Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
1.
J Extracell Vesicles ; 13(5): e12433, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38738585

RESUMEN

Extracellular vesicles (EVs) are released by all cells and contribute to cell-to-cell communication. The capacity of EVs to target specific cells and to efficiently deliver a composite profile of functional molecules have led researchers around the world to hypothesize their potential as therapeutics. While studies of EV treatment in animal models are numerous, their actual clinical benefit in humans has more slowly started to be tested. In this scoping review, we searched PubMed and other databases up to 31 December 2023 and, starting from 13,567 records, we selected 40 pertinent published studies testing EVs as therapeutics in humans. The analysis of those 40 studies shows that they are all small pilot trials with a large heterogeneity in terms of administration route and target disease. Moreover, the absence of a placebo control in most of the studies, the predominant local application of EV formulations and the inconsistent administration dose metric still impede comparison across studies and firm conclusions about EV safety and efficacy. On the other hand, the recording of some promising outcomes strongly calls out for well-designed larger studies to test EVs as an alternative approach to treat human diseases with no or few therapeutic options.


Asunto(s)
Vesículas Extracelulares , Animales , Humanos , Comunicación Celular , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante
2.
Cell Mol Life Sci ; 81(1): 224, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769196

RESUMEN

Synaptic loss is an early event in the penumbra area after an ischemic stroke. Promoting synaptic preservation in this area would likely improve functional neurological recovery. We aimed to detect proteins involved in endogenous protection mechanisms of synapses in the penumbra after stroke and to analyse potential beneficial effects of these candidates for a prospective stroke treatment. For this, we performed Liquid Chromatography coupled to Mass Spectrometry (LC-MS)-based proteomics of synaptosomes isolated from the ipsilateral hemispheres of mice subjected to experimental stroke at different time points (24 h, 4 and 7 days) and compared them to sham-operated mice. Proteomic analyses indicated that, among the differentially expressed proteins between the two groups, cystatin C (CysC) was significantly increased at 24 h and 4 days following stroke, before returning to steady-state levels at 7 days, thus indicating a potential transient and intrinsic rescue mechanism attempt of neurons. When CysC was applied to primary neuronal cultures subjected to an in vitro model of ischemic damage, this treatment significantly improved the preservation of synaptic structures. Notably, similar effects were observed when CysC was loaded into brain-derived extracellular vesicles (BDEVs). Finally, when CysC contained in BDEVs was administered intracerebroventricularly to stroked mice, it significantly increased the expression of synaptic markers such as SNAP25, Homer-1, and NCAM in the penumbra area compared to the group supplied with empty BDEVs. Thus, we show that CysC-loaded BDEVs promote synaptic protection after ischemic damage in vitro and in vivo, opening the possibility of a therapeutic use in stroke patients.


Asunto(s)
Isquemia Encefálica , Encéfalo , Cistatina C , Vesículas Extracelulares , Ratones Endogámicos C57BL , Sinapsis , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Cistatina C/metabolismo , Sinapsis/metabolismo , Ratones , Masculino , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Proteómica/métodos , Sinaptosomas/metabolismo , Neuronas/metabolismo , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/terapia , Células Cultivadas , Modelos Animales de Enfermedad
3.
Nat Commun ; 15(1): 3904, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724502

RESUMEN

Chronic wounds are a major complication in patients with diabetes. Here, we identify a therapeutic circRNA and load it into small extracellular vesicles (sEVs) to treat diabetic wounds in preclinical models. We show that circCDK13 can stimulate the proliferation and migration of human dermal fibroblasts and human epidermal keratinocytes by interacting with insulin-like growth factor 2 mRNA binding protein 3 in an N6-Methyladenosine-dependent manner to enhance CD44 and c-MYC expression. We engineered sEVs that overexpress circCDK13 and show that local subcutaneous injection into male db/db diabetic mouse wounds and wounds of streptozotocin-induced type I male diabetic rats could accelerate wound healing and skin appendage regeneration. Our study demonstrates that the delivery of circCDK13 in sEVs may present an option for diabetic wound treatment.


Asunto(s)
Proliferación Celular , Diabetes Mellitus Experimental , Vesículas Extracelulares , Fibroblastos , Queratinocitos , ARN Circular , Cicatrización de Heridas , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Cicatrización de Heridas/efectos de los fármacos , Humanos , Masculino , Ratones , Ratas , Fibroblastos/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Queratinocitos/metabolismo , Movimiento Celular , Piel/metabolismo , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
4.
Commun Biol ; 7(1): 514, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710749

RESUMEN

Acute lung injury (ALI) is characterized by respiratory failure resulting from the disruption of the epithelial and endothelial barriers as well as immune system. In this study, we evaluated the therapeutic potential of airway epithelial cell-derived extracellular vesicles (EVs) in maintaining lung homeostasis. We isolated human bronchial epithelial cell-derived EVs (HBEC-EVs), which endogenously express various immune-related surface markers and investigated their immunomodulatory potential in ALI. In ALI cellular models, HBEC-EVs demonstrated immunosuppressive effects by reducing the secretion of proinflammatory cytokines in both THP-1 macrophages and HBECs. Mechanistically, these effects were partially ascribed to nine of the top 10 miRNAs enriched in HBEC-EVs, governing toll-like receptor-NF-κB signaling pathways. Proteomic analysis revealed the presence of proteins in HBEC-EVs involved in WNT and NF-κB signaling pathways, pivotal in inflammation regulation. ANXA1, a constituent of HBEC-EVs, interacts with formyl peptide receptor (FPR)2, eliciting anti-inflammatory responses by suppressing NF-κB signaling in inflamed epithelium, including type II alveolar epithelial cells. In a mouse model of ALI, intratracheal administration of HBEC-EVs reduced lung injury, inflammatory cell infiltration, and cytokine levels. Collectively, these findings suggest the therapeutic potential of HBEC-EVs, through their miRNAs and ANXA1 cargo, in mitigating lung injury and inflammation in ALI patients.


Asunto(s)
Lesión Pulmonar Aguda , Anexina A1 , Células Epiteliales , Vesículas Extracelulares , Receptores de Formil Péptido , Receptores de Lipoxina , Transducción de Señal , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Anexina A1/metabolismo , Anexina A1/genética , Animales , Ratones , Receptores de Formil Péptido/metabolismo , Receptores de Formil Péptido/genética , Células Epiteliales/metabolismo , Bronquios/metabolismo , Bronquios/citología , Masculino , Ratones Endogámicos C57BL , MicroARNs/metabolismo , MicroARNs/genética , FN-kappa B/metabolismo , Citocinas/metabolismo , Células THP-1
5.
J Extracell Vesicles ; 13(5): e12445, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711334

RESUMEN

Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Infarto del Miocardio , Miocitos Cardíacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Humanos , Animales , Ratones , Infarto del Miocardio/terapia , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Fibroblastos/metabolismo , Masculino , Daño por Reperfusión Miocárdica/terapia , Daño por Reperfusión Miocárdica/metabolismo , Modelos Animales de Enfermedad , Neovascularización Fisiológica , Células Cultivadas
6.
Function (Oxf) ; 5(3): zqae012, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706963

RESUMEN

Acute kidney injury (AKI) is a heterogeneous syndrome, comprising diverse etiologies of kidney insults that result in high mortality and morbidity if not well managed. Although great efforts have been made to investigate underlying pathogenic mechanisms of AKI, there are limited therapeutic strategies available. Extracellular vesicles (EV) are membrane-bound vesicles secreted by various cell types, which can serve as cell-free therapy through transfer of bioactive molecules. In this review, we first overview the AKI syndrome and EV biology, with a particular focus on the technical aspects and therapeutic application of cell culture-derived EVs. Second, we illustrate how multi-omic approaches to EV miRNA, protein, and genomic cargo analysis can yield new insights into their mechanisms of action and address unresolved questions in the field. We then summarize major experimental evidence regarding the therapeutic potential of EVs in AKI, which we subdivide into stem cell and non-stem cell-derived EVs. Finally, we highlight the challenges and opportunities related to the clinical translation of animal studies into human patients.


Asunto(s)
Lesión Renal Aguda , Vesículas Extracelulares , Lesión Renal Aguda/terapia , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Humanos , Vesículas Extracelulares/trasplante , Vesículas Extracelulares/metabolismo , Animales , Técnicas de Cultivo de Célula/métodos , MicroARNs/metabolismo , MicroARNs/genética
7.
ACS Biomater Sci Eng ; 10(5): 3355-3377, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38563817

RESUMEN

An imbalance between M1 and M2 macrophage polarization is critical in osteoarthritis (OA) development. We investigated the effect of M2 macrophage-derived extracellular vesicles (M2-EVs) to reprogramme macrophages from the M1 to M2 phenotype for OA treatment. M1 macrophages and mouse OA models were treated with M2-EVs. Proteomic analysis was performed to evaluate macrophage polarization in vitro. The OA models were as follows: destabilization of the medial meniscus (DMM) surgery-induced OA and collagenase-induced OA (CIOA). Hyaluronic acid (HA) was used to deliver M2-EVs. M2-EVs decreased macrophage accumulation, repolarized macrophages from the M1 to M2 phenotype, mitigated synovitis, reduced cartilage degradation, alleviated subchondral bone damage, and improved gait abnormalities in the CIOA and DMM models. Moreover, HA increased the retention time of M2-EVs and enhanced the efficiency of M2-EVs in OA treatment. Furthermore, proteomic analysis demonstrated that M2-EVs exhibited a macrophage reprogramming ability similar to IL-4, and the pathways might be the NOD-like receptor (NLR), TNF, NF-κB, and Toll-like receptor (TLR) signaling pathways. M2-EVs reprogrammed macrophages from the M1 to M2 phenotype, which resulted in beneficial effects on cartilage and attenuation of OA severity. In summary, our study indicated that M2-EV-guided reprogramming of macrophages is a promising treatment strategy for OA.


Asunto(s)
Vesículas Extracelulares , Ácido Hialurónico , Macrófagos , Osteoartritis , Ácido Hialurónico/farmacología , Ácido Hialurónico/metabolismo , Ácido Hialurónico/química , Animales , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/trasplante , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Osteoartritis/metabolismo , Ratones , Ratones Endogámicos C57BL , Masculino , Modelos Animales de Enfermedad , Células RAW 264.7 , Proteómica , Activación de Macrófagos/efectos de los fármacos
8.
JCI Insight ; 9(10)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652539

RESUMEN

Mesenchymal stem cells (MSCs) have demonstrated potent immunomodulatory properties that have shown promise in the treatment of autoimmune diseases, including rheumatoid arthritis (RA). However, the inherent heterogeneity of MSCs triggered conflicting therapeutic outcomes, raising safety concerns and limiting their clinical application. This study aimed to investigate the potential of extracellular vesicles derived from human gingival mesenchymal stem cells (GMSC-EVs) as a therapeutic strategy for RA. Through in vivo experiments using an experimental RA model, our results demonstrate that GMSC-EVs selectively homed to inflamed joints and recovered Treg and Th17 cell balance, resulting in the reduction of arthritis progression. Our investigations also uncovered miR-148a-3p as a critical contributor to the Treg/Th17 balance modulation via IKKB/NF-κB signaling orchestrated by GMSC-EVs, which was subsequently validated in a model of human xenograft versus host disease (xGvHD). Furthermore, we successfully developed a humanized animal model by utilizing synovial fibroblasts obtained from patients with RA (RASFs). We found that GMSC-EVs impeded the invasiveness of RASFs and minimized cartilage destruction, indicating their potential therapeutic efficacy in the context of patients with RA. Overall, the unique characteristics - including reduced immunogenicity, simplified administration, and inherent ability to target inflamed tissues - position GMSC-EVs as a viable alternative for RA and other autoimmune diseases.


Asunto(s)
Artritis Reumatoide , Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , FN-kappa B , Linfocitos T Reguladores , Células Th17 , Artritis Reumatoide/terapia , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Humanos , Animales , Células Th17/inmunología , Células Th17/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Ratones , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/inmunología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Quinasa I-kappa B/metabolismo , Transducción de Señal , Modelos Animales de Enfermedad , Encía/citología , Encía/metabolismo , Encía/patología , Encía/inmunología , Masculino , Fibroblastos/metabolismo
9.
J Cell Mol Med ; 28(8): e18281, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38652092

RESUMEN

Conditions to which the cardiac graft is exposed during transplantation with donation after circulatory death (DCD) can trigger the recruitment of macrophages that are either unpolarized (M0) or pro-inflammatory (M1) as well as the release of extracellular vesicles (EV). We aimed to characterize the effects of M0 and M1 macrophage-derived EV administration on post-ischaemic functional recovery and glucose metabolism using an isolated rat heart model of DCD. Isolated rat hearts were subjected to 20 min aerobic perfusion, followed by 27 min global, warm ischaemia or continued aerobic perfusion and 60 min reperfusion with or without intravascular administration of EV. Four experimental groups were compared: (1) no ischaemia, no EV; (2) ischaemia, no EV; (3) ischaemia with M0-macrophage-dervied EV; (4) ischaemia with M1-macrophage-derived EV. Post-ischaemic ventricular and metabolic recovery were evaluated. During reperfusion, ventricular function was decreased in untreated ischaemic and M1-EV hearts, but not in M0-EV hearts, compared to non-ischaemic hearts (p < 0.05). In parallel with the reduced functional recovery in M1-EV versus M0-EV ischaemic hearts, rates of glycolysis from exogenous glucose and oxidative metabolism tended to be lower, while rates of glycogenolysis and lactate release tended to be higher. EV from M0- and M1-macrophages differentially affect post-ischaemic cardiac recovery, potentially by altering glucose metabolism in a rat model of DCD. Targeted EV therapy may be a useful approach for modulating cardiac energy metabolism and optimizing graft quality in the setting of DCD.


Asunto(s)
Vesículas Extracelulares , Trasplante de Corazón , Macrófagos , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Ratas , Macrófagos/metabolismo , Masculino , Trasplante de Corazón/métodos , Glucosa/metabolismo , Miocardio/metabolismo , Modelos Animales de Enfermedad , Recuperación de la Función , Glucólisis , Corazón/fisiopatología , Corazón/fisiología
10.
Stem Cell Rev Rep ; 20(4): 900-930, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38393666

RESUMEN

BACKGROUND: COVID-19 rapidly escalated into a worldwide pandemic with elevated infectivity even from asymptomatic patients. Complications can lead to severe pneumonia and acute respiratory distress syndrome (ARDS), which are the main contributors to death. Because of their regenerative and immunomodulatory capacities, stem cells and their derived extracellular vesicles (EVs) are perceived as promising therapies against severe pulmonary conditions, including those associated with COVID-19. Herein, we evaluate the safety and efficacy of stem cell EVs in treating COVID-19 and complicating pneumonia, acute lung injury, and ARDS. We also cover relevant preclinical studies to recapitulate the current progress in stem cell EV-based therapy. METHODS: Using PubMed, Cochrane Central Register of Controlled Trials, Scopus, and Web of Science, we searched for all English-language published studies (2000-2023) that used stem cell EVs as a therapy for COVID-19, ARDS, or pneumonia. The risk of bias (ROB) was assessed for all studies. RESULTS: Forty-eight studies met our inclusion criteria. Various-sized EVs derived from different types of stem cells were reported as a potentially safe and effective therapy to attenuate the cytokine storm induced by COVID-19. EVs alleviated inflammation and regenerated the alveolar epithelium by decreasing apoptosis, proinflammatory cytokines, neutrophil infiltration, and M2 macrophage polarization. They also prevented fibrin production and promoted the production of anti-inflammatory cytokines and endothelial cell junction proteins. CONCLUSION: Similar to their parental cells, stem cell EVs mediate lung tissue regeneration by targeting multiple pathways and thus hold promise in promoting the recovery of COVID-19 patients and improving the survival rate of severely affected patients.


Asunto(s)
COVID-19 , Vesículas Extracelulares , SARS-CoV-2 , Células Madre , Humanos , Vesículas Extracelulares/trasplante , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , COVID-19/terapia , COVID-19/inmunología , SARS-CoV-2/inmunología , Células Madre/citología , Células Madre/metabolismo , Inmunomodulación , Animales , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/virología , Síndrome de Dificultad Respiratoria/inmunología
11.
Eur Heart J ; 45(18): 1602-1609, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38366191

RESUMEN

Despite improvements in clinical outcomes following acute myocardial infarction, mortality remains high, especially in patients with severely reduced left ventricular ejection fraction (LVEF <30%), emphasizing the need for effective cardioprotective strategies adjunctive to recanalization. Traditional cell therapy has shown equivocal success, shifting the focus to innovative cardioactive biologicals and cell mimetic therapies, particularly extracellular vesicles (EVs). EVs, as carriers of non-coding RNAs and other essential biomolecules, influence neighbouring and remote cell function in a paracrine manner. Compared to cell therapy, EVs possess several clinically advantageous traits, including stability, ease of storage (enabling off-the-shelf clinical readiness), and decreased immunogenicity. Allogeneic EVs from mesenchymal and/or cardiac stromal progenitor cells demonstrate safety and potential efficacy in preclinical settings. This review delves into the translational potential of EV-based therapeutic approaches, specifically highlighting findings from large-animal studies, and offers a synopsis of ongoing early-stage clinical trials in this domain.


Asunto(s)
Vesículas Extracelulares , Infarto del Miocardio , Infarto del Miocardio/terapia , Vesículas Extracelulares/trasplante , Vesículas Extracelulares/fisiología , Humanos , Animales
12.
Cell Transplant ; 32: 9636897231207194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882092

RESUMEN

Inflammatory diseases are a group of debilitating disorders with varying degrees of long-lasting functional impairment of targeted system. New therapeutic agents that will attenuate on-going inflammation and, at the same time, promote regeneration of injured organ are urgently needed for the treatment of autoimmune and inflammatory disorders. During the last decade numerous studies have demonstrated that crucial therapeutic benefits of mesenchymal stem cells (MSCs) in inflammatory diseases are based on the effects of MSC-produced paracrine mediators and not on the activity of engrafted cells themselves. Thus, to overcome the limitations of stem cell transplantation, MSC-derived extracellular vesicles (MSC-EVs) have been rigorously investigated, as a promising cell-free pharmaceutical component. In this review, we focus on the mechanisms of MSC-EV covering the current knowledge on their potential therapeutic applications for immune-mediated diseases.


Asunto(s)
Vesículas Extracelulares , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Personal Militar , Humanos , Vesículas Extracelulares/trasplante , Inflamación/terapia
13.
Minerva Anestesiol ; 89(7-8): 690-706, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37079286

RESUMEN

Liver failure includes distinct subgroups of diseases: Acute liver failure (ALF) without preexisting cirrhosis, acute-on-chronic liver failure (ACLF) (severe form of cirrhosis associated with organ failures and excess mortality), and liver fibrosis (LF). Inflammation plays a key role in ALF, LF, and more specifically in ACLF for which we have currently no treatment other than liver transplantation (LT). The increasing incidence of marginal liver grafts and the shortage of liver grafts require us to consider strategies to increase the quantity and quality of available liver grafts. Mesenchymal stromal cells (MSCs) have shown beneficial pleiotropic properties with limited translational potential due to the pitfalls associated with their cellular nature. MSC-derived extracellular vesicles (MSC-EVs) are innovative cell-free therapeutics for immunomodulation and regenerative purposes. MSC-EVs encompass further advantages: pleiotropic effects, low immunogenicity, storage stability, good safety profile, and possibility of bioengineering. Currently, no human studies explored the impact of MSC-EVs on liver disease, but several preclinical studies highlighted their beneficial effects. In ALF and ACLF, data showed that MSC-EVs attenuate hepatic stellate cells activation, exert antioxidant, anti-inflammatory, anti-apoptosis, anti-ferroptosis properties, and promote regeneration of the liver, autophagy, and improve metabolism through mitochondrial function recovery. In LF, MSC-EVs demonstrated anti-fibrotic properties associated with liver tissue regeneration. Normothermic-machine perfusion (NMP) combined with MSC-EVs represents an attractive therapy to improve liver regeneration before LT. Our review suggests a growing interest in MSC-EVs in liver failure and gives an appealing insight into their development to rehabilitate marginal liver grafts through NMP.


Asunto(s)
Vesículas Extracelulares , Fallo Hepático , Trasplante de Hígado , Células Madre Mesenquimatosas , Humanos , Fallo Hepático/metabolismo , Cirrosis Hepática , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Células Madre Mesenquimatosas/metabolismo
14.
Cells ; 11(17)2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36078106

RESUMEN

BACKGROUND: Mesenchymal stem/stromal cells (MSC) have been employed successfully in immunotherapy and regenerative medicine, but their therapeutic potential is reduced considerably by the ischemic environment that exists after transplantation. The assumption that preconditioning MSC to promote quiescence may result in increased survival and regenerative potential upon transplantation is gaining popularity. METHODS: The purpose of this work was to evaluate the anti-inflammatory and regenerative effects of human bone marrow MSC (hBM-MSC) and their extracellular vesicles (EVs) grown and isolated in a serum-free medium, as compared to starved hBM-MSC (preconditioned) in streptozotocin-induced diabetic fractured male C57BL/6J mice. RESULTS: Blood samples taken four hours and five days after injection revealed that cells, whether starved or not, generated similar plasma levels of inflammatory-related cytokines but lower levels than animals treated with EVs. Nonetheless, starved cells prompted the highest production of IL-17, IL-6, IL-13, eotaxin and keratinocyte-derived chemokines and induced an earlier soft callus formation and mineralization of the fracture site compared to EVs and regularly fed cells five days after administration. CONCLUSIONS: Preconditioning may be crucial for refining and defining new criteria for future MSC therapies. Additionally, the elucidation of mechanisms underpinning an MSC's survival/adaptive processes may result in increased cell survival and enhanced therapeutic efficacy following transplantation.


Asunto(s)
Vesículas Extracelulares , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Citocinas , Vesículas Extracelulares/trasplante , Humanos , Inflamación/terapia , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL
15.
Transplant Rev (Orlando) ; 36(4): 100714, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35853384

RESUMEN

BACKGROUND: Kidney transplantation is the optimal treatment of end-stage renal disease. Extracellular vesicles (EVs) have tremendous therapeutic potential, but their role in modulating immune responses in kidney transplantation remains unclear. METHODS: We performed a systematic review and meta-analysis to investigate the therapeutic efficacy of EVs in preclinical kidney transplant models. Outcomes for meta-analysis were graft survival and renal function. Subgroup analysis was conducted between immune cell derived EVs (immune cell-EVs) and mesenchymal stromal cell derived EVs (MSC-EVs). RESULTS: Seven studies published from 2013 to 2021 were included. The overall effects showed that EVs had a positive role in prolonging allograft survival (standardized mean difference (SMD) = 2.00; 95% confidence interval (CI), 0.79 to 3.21; P < 0.01; I2 = 94%), reducing serum creatinine (SCr) (SMD = -2.19; 95%CI, -3.35 to -1.04; P < 0.01; I2 = 93%) and blood urea nitrogen (BUN) concentrations (SMD = -1.69; 95%CI, -2.98 to -0.40; P = 0.01; I2 = 94%). Subgroup analyses indicated that only immune cell-EVs significantly prolonged graft survival and improve renal function but not MSC-EVs. CONCLUSIONS: EVs are promising candidates to suppress allograft rejection and improve kidney transplant outcome. Immune cell-EVs showed their superiority over MSC-EVs in prolonging graft survival and improving renal function. For interpretation of the outcomes, additional studies are needed to validate these findings.


Asunto(s)
Vesículas Extracelulares , Trasplante de Riñón , Células Madre Mesenquimatosas , Humanos , Trasplante de Riñón/efectos adversos , Vesículas Extracelulares/trasplante , Células Madre Mesenquimatosas/fisiología , Trasplante Homólogo , Aloinjertos
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(3): 955-958, 2022 Jun.
Artículo en Chino | MEDLINE | ID: mdl-35680833

RESUMEN

Mesenchymal stem cells (MSC) have been widely used in tissue regeneration and treatment graft versus host disease (GVHD) and immune diseases due to their self-renewal, multi-differentiation and immunoregulatory potential. However, more and more scholars begin to put weight on the MSC -derived extracellular vesicles (MSC-EV) for its regulation of inflammation and immunity. MSC-EV can activate the relevant signal pathways and regulate the function and biological behaviors of cells via acting on target cells and mediating communication between cells. MSC-EV has important potential clinical applications for its powerful immunomodulatory and hematopoietic regulatory functions. It is considered as a potential therapeutic tool to treat autoimmune diseases and GVHD. This paper reviewed the immunomodulatory activity of MSC-EV as well as the research progress of MSC-EV in hematopoietic stem cell transplantation, and discussed its potential clinical applications in the future.


Asunto(s)
Vesículas Extracelulares , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Diferenciación Celular , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Enfermedad Injerto contra Huésped/metabolismo , Humanos
17.
Stem Cells Transl Med ; 11(1): 88-96, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35641173

RESUMEN

Mesenchymal stromal stem/cells (MSC) therapies are clinically used in a wide range of disorders based on their robust HLA-independent immunosuppressive and anti-inflammatory properties. However, the mechanisms underlying MSC therapeutic activity remain elusive as demonstrated by the unpredictable therapeutic efficacy of MSC infusions reported in multiple clinical trials. A seminal recent study showed that infused MSCs are actively induced to undergo apoptosis by recipient cytotoxic T cells, a mechanism that triggers in vivo recipient-induced immunomodulation by such apoptotic MSCs, and the need for such recipient cytotoxic cell activity could be replaced by the administration of ex vivo-generated apoptotic MSCs. Moreover, the use of MSC-derived extracellular vesicles (MSC-EVs) is being actively explored as a cell-free therapeutic alternative over the parental MSCs. We hypothesized that the introduction of a "suicide gene" switch into MSCs may offer on-demand in vivo apoptosis of transplanted MSCs. Here, we prompted to investigate the utility of the iCasp9/AP1903 suicide gene system in inducing apoptosis of MSCs. iCasp9/AP1903-induced apoptotic MSCs (MSCiCasp9+) were tested in vitro and in in vivo models of acute colitis. Our data show a very similar and robust immunosuppressive and anti-inflammatory properties of both "parental" alive MSCGFP+ cells and apoptotic MSCiCasp9+ cells in vitro and in vivo regardless of whether apoptosis was induced in vivo or in vitro before administering MSCiCasp9+ lysates. This development of an efficient iCasp9 switch may potentiate the safety of MSC-based therapies in the case of an adverse event and, will also circumvent current logistic technical limitations and biological uncertainties associated to MSC-EVs.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Antiinflamatorios , Caspasa 9 , Vesículas Extracelulares/trasplante , Humanos , Inmunomodulación , Inmunosupresores
18.
Small Methods ; 6(2): e2100785, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35174988

RESUMEN

Extracellular vesicles (EVs) are released by all types of mammalian cells for cell-cell communication. In this study, surface glycans on EVs are compared in terms of their cell type, size, and isolation method to examine whether EV glycan profiles by lectin microarray can be used to define EV subpopulations. Moreover, EVs are glycoengineered with four distinctive surface glycan patterns and evaluated their cellular uptake efficiencies for potential drug delivery applications. Both similarities and differences in glycan patterns are identified on EVs obtained under each experimental condition. EV size- and isolation method-dependent lectin-binding patterns are observed. Moreover, cellular uptake behaviors of EVs are affected by EV glycan profiles and acceptor cells. The in vivo biodistribution of EVs is also dependent on their glycan profile. These results suggest that EV surface glycans are a potential novel indicator of EV heterogeneity, and glycoengineering is a useful approach to regulate cell-EV interactions for biomedical applications.


Asunto(s)
Vesículas Extracelulares/trasplante , Lectinas/metabolismo , Análisis por Micromatrices/métodos , Polisacáridos/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Vesículas Extracelulares/metabolismo , Células HCT116 , Células HT29 , Humanos , Inyecciones Intravenosas , Ratones , Células PC-3 , Distribución Tisular
19.
Gene ; 822: 146337, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35182676

RESUMEN

The extracellular vesicles (EVs) in uterine fluids play a vital role in embryo implantation by mediating intrauterine communication between conceptus and maternal endometrium in pigs. However, the regulatory mechanism of EVs in uterine fluids is largely unclear. In order to understand the effect of EVs in uterine flushing fluids (UFs) during embryo implantation on endometrial epithelial cells (EECs) and embryonic trophoblast cells (PTr2 cells). The UFs-EVs on day 13 of pregnancy (D13) were added to the culture medium of EECs and PTr2 cells. It was found that PKH-67 labeled UFs-EVs could be taken up in EECs and PTr2 cells. Transcriptome sequencing analysis showed that a total of 1793 and 6279 genes were differentially expressed in the EECs and PTr2 cells after the treatment of UFs-EVs on D13, respectively. Among these genes, real-time quantitative PCR (RT-qPCR) results indicated that ID2, ITGA5, CXCL10 and CXCL11 genes were differentially expressed in both EECs and PTr2 cells after treatment. Bioinformatics analysis showed that the differentially expressed (DE) genes in EECs and PTr2 cells after treatment are involved in immune regulation, cell migration, cell adhesion and the secretion and uptake of EVs. Our research offers novel insight into the regulation mechanism of UFs-EVs on D13 in EECs and PTr2 cells.


Asunto(s)
Endometrio/citología , Vesículas Extracelulares/trasplante , Perfilación de la Expresión Génica/veterinaria , Redes Reguladoras de Genes , Trofoblastos/citología , Animales , Adhesión Celular , Técnicas de Cultivo de Célula , Movimiento Celular , Células Cultivadas , Implantación del Embrión , Endometrio/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Regulación de la Expresión Génica , Embarazo , Análisis de Secuencia de ARN , Porcinos , Trofoblastos/metabolismo
20.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35163409

RESUMEN

The potential therapeutic effect of extracellular vesicles (EVs) that are derived from human liver stem cells (HLSCs) has been tested in an in vivo model of renal ischemia and reperfusion injury (IRI), that induce the development of chronic kidney disease (CKD). EVs were administered intravenously immediately after the IRI and three days later, then their effect was tested at different time points to evaluate how EV-treatment might interfere with fibrosis development. In IRI-mice that were sacrificed two months after the injury, EV- treatment decreased the development of interstitial fibrosis at the histological and molecular levels. Furthermore, the expression levels of pro-inflammatory genes and of epithelial-mesenchymal transition (EMT) genes were significantly reverted by EV-treatment. In IRI-mice that were sacrificed at early time points (two and three days after the injury), functional and histological analyses showed that EV-treatment induced an amelioration of the acute kidney injury (AKI) that was induced by IRI. Interestingly, at the molecular level, a reduction of pro-fibrotic and EMT-genes in sacrificed IRI-mice was observed at days two and three after the injury. These data indicate that in renal IRI, treatment with HLSC-derived EVs improves AKI and interferes with the development of subsequent CKD by modulating the genes that are involved in fibrosis and EMT.


Asunto(s)
Vesículas Extracelulares , Hígado , Insuficiencia Renal Crónica , Daño por Reperfusión , Células Madre , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Humanos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/terapia , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/terapia , Células Madre/metabolismo , Células Madre/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA