen Molecular/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Coloración y Etiquetado
13.
Methods Mol Biol ; 1847: 189-195, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30129018

RESUMEN

The recent development of probes and labeling strategies for multicolor super-resolution imaging in living cells allows cell biologists to follow cellular processes with unprecedented details. Here we describe how to image endocytic events at the plasma membrane of living cells using commercial (Leica, Abberior Instruments) or custom built STED microscopes.


Asunto(s)
Membrana Celular/ultraestructura , Vesículas Cubiertas por Clatrina/ultraestructura , Endocitosis , Microscopía Fluorescente/métodos , Células HeLa , Humanos
14.
Methods Mol Biol ; 1847: 197-216, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30129019

RESUMEN

High-resolution fluorescence microscopy is increasingly contributing to our understanding of molecular processes. By utilizing single-molecule intensity information, imaging experiments can be rendered quantitative, yielding insights into the stoichiometry and kinetics of the components of a molecular assembly. Here, we describe the experimental and analytical steps needed to study the assembly of clathrin-coated vesicles with single-molecule resolution, using total internal reflection fluorescence microscopy. Many components of the protocol are broadly applicable to the characterization of other molecular processes.


Asunto(s)
Vesículas Cubiertas por Clatrina/ultraestructura , Microscopía Fluorescente/métodos , Animales , Programas Informáticos
15.
Nat Commun ; 9(1): 2604, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973588

RESUMEN

A current challenge is to develop tags to precisely visualize proteins in cells by light and electron microscopy. Here, we introduce FerriTag, a genetically-encoded chemically-inducible tag for correlative light-electron microscopy. FerriTag is a fluorescent recombinant electron-dense ferritin particle that can be attached to a protein-of-interest using rapamycin-induced heterodimerization. We demonstrate the utility of FerriTag for correlative light-electron microscopy by labeling proteins associated with various intracellular structures including mitochondria, plasma membrane, and clathrin-coated pits and vesicles. FerriTagging has a good signal-to-noise ratio and a labeling resolution of approximately 10 nm. We demonstrate how FerriTagging allows nanoscale mapping of protein location relative to a subcellular structure, and use it to detail the distribution and conformation of huntingtin-interacting protein 1 related (HIP1R) in and around clathrin-coated pits.


Asunto(s)
Ferritinas/genética , Colorantes Fluorescentes/química , Microscopía Electrónica/métodos , Sirolimus/química , Coloración y Etiquetado/métodos , Proteínas Adaptadoras Transductoras de Señales , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Vesículas Cubiertas por Clatrina/metabolismo , Vesículas Cubiertas por Clatrina/ultraestructura , Invaginaciones Cubiertas de la Membrana Celular/metabolismo , Invaginaciones Cubiertas de la Membrana Celular/ultraestructura , Ferritinas/química , Ferritinas/metabolismo , Expresión Génica , Células HeLa , Humanos , Proteínas de Microfilamentos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Señal-Ruido , Proteínas de Transporte Vesicular/análisis , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
16.
PLoS Biol ; 16(4): e2005377, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29668686

RESUMEN

Dynamin Guanosine Triphosphate hydrolases (GTPases) are best studied for their role in the terminal membrane fission process of clathrin-mediated endocytosis (CME), but they have also been proposed to regulate earlier stages of CME. Although highly enriched in neurons, dynamin-1 (Dyn1) is, in fact, widely expressed along with Dyn2 but inactivated in non-neuronal cells via phosphorylation by glycogen synthase kinase-3 beta (GSK3ß) kinase. Here, we study the differential, isoform-specific functions of Dyn1 and Dyn2 as regulators of CME. Endogenously expressed Dyn1 and Dyn2 were fluorescently tagged either separately or together in two cell lines with contrasting Dyn1 expression levels. By quantitative live cell dual- and triple-channel total internal reflection fluorescence microscopy, we find that Dyn2 is more efficiently recruited to clathrin-coated pits (CCPs) than Dyn1, and that Dyn2 but not Dyn1 exhibits a pronounced burst of assembly, presumably into supramolecular collar-like structures that drive membrane scission and clathrin-coated vesicle (CCV) formation. Activation of Dyn1 by acute inhibition of GSK3ß results in more rapid endocytosis of transferrin receptors, increased rates of CCP initiation, and decreased CCP lifetimes but did not significantly affect the extent of Dyn1 recruitment to CCPs. Thus, activated Dyn1 can regulate early stages of CME that occur well upstream of fission, even when present at low, substoichiometric levels relative to Dyn2. Under physiological conditions, Dyn1 is activated downstream of epidermal growth factor receptor (EGFR) signaling to alter CCP dynamics. We identify sorting nexin 9 (SNX9) as a preferred binding partner to activated Dyn1 that is partially required for Dyn1-dependent effects on early stages of CCP maturation. Together, we decouple regulatory and scission functions of dynamins and report a scission-independent, isoform-specific regulatory role for Dyn1 in CME.


Asunto(s)
Vesículas Cubiertas por Clatrina/metabolismo , Clatrina/metabolismo , Dinamina II/metabolismo , Dinamina I/metabolismo , Endocitosis/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células A549 , Línea Celular Tumoral , Clatrina/genética , Vesículas Cubiertas por Clatrina/ultraestructura , Dinamina I/genética , Dinamina II/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/genética , Humanos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Unión Proteica , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Transducción de Señal , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo , Coloración y Etiquetado/métodos
17.
J Biol Chem ; 292(51): 20834-20844, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29097553

RESUMEN

Clathrins are cytoplasmic proteins that play essential roles in endocytosis and other membrane traffic pathways. Upon recruitment to intracellular membranes, the canonical clathrin triskelion assembles into a polyhedral protein coat that facilitates vesicle formation and captures cargo molecules for transport. The triskelion is formed by trimerization of three clathrin heavy-chain subunits. Most vertebrates have two isoforms of clathrin heavy chains, CHC17 and CHC22, generating two clathrins with distinct cellular functions. CHC17 forms vesicles at the plasma membrane for receptor-mediated endocytosis and at the trans-Golgi network for organelle biogenesis. CHC22 plays a key role in intracellular targeting of the insulin-regulated glucose transporter 4 (GLUT4), accumulates at the site of GLUT4 sequestration during insulin resistance, and has also been implicated in neuronal development. Here, we demonstrate that CHC22 and CHC17 share morphological features, in that CHC22 forms a triskelion and latticed vesicle coats. However, cellular CHC22-coated vesicles were distinct from those formed by CHC17. The CHC22 coat was more stable to pH change and was not removed by the enzyme complex that disassembles the CHC17 coat. Moreover, the two clathrins were differentially recruited to membranes by adaptors, and CHC22 did not support vesicle formation or transferrin endocytosis at the plasma membrane in the presence or absence of CHC17. Our findings provide biochemical evidence for separate regulation and distinct functional niches for CHC17 and CHC22 in human cells. Furthermore, the greater stability of the CHC22 coat relative to the CHC17 coat may be relevant to its excessive accumulation with GLUT4 during insulin resistance.


Asunto(s)
Cadenas Pesadas de Clatrina/química , Cadenas Pesadas de Clatrina/metabolismo , Secuencia de Aminoácidos , Cadenas Pesadas de Clatrina/genética , Vesículas Cubiertas por Clatrina/metabolismo , Vesículas Cubiertas por Clatrina/ultraestructura , Endocitosis , Transportador de Glucosa de Tipo 4/metabolismo , Células HeLa , Humanos , Resistencia a la Insulina , ARN Interferente Pequeño/genética , Homología de Secuencia de Aminoácido , Transferrina/metabolismo
18.
J Cell Biol ; 216(12): 4351-4365, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-28954824

RESUMEN

Clathrin-mediated endocytosis (CME) is the major route of receptor internalization at the plasma membrane. Analysis of constitutive CME is difficult because the initiation of endocytic events is unpredictable. When and where a clathrin-coated pit will form and what cargo it will contain are difficult to foresee. Here we describe a series of genetically encoded reporters that allow the initiation of CME on demand. A clathrin-binding protein fragment ("hook") is inducibly attached to an "anchor" protein at the plasma membrane, which triggers the formation of new clathrin-coated vesicles. Our design incorporates temporal and spatial control by the use of chemical and optogenetic methods for inducing hook-anchor attachment. Moreover, the cargo is defined. Because several steps in vesicle creation are bypassed, we term it "hot-wiring." We use hot-wired endocytosis to describe the functional interactions between clathrin and AP2. Two distinct sites on the ß2 subunit, one on the hinge and the other on the appendage, are necessary and sufficient for functional clathrin engagement.


Asunto(s)
Complejo 2 de Proteína Adaptadora/genética , Vesículas Cubiertas por Clatrina/metabolismo , Clatrina/genética , Invaginaciones Cubiertas de la Membrana Celular/metabolismo , Endocitosis/genética , Células Epiteliales/metabolismo , Complejo 2 de Proteína Adaptadora/metabolismo , Línea Celular , Clatrina/metabolismo , Vesículas Cubiertas por Clatrina/ultraestructura , Invaginaciones Cubiertas de la Membrana Celular/ultraestructura , Células Epiteliales/ultraestructura , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ingeniería Metabólica/métodos , Optogenética , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/ultraestructura , Transducción de Señal , Tacrolimus/farmacología , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo , Proteína Fluorescente Roja
19.
J Cell Sci ; 130(21): 3631-3636, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28923837

RESUMEN

We characterized the tension response of clathrin-mediated endocytosis by using various cell manipulation methodologies. Elevated tension in a cell hinders clathrin-mediated endocytosis through inhibition of de novo coat initiation, elongation of clathrin coat lifetimes and reduction of high-magnitude growth rates. Actin machinery supplies an inward pulling force necessary for internalization of clathrin coats under high tension. These findings suggest that the physical cues cells receive from their microenvironment are major determinants of clathrin-mediated endocytic activity.


Asunto(s)
Actinas/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Clatrina/metabolismo , Endocitosis/fisiología , Células Epiteliales/metabolismo , Mecanotransducción Celular , Actinas/genética , Animales , Fenómenos Biomecánicos , Línea Celular , Línea Celular Tumoral , Tamaño de la Célula , Chlorocebus aethiops , Clatrina/genética , Vesículas Cubiertas por Clatrina/ultraestructura , Invaginaciones Cubiertas de la Membrana Celular/metabolismo , Invaginaciones Cubiertas de la Membrana Celular/ultraestructura , Células Epiteliales/ultraestructura , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Femenino , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Riñón/citología , Riñón/metabolismo , Presión Osmótica , Estrés Mecánico
20.
Methods Cell Biol ; 139: 51-68, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28215339

RESUMEN

Endocytosis is a complex and dynamic process that involves dozens of different proteins to define the site of endocytosis, form a membrane invagination, and pinch off a membrane vesicle into the cytoplasm. Fluorescent light microscopy is a powerful tool to visualize the dynamic behaviors of the proteins taking part in the endocytic process. The resolution of light microscopy is, however, a serious limitation. Here, we detail a fluorescence microscope method that we have developed to visualize the dynamics of the clathrin-mediated endocytic protein machinery in yeast cells. This method is based on subpixel centroid tracking of endocytic proteins. For each endocytic protein, the centroid trajectories obtained from multiple endocytic events are used to compute an average trajectory that describes, at nanometer scale, the assembly and movement of the protein during endocytosis. The average trajectories of the different endocytic proteins are then aligned together in space and time to reconstruct how the different proteins behave relative to each other during the endocytic process.


Asunto(s)
Membrana Celular/ultraestructura , Vesículas Cubiertas por Clatrina/ultraestructura , Endocitosis/genética , Microscopía Fluorescente/métodos , Membrana Celular/genética , Clatrina/química , Clatrina/aislamiento & purificación , Vesículas Cubiertas por Clatrina/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...