Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
FEBS Lett ; 597(6): 819-835, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36513395

RESUMEN

COPI-coated vesicles mediate transport between Golgi stacks and retrograde transport from the Golgi to the endoplasmic reticulum. The COPI coat exists as a stable heptameric complex in the cytosol termed coatomer and is recruited en bloc to the membrane for vesicle formation. Recruitment of COPI onto membranes is mediated by the Arf family of small GTPases, which, in their GTP-bound state, bind both membrane and coatomer. Arf GTPases also influence cargo selection, vesicle scission and vesicle uncoating. Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) regulate nucleotide binding by Arf GTPases. To understand the mechanism of COPI-coated vesicle trafficking, it is necessary to characterize the interplay between coatomer and Arf GTPases and their effectors. It is also necessary to understand interactions between coatomer and cargo, cargo adaptors/receptors and tethers facilitating binding to the target membrane. Here, we summarize current knowledge of COPI coat protein structure; we describe how structural and biochemical studies contributed to this knowledge; we review mechanistic insights into COPI vesicle biogenesis and disassembly; and we discuss the potential to answer open questions in the field.


Asunto(s)
Factores de Ribosilacion-ADP , Vesículas Cubiertas por Proteínas de Revestimiento , Humanos , Factores de Ribosilacion-ADP/metabolismo , Proteínas Portadoras/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/química , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Activación Enzimática , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Especificidad por Sustrato
2.
Artículo en Inglés | MEDLINE | ID: mdl-36096639

RESUMEN

APOB-containing lipoproteins are large, complex lipid carriers that ferry bulk lipids into the circulation via the secretory pathway, originating from the endoplasmic reticulum of specialized cells in the liver or the gut. Elevation of APOB-containing lipoproteins in the plasma represents a major risk factor for cardiovascular diseases. The production of these lipoproteins requires enzyme-catalyzed, cross-membrane transfer of neutral lipids and phospholipids to lipoproteins, in particular onto the structural component APOB. Transport of these lipid-bearing cargos relies on the COPII machinery and employs the transmembrane cargo receptor SURF4 and the small GTPase SAR1B, together constituting a selective transport program. Intriguingly, a number of factors implicated in lipoprotein production are also packaged into COPII vesicles and may be cotransported with APOB. These observations therefore point to a specialized produce-and-export itinerary during the secretion of these lipid-bearing cargos, warranting future investigations into this unique yet pivotal process at the crossroad of cell biology and physiology.


Asunto(s)
Proteínas Portadoras , Lipoproteínas , Proteínas Portadoras/metabolismo , Lipoproteínas/análisis , Lipoproteínas/metabolismo , Retículo Endoplásmico/metabolismo , Apolipoproteínas B/análisis , Apolipoproteínas B/metabolismo , Homeostasis , Transporte de Proteínas , Vesículas Cubiertas por Proteínas de Revestimiento/química , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo
3.
Nature ; 611(7935): 399-404, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36289347

RESUMEN

The SEA complex (SEAC) is a growth regulator that acts as a GTPase-activating protein (GAP) towards Gtr1, a Rag GTPase that relays nutrient status to the Target of Rapamycin Complex 1 (TORC1) in yeast1. Functionally, the SEAC has been divided into two subcomplexes: SEACIT, which has GAP activity and inhibits TORC1, and SEACAT, which regulates SEACIT2. This system is conserved in mammals: the GATOR complex, consisting of GATOR1 (SEACIT) and GATOR2 (SEACAT), transmits amino acid3 and glucose4 signals to mTORC1. Despite its importance, the structure of SEAC/GATOR, and thus molecular understanding of its function, is lacking. Here, we solve the cryo-EM structure of the native eight-subunit SEAC. The SEAC has a modular structure in which a COPII-like cage corresponding to SEACAT binds two flexible wings, which correspond to SEACIT. The wings are tethered to the core via Sea3, which forms part of both modules. The GAP mechanism of GATOR1 is conserved in SEACIT, and GAP activity is unaffected by SEACAT in vitro. In vivo, the wings are essential for recruitment of the SEAC to the vacuole, primarily via the EGO complex. Our results indicate that rather than being a direct inhibitor of SEACIT, SEACAT acts as a scaffold for the binding of TORC1 regulators.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Activadoras de GTPasa , Complejos Multienzimáticos , Animales , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/ultraestructura , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/ultraestructura , Mamíferos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/ultraestructura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Aminoácidos , Glucosa , Vesículas Cubiertas por Proteínas de Revestimiento/química , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo
4.
J Cell Biol ; 220(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34292306

RESUMEN

γ-Secretase affects many physiological processes through targeting >100 substrates; malfunctioning links γ-secretase to cancer and Alzheimer's disease. The spatiotemporal regulation of its stoichiometric assembly remains unresolved. Fractionation, biochemical assays, and imaging support prior formation of stable dimers in the ER, which, after ER exit, assemble into full complexes. In vitro ER budding shows that none of the subunits is required for the exit of others. However, knockout of any subunit leads to the accumulation of incomplete subcomplexes in COPII vesicles. Mutating a DPE motif in presenilin 1 (PSEN1) abrogates ER exit of PSEN1 and PEN-2 but not nicastrin. We explain this by the preferential sorting of PSEN1 and nicastrin through Sec24A and Sec24C/D, respectively, arguing against full assembly before ER exit. Thus, dimeric subcomplexes aided by Sec24 paralog selectivity support a stepwise assembly of γ-secretase, controlling final levels in post-Golgi compartments.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Endopeptidasas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Presenilina-1/metabolismo , Secretasas de la Proteína Precursora del Amiloide/química , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Transporte Biológico , Vesículas Cubiertas por Proteínas de Revestimiento/química , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Línea Celular , Línea Celular Tumoral , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Endopeptidasas/química , Endopeptidasas/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Aparato de Golgi/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Modelos Moleculares , Neuronas/citología , Presenilina-1/química , Presenilina-1/genética , Cultivo Primario de Células , Unión Proteica , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Ratas , Ratas Wistar , Transducción de Señal , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
5.
Nat Commun ; 12(1): 2034, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33795673

RESUMEN

COPII mediates Endoplasmic Reticulum to Golgi trafficking of thousands of cargoes. Five essential proteins assemble into a two-layer architecture, with the inner layer thought to regulate coat assembly and cargo recruitment, and the outer coat forming cages assumed to scaffold membrane curvature. Here we visualise the complete, membrane-assembled COPII coat by cryo-electron tomography and subtomogram averaging, revealing the full network of interactions within and between coat layers. We demonstrate the physiological importance of these interactions using genetic and biochemical approaches. Mutagenesis reveals that the inner coat alone can provide membrane remodelling function, with organisational input from the outer coat. These functional roles for the inner and outer coats significantly move away from the current paradigm, which posits membrane curvature derives primarily from the outer coat. We suggest these interactions collectively contribute to coat organisation and membrane curvature, providing a structural framework to understand regulatory mechanisms of COPII trafficking and secretion.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Mapas de Interacción de Proteínas , Proteínas de Transporte Vesicular/metabolismo , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/química , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Retículo Endoplásmico/ultraestructura , Aparato de Golgi/ultraestructura , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Células Sf9 , Spodoptera
6.
Biochem Biophys Res Commun ; 527(1): 232-237, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32446373

RESUMEN

The human fungal pathogen Aspergillus fumigatus causes life-threatening invasive aspergillosis in immunocompromised individuals. Adaptation to the host environment is integral to survival of A. fumigatus and requires the coordination of short- and long-distance vesicular transport to move essential components throughout the fungus. We previously reported the importance of MyoE, the only class V myosin, for hyphal growth and virulence of A. fumigatus. Class V myosins are actin-based, cargo-carrying motor proteins that contain unique binding sites for specific cargo. Specific cargo carried by myosin V has not been identified in any fungus, and previous studies have only identified single components that interact with class V myosins. Here we utilized a mass spectrometry-based whole proteomic approach to identify MyoE interacting proteins in A. fumigatus for the first time. Several proteins previously shown to interact with myosin V through physical and genetic approaches were confirmed, validating our proteomic analysis. Importantly, we identified novel MyoE-interacting proteins, including members of the cytoskeleton network, cell wall synthesis, calcium signaling and a group of coat protein complex II (COPII) proteins involved in the endoplasmic reticulum (ER) to Golgi transport. Furthermore, we analyzed the localization patterns of the COPII proteins, UsoA (Uso1), SrgE (Sec31), and SrgF (Sec23), which suggested a potential role for MyoE in ER to Golgi trafficking.


Asunto(s)
Aspergillus fumigatus/química , Vesículas Cubiertas por Proteínas de Revestimiento/química , Miosina Tipo V/química , Transporte Biológico , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Humanos , Microscopía Fluorescente , Miosina Tipo V/aislamiento & purificación , Miosina Tipo V/metabolismo
7.
J Biochem ; 165(2): 109-114, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30304445

RESUMEN

The endoplasmic reticulum (ER) is a multifunctional organelle, including secretory protein biogenesis, lipid synthesis, drug metabolism, Ca2+ signalling and so on. Since the ER is a single continuous membrane structure, it includes distinct zones responsible for its different functions. The export of newly synthesized proteins from the ER is facilitated via coat protein complex II (COPII)-coated vesicles, which form in specialized zones within the ER, called the ER exit sites (ERES) or transitional ER. In this review, we highlight recent advances in our understanding of the structural organization of ERES, the correlation between the ERES and Golgi organization, and the faithful cargo transport mechanism from the ERES to the Golgi.


Asunto(s)
Proteínas de la Cápside/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/química , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/química , Aparato de Golgi/química , Humanos , Transporte de Proteínas
8.
Elife ; 72018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29513218

RESUMEN

Collagen export from the endoplasmic reticulum (ER) requires TANGO1, COPII coats, and retrograde fusion of ERGIC membranes. How do these components come together to produce a transport carrier commensurate with the bulky cargo collagen? TANGO1 is known to form a ring that corrals COPII coats, and we show here how this ring or fence is assembled. Our data reveal that a TANGO1 ring is organized by its radial interaction with COPII, and lateral interactions with cTAGE5, TANGO1-short or itself. Of particular interest is the finding that TANGO1 recruits ERGIC membranes for collagen export via the NRZ (NBAS/RINT1/ZW10) tether complex. Therefore, TANGO1 couples retrograde membrane flow to anterograde cargo transport. Without the NRZ complex, the TANGO1 ring does not assemble, suggesting its role in nucleating or stabilising this process. Thus, coordinated capture of COPII coats, cTAGE5, TANGO1-short, and tethers by TANGO1 assembles a collagen export machine at the ER.


Asunto(s)
Antígenos de Neoplasias/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Retículo Endoplásmico/genética , Proteínas de Neoplasias/genética , Transporte de Proteínas/genética , Antígenos de Neoplasias/química , Translocador Nuclear del Receptor de Aril Hidrocarburo/química , Vesículas Cubiertas por Proteínas de Revestimiento/química , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Colágeno/química , Colágeno/genética , Colágeno/metabolismo , Retículo Endoplásmico/química , Aparato de Golgi/química , Aparato de Golgi/genética , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Neoplasias/química
9.
Annu Rev Biophys ; 47: 63-83, 2018 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-29345989

RESUMEN

In eukaryotes, distinct transport vesicles functionally connect various intracellular compartments. These carriers mediate transport of membranes for the biogenesis and maintenance of organelles, secretion of cargo proteins and peptides, and uptake of cargo into the cell. Transport vesicles have distinct protein coats that assemble on a donor membrane where they can select cargo and curve the membrane to form a bud. A multitude of structural elements of coat proteins have been solved by X-ray crystallography. More recently, the architectures of the COPI and COPII coats were elucidated in context with their membrane by cryo-electron tomography. Here, we describe insights gained from the structures of these two coat lattices and discuss the resulting functional implications.


Asunto(s)
Transporte Biológico/genética , Vesículas Cubiertas por Proteínas de Revestimiento/química , Proteínas de Transporte Vesicular/química , Proteína Coat de Complejo I
10.
Elife ; 62017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29148969

RESUMEN

COPI-coated vesicles mediate trafficking within the Golgi apparatus and from the Golgi to the endoplasmic reticulum. The structures of membrane protein coats, including COPI, have been extensively studied with in vitro reconstitution systems using purified components. Previously we have determined a complete structural model of the in vitro reconstituted COPI coat (Dodonova et al., 2017). Here, we applied cryo-focused ion beam milling, cryo-electron tomography and subtomogram averaging to determine the native structure of the COPI coat within vitrified Chlamydomonas reinhardtii cells. The native algal structure resembles the in vitro mammalian structure, but additionally reveals cargo bound beneath ß'-COP. We find that all coat components disassemble simultaneously and relatively rapidly after budding. Structural analysis in situ, maintaining Golgi topology, shows that vesicles change their size, membrane thickness, and cargo content as they progress from cis to trans, but the structure of the coat machinery remains constant.


Asunto(s)
Chlamydomonas reinhardtii/química , Proteína Coat de Complejo I/química , Vesículas Cubiertas por Proteínas de Revestimiento/química , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Modelos Moleculares , Conformación Proteica
11.
Methods Mol Biol ; 1662: 59-73, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28861817

RESUMEN

Homology modeling allows the prediction of a protein structure based on sequence similarity to a known structure of homologous proteins. In this chapter, we use a plant-specific AtSar1a-Atsec23a pair of proteins as a case study to illustrate how to use homology modeling to understand the specificity of the pairwise interaction between AtSar1a and AtSec23a. The detailed procedures described here are also useful in structure prediction of other protein complexes.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/química , Proteínas Activadoras de GTPasa/química , Regulación de la Expresión Génica de las Plantas , Modelos Moleculares , Proteínas R-SNARE/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Cristalografía por Rayos X , Retículo Endoplásmico/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Células Vegetales/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Transporte de Proteínas , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Programas Informáticos , Homología Estructural de Proteína , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
12.
Mini Rev Med Chem ; 17(13): 1128-1139, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27599970

RESUMEN

BACKGROUND: In plants, vesicle transport occurs in the secretory pathway in the cytosol, between the membranes of different compartments. Several protein components have been identified to be involved in the process and their functions were characterized. Both cargos and other molecules (such as hormones) have been shown to use vesicle transport, although the major constituents of vesicles are lipids which are transferred from donor to acceptor membranes. In humans, malfunction of the cytosolic vesicle transport system leads to different diseases. METHOD: To better understand and ultimately cure these human diseases, studying other model systems such as yeast can be beneficial. Plants with their cytosolic vesicle transport system could serve as another model system. However, this review focuses on plant vesicles not present in the cytosol but in the chloroplasts, where lipids produced in the surrounding envelope are transported through the aqueous stroma to the thylakoid membranes. Although chloroplast vesicles have found both biochemical and ultrastructural support, only two proteins have been characterized as components of the pathway. However, using bioinformatics a number of other proteins have been suggested as homologs to the cytosolic system. RESULTS & CONCLUSION: Based on these findings vesicles of chloroplasts are likely most similar to the vesicles trafficking from ER to Golgi, or may even be unique, but important experimental support is yet lacking. In this review, proposed vesicle transport components in chloroplasts are presented, and their possible future implementation for human medicine is discussed.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Plastidios/metabolismo , Transporte Biológico , Vesículas Cubiertas por Proteínas de Revestimiento/química , Cloroplastos/metabolismo , Coroideremia/tratamiento farmacológico , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Hipobetalipoproteinemias/tratamiento farmacológico , Síndromes de Malabsorción/tratamiento farmacológico , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/uso terapéutico , Plantas/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Proteínas SNARE/uso terapéutico , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/uso terapéutico
13.
Methods Mol Biol ; 1496: 63-74, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27632002

RESUMEN

The Golgi complex plays a central role in the intracellular sorting of proteins. Transport through the Golgi in the anterograde direction has been explained by cisternal maturation, while transport in the retrograde direction is attributed to vesicles formed by the coat protein I (COPI) complex. A more detailed understanding of how COPI acts in Golgi transport is being achieved in recent years, due in large part to a COPI reconstitution system. Through this approach, the mechanistic complexities of COPI vesicle formation are being elucidated. This approach has also uncovered a new mode of anterograde transport through the Golgi, which involves COPI tubules connecting the Golgi cisternae. We describe in this chapter the reconstitution of COPI vesicle and tubule formation from Golgi membrane.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento , Proteína Coat de Complejo I , Aparato de Golgi , Animales , Transporte Biológico Activo/fisiología , Vesículas Cubiertas por Proteínas de Revestimiento/química , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Proteína Coat de Complejo I/química , Proteína Coat de Complejo I/metabolismo , Aparato de Golgi/química , Aparato de Golgi/metabolismo , Humanos
14.
Proc Natl Acad Sci U S A ; 113(36): 10061-6, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27551091

RESUMEN

The supramolecular cargo procollagen is loaded into coat protein complex II (COPII)-coated carriers at endoplasmic reticulum (ER) exit sites by the receptor molecule TANGO1/cTAGE5. Electron microscopy studies have identified a tubular carrier of suitable dimensions that is molded by a distinctive helical array of the COPII inner coat protein Sec23/24•Sar1; the helical arrangement is absent from canonical COPII-coated small vesicles. In this study, we combined X-ray crystallographic and biochemical analysis to characterize the association of TANGO1/cTAGE5 with COPII proteins. The affinity for Sec23 is concentrated in the proline-rich domains (PRDs) of TANGO1 and cTAGE5, but Sec23 recognizes merely a PPP motif. The PRDs contain repeated PPP motifs separated by proline-rich linkers, so a single TANGO1/cTAGE5 receptor can bind multiple copies of coat protein in a close-packed array. We propose that TANGO1/cTAGE5 promotes the accretion of inner coat proteins to the helical lattice. Furthermore, we show that PPP motifs in the outer coat protein Sec31 also bind to Sec23, suggesting that stepwise COPII coat assembly will ultimately displace TANGO1/cTAGE5 and compartmentalize its operation to the base of the growing COPII tubule.


Asunto(s)
Antígenos de Neoplasias/química , Translocador Nuclear del Receptor de Aril Hidrocarburo/química , Vesículas Cubiertas por Proteínas de Revestimiento/química , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Neoplasias/química , Procolágeno/química , Proteínas de Transporte Vesicular/química , Secuencias de Aminoácidos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Sitios de Unión , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Cristalografía por Rayos X , Retículo Endoplásmico/metabolismo , Expresión Génica , Humanos , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Procolágeno/genética , Procolágeno/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
15.
Proc Natl Acad Sci U S A ; 113(25): 6916-21, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27298352

RESUMEN

Membrane recruitment of coatomer and formation of coat protein I (COPI)-coated vesicles is crucial to homeostasis in the early secretory pathway. The conformational dynamics of COPI during cargo capture and vesicle formation is incompletely understood. By scanning the length of δ-COP via functional complementation in yeast, we dissect the domains of the δ-COP subunit. We show that the µ-homology domain is dispensable for COPI function in the early secretory pathway, whereas the N-terminal longin domain is essential. We map a previously uncharacterized helix, C-terminal to the longin domain, that is specifically required for the retrieval of HDEL-bearing endoplasmic reticulum-luminal residents. It is positionally analogous to an unstructured linker that becomes helical and membrane-facing in the open form of the AP2 clathrin adaptor complex. Based on the amphipathic nature of the critical helix it may probe the membrane for lipid packing defects or mediate interaction with cargo and thus contribute to stabilizing membrane-associated coatomer.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Secuencia de Aminoácidos , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/química , Bovinos , Homología de Secuencia de Aminoácido
16.
Proc Natl Acad Sci U S A ; 112(46): 14242-7, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26578768

RESUMEN

Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding ßγδζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αß'ε-COP B-subcomplex. We present the structure of the C-terminal µ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP µ subunits to bind YxxΦ cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to δ-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian δ-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that δ-COP subunits bind Wxn(1-6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing.


Asunto(s)
Proteína Coatómero/química , Saccharomyces cerevisiae/química , Triptófano/química , Secuencias de Aminoácidos , Vesículas Cubiertas por Proteínas de Revestimiento/química , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Calorimetría Indirecta , Catepsina A/química , Catepsina A/genética , Catepsina A/metabolismo , Proteína Coatómero/genética , Proteína Coatómero/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Triptófano/genética , Triptófano/metabolismo
17.
Nature ; 524(7564): 243-6, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26147081

RESUMEN

Abnormal accumulation of triglycerides in the liver, caused in part by increased de novo lipogenesis, results in non-alcoholic fatty liver disease and insulin resistance. Sterol regulatory element-binding protein 1 (SREBP1), an important transcriptional regulator of lipogenesis, is synthesized as an inactive precursor that binds to the endoplasmic reticulum (ER). In response to insulin signalling, SREBP1 is transported from the ER to the Golgi in a COPII-dependent manner, processed by proteases in the Golgi, and then shuttled to the nucleus to induce lipogenic gene expression; however, the mechanisms underlying enhanced SREBP1 activity in insulin-resistant obesity and diabetes remain unclear. Here we show in mice that CREB regulated transcription coactivator 2 (CRTC2) functions as a mediator of mTOR signalling to modulate COPII-dependent SREBP1 processing. CRTC2 competes with Sec23A, a subunit of the COPII complex, to interact with Sec31A, another COPII subunit, thus disrupting SREBP1 transport. During feeding, mTOR phosphorylates CRTC2 and attenuates its inhibitory effect on COPII-dependent SREBP1 maturation. As hepatic overexpression of an mTOR-defective CRTC2 mutant in obese mice improved the lipogenic program and insulin sensitivity, these results demonstrate how the transcriptional coactivator CRTC2 regulates mTOR-mediated lipid homeostasis in the fed state and in obesity.


Asunto(s)
Metabolismo de los Lípidos , Hígado/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/metabolismo , Animales , Unión Competitiva , Vesículas Cubiertas por Proteínas de Revestimiento/química , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Homeostasis , Resistencia a la Insulina , Lipogénesis , Masculino , Ratones , Ratones Obesos , Obesidad/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Proteínas de Transporte Vesicular/metabolismo
19.
Science ; 349(6244): 195-8, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26160949

RESUMEN

Transport of material within cells is mediated by trafficking vesicles that bud from one cellular compartment and fuse with another. Formation of a trafficking vesicle is driven by membrane coats that localize cargo and polymerize into cages to bend the membrane. Although extensive structural information is available for components of these coats, the heterogeneity of trafficking vesicles has prevented an understanding of how complete membrane coats assemble on the membrane. We combined cryo-electron tomography, subtomogram averaging, and cross-linking mass spectrometry to derive a complete model of the assembled coat protein complex I (COPI) coat involved in traffic between the Golgi and the endoplasmic reticulum. The highly interconnected COPI coat structure contradicted the current "adaptor-and-cage" understanding of coated vesicle formation.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/química , Proteína Coat de Complejo I/química , Factor 1 de Ribosilacion-ADP/química , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Proteínas Activadoras de GTPasa/química , Humanos , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química
20.
Mol Endocrinol ; 29(8): 1156-69, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26083833

RESUMEN

Pancreatic ß-cells possess a highly active protein synthetic and export machinery in the endoplasmic reticulum (ER) to accommodate the massive production of proinsulin. ER homeostasis is vital for ß-cell functions and is maintained by the delicate balance between protein synthesis, folding, export, and degradation. Disruption of ER homeostasis by diabetes-causing factors leads to ß-cell death. Among the 4 components to maintain ER homeostasis in ß-cells, the role of ER export in insulin biogenesis is the least understood. To address this knowledge gap, the present study investigated the molecular mechanism of proinsulin ER export in MIN6 cells and primary islets. Two inhibitory mutants of the secretion-associated RAS-related protein (Sar)1 small GTPase, known to specifically block coat protein complex II (COPII)-dependent ER export, were overexpressed in ß-cells using recombinant adenoviruses. Results from this approach, as well as small interfering RNA-mediated Sar1 knockdown, demonstrated that defective Sar1 function blocked proinsulin ER export and abolished its conversion to mature insulin in MIN6 cells, isolated mouse, and human islets. It is further revealed, using an in vitro vesicle formation assay, that proinsulin was packaged into COPII vesicles in a GTP- and Sar1-dependent manner. Blockage of COPII-dependent ER exit by Sar1 mutants strongly induced ER morphology change, ER stress response, and ß-cell apoptosis. These responses were mediated by the PKR (double-stranded RNA-dependent kinase)-like ER kinase (PERK)/eukaryotic translation initiation factor 2α (p-eIF2α) and inositol-requiring protein 1 (IRE1)/x-box binding protein 1 (Xbp1) pathways but not via activating transcription factor 6 (ATF6). Collectively, results from the study demonstrate that COPII-dependent ER export plays a vital role in insulin biogenesis, ER homeostasis, and ß-cell survival.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/química , Retículo Endoplásmico/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/biosíntesis , Adenoviridae/metabolismo , Animales , Apoptosis , Línea Celular , Glucosa/química , Homeostasis , Humanos , Islotes Pancreáticos/metabolismo , Ratones , Proteínas de Unión al GTP Monoméricas/metabolismo , Mutación , Plásmidos/metabolismo , Proinsulina/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA