Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.040
Filtrar
1.
Transl Psychiatry ; 14(1): 335, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39168993

RESUMEN

Long-term synaptic plasticity is critical for adaptive function of the brain, but presynaptic mechanisms of functional plasticity remain poorly understood. Here, we show that changes in synaptic efficacy induced by activation of the cannabinoid type-1 receptor (CB1R), one of the most widespread G-protein coupled receptors in the brain, requires contractility of the neuronal actomyosin cytoskeleton. Specifically, using a synaptophysin-pHluorin probe (sypH2), we show that inhibitors of non-muscle myosin II (NMII) ATPase as well as one of its upstream effectors Rho-associated kinase (ROCK) prevent the reduction of synaptic vesicle release induced by CB1R activation. Using 3D STORM super-resolution microscopy, we find that activation of CB1R induces a redistribution of synaptic vesicles within presynaptic boutons in an actomyosin dependent manner, leading to vesicle clustering within the bouton and depletion of synaptic vesicles from the active zone. We further show, using sypH2, that inhibitors of NMII and ROCK specifically restore the release of the readily releasable pool of synaptic vesicles from the inhibition induced by CB1R activation. Finally, using slice electrophysiology, we find that activation of both NMII and ROCK is necessary for the long-term, but not the short-term, form of CB1R induced synaptic plasticity at excitatory cortico-striatal synapses. We thus propose a novel mechanism underlying CB1R-induced plasticity, whereby CB1R activation leads to a contraction of the actomyosin cytoskeleton inducing a reorganization of the functional presynaptic vesicle pool, preventing vesicle release and inducing long-term depression.


Asunto(s)
Actomiosina , Plasticidad Neuronal , Terminales Presinápticos , Receptor Cannabinoide CB1 , Vesículas Sinápticas , Quinasas Asociadas a rho , Animales , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/antagonistas & inhibidores , Actomiosina/metabolismo , Quinasas Asociadas a rho/metabolismo , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de los fármacos , Terminales Presinápticos/metabolismo , Terminales Presinápticos/efectos de los fármacos , Ratones , Ratas , Masculino , Miosina Tipo II/metabolismo
2.
Genes (Basel) ; 15(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38674386

RESUMEN

Down syndrome (DS) is the most common form of inherited intellectual disability caused by trisomy of chromosome 21, presenting with intellectual impairment, craniofacial abnormalities, cardiac defects, and gastrointestinal disorders. The Ts65Dn mouse model replicates many abnormalities of DS. We hypothesized that investigation of the cerebral cortex of fluoxetine-treated trisomic mice may provide proteomic signatures that identify therapeutic targets for DS. Subcellular fractionation of synaptosomes from cerebral cortices of age- and brain-area-matched samples from fluoxetine-treated vs. water-treated trisomic and euploid male mice were subjected to HPLC-tandem mass spectrometry. Analysis of the data revealed enrichment of trisomic risk genes that participate in regulation of synaptic vesicular traffic, pre-synaptic and post-synaptic development, and mitochondrial energy pathways during early brain development. Proteomic analysis of trisomic synaptic fractions revealed significant downregulation of proteins involved in synaptic vesicular traffic, including vesicular endocytosis (CLTA, CLTB, CLTC), synaptic assembly and maturation (EXOC1, EXOC3, EXOC8), anterograde axonal transport (EXOC1), neurotransmitter transport to PSD (SACM1L), endosomal-lysosomal acidification (ROGDI, DMXL2), and synaptic signaling (NRXN1, HIP1, ITSN1, YWHAG). Additionally, trisomic proteomes revealed upregulation of several trafficking proteins, involved in vesicular exocytosis (Rab5B), synapse elimination (UBE3A), scission of endocytosis (DBN1), transport of ER in dendritic spines (MYO5A), presynaptic activity-dependent bulk endocytosis (FMR1), and NMDA receptor activity (GRIN2A). Chronic fluoxetine treatment of Ts65Dn mice rescued synaptic vesicular abnormalities and prevented abnormal proteomic changes in adult Ts65Dn mice, pointing to therapeutic targets for potential treatment of DS.


Asunto(s)
Síndrome de Down , Fluoxetina , Proteómica , Vesículas Sinápticas , Animales , Fluoxetina/farmacología , Ratones , Síndrome de Down/metabolismo , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/genética , Síndrome de Down/patología , Masculino , Proteómica/métodos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/efectos de los fármacos , Modelos Animales de Enfermedad , Proteoma/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Sinaptosomas/metabolismo , Sinaptosomas/efectos de los fármacos , Trisomía/genética
3.
Eur J Neurosci ; 59(10): 2483-2501, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38532289

RESUMEN

Dopaminergic neurons of the substantia nigra exist in a persistent state of vulnerability resulting from high baseline oxidative stress, high-energy demand, and broad unmyelinated axonal arborisations. Impairments in the storage of dopamine compound this stress because of cytosolic reactions that transform the vital neurotransmitter into an endogenous neurotoxicant, and this toxicity is thought to contribute to the dopamine neuron degeneration that occurs Parkinson's disease. We have previously identified synaptic vesicle glycoprotein 2C (SV2C) as a modifier of vesicular dopamine function, demonstrating that genetic ablation of SV2C in mice results in decreased dopamine content and evoked dopamine release in the striatum. Here, we adapted a previously published in vitro assay utilising false fluorescent neurotransmitter 206 (FFN206) to visualise how SV2C regulates vesicular dopamine dynamics and determined that SV2C promotes the uptake and retention of FFN206 within vesicles. In addition, we present data indicating that SV2C enhances the retention of dopamine in the vesicular compartment with radiolabelled dopamine in vesicles isolated from immortalised cells and from mouse brain. Further, we demonstrate that SV2C enhances the ability of vesicles to store the neurotoxicant 1-methyl-4-phenylpyridinium (MPP+) and that genetic ablation of SV2C results in enhanced 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced vulnerability in mice. Together, these findings suggest that SV2C functions to enhance vesicular storage of dopamine and neurotoxicants and helps maintain the integrity of dopaminergic neurons.


Asunto(s)
Dopamina , Neuronas Dopaminérgicas , Glicoproteínas de Membrana , Proteínas del Tejido Nervioso , Vesículas Sinápticas , Animales , Humanos , Ratones , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/efectos de los fármacos
4.
Mol Neurobiol ; 61(9): 6805-6821, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38353924

RESUMEN

ß2-Adrenoceptors (ß2-ARs) are the most abundant subtype of adrenergic receptors in skeletal muscles. Their activation via a stabilization of postsynaptic architecture has beneficial effects in certain models of neuromuscular disorders. However, the ability of ß2-ARs to regulate neuromuscular transmission at the presynaptic level is poorly understood. Using electrophysiological recordings and fluorescent FM dyes, we found that ß2-AR activation with fenoterol enhanced an involvement of synaptic vesicles in exocytosis and neurotransmitter release during intense activity at the neuromuscular junctions of mouse diaphragm. This was accompanied by an improvement of contractile responses to phrenic nerve stimulation (but not direct stimulation of the muscle fibers) at moderate-to-high frequencies. ß2-ARs mainly reside in lipid microdomains enriched with cholesterol and sphingomyelin. The latter is hydrolyzed by sphingomyelinases, whose upregulation occurs in many conditions characterized by muscle atrophy and sympathetic nerve hyperactivity. Sphingomyelinase treatment reversed the effects of ß2-AR agonist on the neurotransmitter release and synaptic vesicle recruitment to the exocytosis during intense activity. Inhibition of Gi protein with pertussis toxin completely prevented the sphingomyelinase-mediated inversion in the ß2-AR agonist action. Note that lipid raft disrupting enzyme cholesterol oxidase had the same effect on ß2-AR agonist-mediated changes in neurotransmission as sphingomyelinase. Thus, ß2-AR agonist fenoterol augmented recruitment and release of synaptic vesicles during intense activity in the diaphragm neuromuscular junctions. Sphingomyelin hydrolysis inversed the effects of ß2-AR agonist on neurotransmission probably via switching to Gi protein-dependent signaling. This phenomenon may reflect a dependence of the ß2-AR signaling on lipid raft integrity in the neuromuscular junctions.


Asunto(s)
Unión Neuromuscular , Receptores Adrenérgicos beta 2 , Transmisión Sináptica , Animales , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/metabolismo , Transmisión Sináptica/efectos de los fármacos , Receptores Adrenérgicos beta 2/metabolismo , Microdominios de Membrana/metabolismo , Microdominios de Membrana/efectos de los fármacos , Ratones , Masculino , Diafragma/efectos de los fármacos , Diafragma/inervación , Diafragma/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/efectos de los fármacos , Colesterol/metabolismo , Exocitosis/efectos de los fármacos , Ratones Endogámicos C57BL
5.
Neuromolecular Med ; 25(1): 125-135, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36436129

RESUMEN

Lithium is a mood stabilizer broadly used to prevent and treat symptoms of mania and depression in people with bipolar disorder (BD). Little is known, however, about its mode of action. Here, we analyzed the impact of lithium on synaptic vesicle (SV) cycling at presynaptic terminals releasing glutamate, a neurotransmitter previously implicated in BD and other neuropsychiatric conditions. We used the pHluorin-based synaptic tracer vGpH and a fully automated image processing pipeline to quantify the effect of lithium on both SV exocytosis and endocytosis in hippocampal neurons. We found that lithium selectively reduces SV exocytic rates during electrical stimulation, and markedly slows down SV recycling post-stimulation. Analysis of single-bouton responses revealed the existence of functionally distinct excitatory synapses with varying sensitivity to lithium-some terminals show responses similar to untreated cells, while others are markedly impaired in their ability to recycle SVs. While the cause of this heterogeneity is unclear, these data indicate that lithium interacts with the SV machinery and influences glutamate release in a large fraction of excitatory synapses. Together, our findings show that lithium down modulates SV cycling, an effect consistent with clinical reports indicating hyperactivation of glutamate neurotransmission in BD.


Asunto(s)
Ácido Glutámico , Compuestos de Litio , Sinapsis , Vesículas Sinápticas , Compuestos de Litio/farmacología , Ácido Glutámico/metabolismo , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Trastorno Bipolar/metabolismo , Trastorno Bipolar/patología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Hipocampo/patología , Exocitosis/efectos de los fármacos , Endocitosis/efectos de los fármacos , Animales , Ratas , Células Cultivadas
6.
Biochim Biophys Acta Biomembr ; 1864(1): 183817, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34767780

RESUMEN

Here, carbon nanodots synthesized from ß-alanine (Ala-CDs) and detonation nanodiamonds (NDs) were assessed using (1) radiolabeled excitatory neurotransmitters L-[14C]glutamate, D-[2,33H]aspartate, and inhibitory ones [3H]GABA, [3H]glycine for registration of their extracellular concentrations in rat cortex nerve terminals; (2) the fluorescent ratiometric probe NR12S and pH-sensitive probe acridine orange for registration of the membrane lipid order and synaptic vesicle acidification, respectively; (3) suspended bilayer lipid membrane (BLM) to monitor changes in transmembrane current. In nerve terminals, Ala-CDs and NDs increased the extracellular concentrations of neurotransmitters and decreased acidification of synaptic vesicles, whereas have not changed sufficiently the lipid order of membrane. Both nanoparticles, Ala-CDs and NDs, were capable of increasing the conductance of the BLM by inducing stable potential-dependent cation-selective pores. Introduction of divalent cations, Zn2+ or Cd2+ on the particles` application side (cis-side) increased the rate of Ala-CDs pore-formation in the BLM. The application of positive potential (+100 mV) to the cis-chamber with Ala-CDs or NDs also activated the insertion as compared with the negative potential (-100 mV). The Ala-CD pores exhibited a wide-range distribution of conductances between 10 and 60 pS and consecutive increase in conductance of each major peak by ~10 pS, which suggest the clustering of the same basic ion-conductive structure. NDs also formed ion-conductive pores ranging from 6 pS to 60 pS with the major peak of conductance at ~12 pS in cholesterol-containing membrane. Observed Ala-CDs and NDs-induced increase in transmembrane current coincides with disturbance of excitatory and inhibitory neurotransmitter transport in nerve terminals.


Asunto(s)
Corteza Cerebral/metabolismo , Nanopartículas/química , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/química , Alanina/síntesis química , Alanina/química , Animales , Ácido Aspártico/síntesis química , Ácido Aspártico/química , Ácido Aspártico/farmacología , Carbono/química , Carbono/farmacología , Radioisótopos de Carbono/química , Radioisótopos de Carbono/farmacología , Cationes/farmacología , Corteza Cerebral/efectos de la radiación , Colesterol/química , Ácido Glutámico/síntesis química , Ácido Glutámico/química , Ácido Glutámico/farmacología , Membrana Dobles de Lípidos/química , Nanodiamantes/química , Neurotransmisores/química , Neurotransmisores/farmacología , Ratas , Sinapsis/química , Transmisión Sináptica/fisiología , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Ácido gamma-Aminobutírico/síntesis química , Ácido gamma-Aminobutírico/química , Ácido gamma-Aminobutírico/farmacología
7.
Sci Rep ; 11(1): 17747, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493757

RESUMEN

Deregulation of synaptic function and neurotransmission has been linked with the development of major depression disorder (MDD). Tianeptine (Tian) has been used as antidepressant with anxiolytic properties and recently as a nootropic to improve cognitive performance, but its mechanism of action is unknown. We conducted a proteomic study on the hippocampal synaptosomal fractions of adult male Wistar rats exposed to chronic social isolation (CSIS, 6 weeks), an animal model of depression and after chronic Tian treatment in controls (nootropic effect) and CSIS-exposed rats (lasting 3 weeks of 6-week CSIS) (therapeutic effect). Increased expression of Syn1 and Camk2-related neurotransmission, vesicle transport and energy processes in Tian-treated controls were found. CSIS led to upregulation of proteins associated with actin cytoskeleton, signaling transduction and glucose metabolism. In CSIS rats, Tian up-regulated proteins involved in mitochondrial energy production, mitochondrial transport and dynamics, antioxidative defense and glutamate clearance, while attenuating the CSIS-increased glycolytic pathway and cytoskeleton organization proteins expression and decreased the expression of proteins involved in V-ATPase and vesicle endocytosis. Our overall findings revealed that synaptic vesicle dynamics, specifically exocytosis, and mitochondria-related energy processes might be key biological pathways modulated by the effective nootropic and antidepressant treatment with Tian and be a potential target for therapeutic efficacy of the stress-related mood disorders.


Asunto(s)
Antidepresivos/farmacología , Trastorno Depresivo/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Nootrópicos/farmacología , Proteoma/efectos de los fármacos , Aislamiento Social , Vesículas Sinápticas/efectos de los fármacos , Tiazepinas/farmacología , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Antidepresivos/uso terapéutico , Trastorno Depresivo/fisiopatología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/ultraestructura , Masculino , Mitocondrias/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Nootrópicos/uso terapéutico , Mapeo de Interacción de Proteínas , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Tiazepinas/uso terapéutico
8.
PLoS Biol ; 19(6): e3001149, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34153028

RESUMEN

Synaptic plasticity is a cellular model for learning and memory. However, the expression mechanisms underlying presynaptic forms of plasticity are not well understood. Here, we investigate functional and structural correlates of presynaptic potentiation at large hippocampal mossy fiber boutons induced by the adenylyl cyclase activator forskolin. We performed 2-photon imaging of the genetically encoded glutamate sensor iGluu that revealed an increase in the surface area used for glutamate release at potentiated terminals. Time-gated stimulated emission depletion microscopy revealed no change in the coupling distance between P/Q-type calcium channels and release sites mapped by Munc13-1 cluster position. Finally, by high-pressure freezing and transmission electron microscopy analysis, we found a fast remodeling of synaptic ultrastructure at potentiated boutons: Synaptic vesicles dispersed in the terminal and accumulated at the active zones, while active zone density and synaptic complexity increased. We suggest that these rapid and early structural rearrangements might enable long-term increase in synaptic strength.


Asunto(s)
Fibras Musgosas del Hipocampo/metabolismo , Terminales Presinápticos/metabolismo , Animales , Colforsina/farmacología , Ácido Glutámico/metabolismo , Masculino , Ratones Endogámicos C57BL , Microscopía de Fluorescencia por Excitación Multifotónica , Fibras Musgosas del Hipocampo/efectos de los fármacos , Fibras Musgosas del Hipocampo/ultraestructura , Neurotransmisores/metabolismo , Terminales Presinápticos/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo
9.
Neurobiol Learn Mem ; 183: 107480, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34153453

RESUMEN

Perturbations in the glutamate-glutamine cycle and glutamate release from presynaptic terminals have been involved in the development of cognitive deficits in Alzheimer's disease (AD) patients and mouse models. Glutamate transporter-1 (GLT-1) removes glutamate from the synaptic cleft and transports it into astrocytes, where it is used as substrate for the glutamate-glutamine cycle. Ceftriaxone has been reported to improve cognitive deficits in AD mice by increasing GLT-1 expression, glutamate transformation to glutamine, and glutamine efflux from astrocytes. However, the impact of ceftriaxone on glutamine metabolism in neurons is unknown. The present study aimed to investigate whether ceftriaxone regulated the production and vesicular assembly of glutamate in the presynaptic terminals of neurons and to determine GLT-1 involvement in this process. We used the amyloid precursor protein (APP)/presenilin-1 (PS1) AD mouse model and GLT-1 knockdown APP/PS1 (GLT-1+/-/APP/PS1) mice. The expression levels of sodium-coupled neutral amino-acid transporter 1 (SNAT1) and vesicular glutamate transporters 1 and 2 (VGLUT1/2) were analyzed by immunofluorescence and immunohistochemistry staining as well as by Western blotting. Glutaminase activity was assayed by fluorometry. Ceftriaxone treatment significantly increased SNAT1 expression and glutaminase activity in neurons in APP/PS1 mice. Similarly, VGLUT1/2 levels were increased in the presynaptic terminals of APP/PS1 mice treated with ceftriaxone. The deletion of one GLT-1 allele in APP/PS1 mice prevented the ceftriaxone-induced upregulation of SNAT1 and VGLUT1/2 expression, indicating that GLT-1 played an important role in ceftriaxone effect. Based on the role of SNAT1, glutaminase, and VGLUT1/2 in the glutamate-glutamine cycle in neurons, the present results suggested that ceftriaxone improved the production and vesicular assembly of glutamate as a neurotransmitter in presynaptic terminals by acting on GLT-1 in APP/PS1 mice.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Antibacterianos/farmacología , Ceftriaxona/farmacología , Transportador 2 de Aminoácidos Excitadores/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Enfermedad de Alzheimer/genética , Sistema de Transporte de Aminoácidos A/efectos de los fármacos , Sistema de Transporte de Aminoácidos A/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Técnicas de Silenciamiento del Gen , Ácido Glutámico/efectos de los fármacos , Ácido Glutámico/metabolismo , Glutaminasa/efectos de los fármacos , Glutaminasa/metabolismo , Ratones , Ratones Transgénicos , Presenilina-1/genética , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/efectos de los fármacos , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/efectos de los fármacos , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
10.
Sci Rep ; 11(1): 10634, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34017040

RESUMEN

Dravet syndrome (DS) is an intractable form of childhood epilepsy that occurs in infancy. More than 80% of all patients have a heterozygous abnormality in the SCN1A gene, which encodes a subunit of Na+ channels in the brain. However, the detailed pathogenesis of DS remains unclear. This study investigated the synaptic pathogenesis of this disease in terms of excitatory/inhibitory balance using a mouse model of DS. We show that excitatory postsynaptic currents were similar between Scn1a knock-in neurons (Scn1a+/- neurons) and wild-type neurons, but inhibitory postsynaptic currents were significantly lower in Scn1a+/- neurons. Moreover, both the vesicular release probability and the number of inhibitory synapses were significantly lower in Scn1a+/- neurons compared with wild-type neurons. There was no proportional increase in inhibitory postsynaptic current amplitude in response to increased extracellular Ca2+ concentrations. Our study revealed that the number of inhibitory synapses is significantly reduced in Scn1a+/- neurons, while the sensitivity of inhibitory synapses to extracellular Ca2+ concentrations is markedly increased. These data suggest that Ca2+ tethering in inhibitory nerve terminals may be disturbed following the synaptic burst, likely leading to epileptic symptoms.


Asunto(s)
Calcio/farmacología , Epilepsias Mioclónicas/fisiopatología , Espacio Extracelular/química , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Inhibición Neural/efectos de los fármacos , Transmisión Sináptica/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Marcación de Gen , Ratones Endogámicos ICR , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo
11.
Cell Mol Life Sci ; 78(11): 4973-4992, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33864480

RESUMEN

Amyloid beta (Aß) is linked to the pathology of Alzheimer's disease (AD). At physiological concentrations, Aß was proposed to enhance neuroplasticity and memory formation by increasing the neurotransmitter release from presynapse. However, the exact mechanisms underlying this presynaptic effect as well as specific contribution of endogenously occurring Aß isoforms remain unclear. Here, we demonstrate that Aß1-42 and Aß1-16, but not Aß17-42, increased size of the recycling pool of synaptic vesicles (SV). This presynaptic effect was driven by enhancement of endogenous cholinergic signalling via α7 nicotinic acetylcholine receptors, which led to activation of calcineurin, dephosphorylation of synapsin 1 and consequently resulted in reorganization of functional pools of SV increasing their availability for sustained neurotransmission. Our results identify synapsin 1 as a molecular target of Aß and reveal an effect of physiological concentrations of Aß on cholinergic modulation of glutamatergic neurotransmission. These findings provide new mechanistic insights in cholinergic dysfunction observed in AD.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Fragmentos de Péptidos/farmacología , Sinapsis/metabolismo , Sinapsinas/metabolismo , Vesículas Sinápticas/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Calcio/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Humanos , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neurotransmisores/metabolismo , Nicotina/farmacología , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Vesículas Sinápticas/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/deficiencia , Receptor Nicotínico de Acetilcolina alfa 7/genética
12.
Biomed Pharmacother ; 138: 111462, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33706129

RESUMEN

The antiepileptic/anticonvulsive action of brivaracetam is considered to occur via modulation of synaptic vesicle protein 2A (SV2A); however, the pharmacological mechanisms of action have not been fully characterised. To explore the antiepileptic/anticonvulsive mechanism of brivaracetam associated with SV2A modulation, this study determined concentration-dependent effects of brivaracetam on astroglial L-glutamate release associated with connexin43 (Cx43), tumour-necrosis factor-α (TNFα) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/glutamate receptor of rat primary cultured astrocytes using ultra-high-performance liquid chromatography. Furthermore, interaction among TNFα, elevated extracellular K+ and brivaracetam on expression of SV2A and Cx43 was determined using capillary immunoblotting. TNFα and elevated extracellular K+ predominantly enhanced astroglial L-glutamate release associated with respective AMPA/glutamate receptor and hemichannel. These effects were enhanced by a synergistic effect of TNFα and elevated extracellular K+ in combination. The activation of astroglial L-glutamate release, and expression of SV2A and Cx43 in the plasma membrane was suppressed by subchronic brivaracetam administration but were unaffected by acute administration. These results suggest that migration of SV2A to the astroglial plasma membrane by hyperexcitability activates astroglial glutamatergic transmission, perhaps via hemichannel activation. Subchronic brivaracetam administration suppressed TNFα-induced activation of AMPA/glutamate receptor and hemichannel via inhibition of ectopic SV2A. These findings suggest that combined inhibition of vesicular and ectopic SV2A functions contribute to the antiepileptic/anticonvulsive mechanism of brivaracetam action.


Asunto(s)
Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Pirrolidinonas/farmacología , Animales , Animales Recién Nacidos , Anticonvulsivantes/farmacología , Astrocitos/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Masculino , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Embarazo , Ratas , Ratas Sprague-Dawley , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/metabolismo , Receptores de Glutamato/metabolismo , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
13.
Mol Brain ; 14(1): 47, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33663553

RESUMEN

Na+(K+)/H+ exchanger 6 (NHE6) on synaptic vesicle (SV) is critical for the presynaptic regulation of quantal size at the glutamatergic synapses by converting the chemical gradient (ΔpH) into membrane potential (Δψ) across the SV membrane. We recently found that NHE6 directly interacts with secretory carrier membrane protein 5 (SCAMP5), and SCAMP5-dependent recruitment of NHE6 to SVs controls the strength of synaptic transmission by modulation of quantal size of glutamate release at rest. It is, however, unknown whether NHE6 recruitment by SCAMP5 plays a role during synaptic plasticity. Here, we found that the number of NHE6-positive presynaptic boutons was significantly increased by the chemical long-term potentiation (cLTP). Since cLTP involves new synapse formation, our results indicated that NHE6 was recruited not only to the existing presynaptic boutons but also to the newly formed presynaptic boutons. Knock down of SCAMP5 completely abrogated the enhancement of NHE6 recruitment by cLTP. Interestingly, despite an increase in the number of NHE6-positive boutons by cLTP, the quantal size of glutamate release at the presynaptic terminals remained unaltered. Together with our recent results, our findings indicate that SCAMP5-dependent recruitment of NHE6 plays a critical role in manifesting presynaptic efficacy not only at rest but also during synaptic plasticity. Since both are autism candidate genes, reduced presynaptic efficacy by interfering with their interaction may underlie the molecular mechanism of synaptic dysfunction observed in autism.


Asunto(s)
Proteínas de la Membrana/metabolismo , Plasticidad Neuronal , Intercambiadores de Sodio-Hidrógeno/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Células Cultivadas , Colforsina/farmacología , Ácido Glutámico/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Ratas Sprague-Dawley , Vesículas Sinápticas/efectos de los fármacos
14.
J Neurochem ; 157(4): 1052-1068, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33341946

RESUMEN

The Rho kinase (ROCK) signaling pathway is an attractive therapeutic target in neurodegeneration since it has been linked to the prevention of neuronal death and neurite regeneration. The isoquinoline derivative fasudil is a potent ROCK inhibitor, which is already approved for chronic clinical treatment in humans. However, the effects of chronic fasudil treatments on neuronal function are still unknown. We analyzed here chronic fasudil treatment in primary rat hippocampal cultures. Neurons were stimulated with 20 Hz field stimulation and we investigated pre-synaptic mechanisms and parameters regulating synaptic transmission after fasudil treatment by super resolution stimulated emission depletion (STED) microscopy, live-cell fluorescence imaging, and western blotting. Fasudil did not affect basic synaptic function or the amount of several synaptic proteins, but it altered the chronic dynamics of the synaptic vesicles. Fasudil reduced the proportion of the actively recycling vesicles, and shortened the vesicle lifetime, resulting overall in a reduction of the synaptic response upon stimulation. We conclude that fasudil does not alter synaptic structure, accelerates vesicle turnover, and decreases the number of released vesicles. This broadens the known spectrum of effects of this drug, and suggests new potential clinical uses.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Neuronas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Animales , Femenino , Hipocampo/efectos de los fármacos , Masculino , Terminales Presinápticos/efectos de los fármacos , Ratas , Ratas Wistar , Quinasas Asociadas a rho/antagonistas & inhibidores
15.
FEBS J ; 288(5): 1462-1474, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32702182

RESUMEN

Projections of ventral tegmental area dopamine (DA) neurons to the medial shell of the nucleus accumbens have been increasingly implicated as integral to the behavioral and physiological changes involved in the development of substance use disorders (SUDs). Recently, many of these nucleus accumbens-projecting DA neurons were found to also release the neurotransmitter glutamate. This glutamate co-release from DA neurons is critical in mediating the effect of drugs of abuse on addiction-related behaviors. Potential mechanisms underlying the role(s) of dopamine/glutamate co-release in contributing to SUDs are unclear. Nevertheless, an important clue may relate to glutamate's ability to potentiate loading of DA into synaptic vesicles within terminals in the nucleus accumbens in response to drug-induced elevations in neuronal activity, enabling a more robust release of DA after stimulation. Here, we summarize how drugs of abuse, particularly cocaine, opioids, and alcohol, alter DA release in the nucleus accumbens medial shell, examine the potential role of DA/glutamate co-release in mediating these effects, and discuss future directions for further investigating these mechanisms.


Asunto(s)
Analgésicos Opioides/efectos adversos , Cocaína/efectos adversos , Dopamina/metabolismo , Etanol/efectos adversos , Ácido Glutámico/metabolismo , Trastornos Relacionados con Sustancias/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Humanos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Núcleo Accumbens/metabolismo , Roedores , Especificidad de la Especie , Trastornos Relacionados con Sustancias/etiología , Trastornos Relacionados con Sustancias/fisiopatología , Trastornos Relacionados con Sustancias/prevención & control , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo
16.
J Mol Neurosci ; 71(3): 481-505, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32860155

RESUMEN

Due to molecular mimicry, maternal antibacterial antibodies are suspected to promote neurodevelopmental changes in the offspring that finally can cause disorders like autism and schizophrenia. Using a human first trimester prenatal brain multiprotein array (MPA), we demonstrate here that antibodies to the digestive tract bacteria Helicobacter pylori (α-HPy) and Campylobacter jejuni (α-CJe) interact with different synaptic proteins, including the calcium sensor synaptotagmin 5 (Syt5). Interactions of both antisera with Syt5 were confirmed by Western blot with a HEK293-cells overexpression lysate of this protein. Immunofluorescence and Western blotting revealed SiMa cells to express Syt5, which also co-migrated with a band/spot labeled by either α-HPy or α-CJe. Functionally, a 12-h pretreatment of SiMa cells with 10 µg/ml of either α-HPy or α-CJe resulted in a significant reduction of acetylcholine(ACh)-dependent calcium signals as compared to controls. Also ACh-dependent vesicle recycling was significantly reduced in cells pretreated with either α-HPy or α-CJe. Similar effects were observed upon pretreatment of SiMa cells with Syt5-specific antibodies. In conclusion, the present study supports the view that prenatal maternal antibacterial immune responses towards HPy and by this to Syt5 are able to cause functional changes, which in the end might contribute also to neurodevelopmental disorders.


Asunto(s)
Anticuerpos Antibacterianos/metabolismo , Neuroblastoma/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptotagminas/metabolismo , Anticuerpos Antibacterianos/farmacología , Señalización del Calcio , Línea Celular Tumoral , Células HEK293 , Helicobacter pylori/inmunología , Humanos , Unión Proteica , Vesículas Sinápticas/efectos de los fármacos
17.
Methods Mol Biol ; 2233: 101-111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33222130

RESUMEN

The efficient recycling of synaptic vesicles (SVs) during neuronal activity is central for sustaining brain function. During intense neuronal activity, the dominant mechanism of SV retrieval is activity-dependent bulk endocytosis (ADBE). Here, we describe a method to monitor ADBE in isolation from other SV endocytosis modes, via the uptake of large fluorescent fluid-phase markers in primary neuronal culture. Furthermore, we outline how to monitor ADBE using this approach across a field of neurons or in individual neurons.


Asunto(s)
Endocitosis/genética , Neuronas/ultraestructura , Cultivo Primario de Células/métodos , Vesículas Sinápticas/ultraestructura , Animales , Dextranos/farmacología , Endosomas/efectos de los fármacos , Endosomas/ultraestructura , Colorantes Fluorescentes/farmacología , Humanos , Ratones , Neuronas/metabolismo , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/ultraestructura , Vesículas Sinápticas/efectos de los fármacos
18.
Cells ; 9(12)2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352833

RESUMEN

Entacapone, a reversible inhibitor of catechol-O-methyl transferase, is used for patients in Parkinson's disease because it increases the bioavailability and effectiveness of levodopa. In the present study, we observed that entacapone increases novel object recognition and neuroblasts in the hippocampus. In the present study, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry were performed to compare the abundance profiles of proteins expressed in the hippocampus after entacapone treatment in mice. Results of 2-DE, MALDI-TOF mass spectrometry, and subsequent proteomic analysis revealed an altered protein expression profile in the hippocampus after entacapone treatment. Based on proteomic analysis, 556 spots were paired during the image analysis of 2-DE gels and 76 proteins were significantly changed more than two-fold among identified proteins. Proteomic analysis indicated that treatment with entacapone induced expressional changes in proteins involved in synaptic transmission, cellular processes, cellular signaling, the regulation of cytoskeletal structure, energy metabolism, and various subcellular enzymatic reactions. In particular, entacapone significantly increased proteins related to synaptic trafficking and plasticity, such as dynamin 1, synapsin I, and Munc18-1. Immunohistochemical staining showed the localization of the proteins, and western blot confirmed the significant increases in dynamin I (203.5% of control) in the hippocampus as well as synapsin I (254.0% of control) and Munc18-1 (167.1% of control) in the synaptic vesicle fraction of hippocampus after entacapone treatment. These results suggest that entacapone can enhance hippocampal synaptic trafficking and plasticity against various neurological diseases related to hippocampal dysfunction.


Asunto(s)
Catecoles/uso terapéutico , Hipocampo/efectos de los fármacos , Nitrilos/uso terapéutico , Vesículas Sinápticas/efectos de los fármacos , Animales , Transporte Biológico , Ciclo Celular , Diferenciación Celular , Electroforesis en Gel Bidimensional , Endocitosis , Hipocampo/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Mitosis , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Sinapsis/metabolismo
19.
Nat Commun ; 11(1): 5318, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087709

RESUMEN

Synaptic vesicles (SVs) can be pooled across multiple synapses, prompting questions about their dynamic allocation for neurotransmission and plasticity. We find that the axonal traffic of recycling vesicles is not supported by ubiquitous microtubule-based motility but relies on actin instead. Vesicles freed from synaptic clusters undergo ~1 µm bouts of active transport, initiated by nearby elongation of actin filaments. Long distance translocation arises when successive bouts of active transport were linked by periods of free diffusion. The availability of SVs for active transport can be promptly increased by protein kinase A, a key player in neuromodulation. Vesicle motion is in turn impeded by shutting off axonal actin polymerization, mediated by nitric oxide-cyclic GMP signaling leading to inhibition of RhoA. These findings provide a potential framework for coordinating post-and pre-synaptic strength, using retrograde regulation of axonal actin dynamics to mobilize and recruit presynaptic SV resources.


Asunto(s)
Citoesqueleto de Actina/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Óxido Nítrico/fisiología , Vesículas Sinápticas/fisiología , Animales , Transporte Axonal/fisiología , Transporte Biológico Activo , Células Cultivadas , GMP Cíclico/fisiología , Femenino , Hipocampo/citología , Hipocampo/fisiología , Proteínas Luminiscentes/metabolismo , Masculino , Neuronas/fisiología , Nocodazol/farmacología , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología , Vesículas Sinápticas/efectos de los fármacos
20.
Hum Mutat ; 41(11): 1999-2011, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32906212

RESUMEN

Clinical and genetic features of five unrelated patients with de novo pathogenic variants in the synaptic vesicle-associated membrane protein 2 (VAMP2) reveal common features of global developmental delay, autistic tendencies, behavioral disturbances, and a higher propensity to develop epilepsy. For one patient, a cognitively impaired adolescent with a de novo stop-gain VAMP2 mutation, we tested a potential treatment strategy, enhancing neurotransmission by prolonging action potentials with the aminopyridine family of potassium channel blockers, 4-aminopyridine and 3,4-diaminopyridine, in vitro and in vivo. Synaptic vesicle recycling and neurotransmission were assayed in neurons expressing three VAMP2 variants by live-cell imaging and electrophysiology. In cellular models, two variants decrease both the rate of exocytosis and the number of synaptic vesicles released from the recycling pool, compared with wild-type. Aminopyridine treatment increases the rate and extent of exocytosis and total synaptic charge transfer and desynchronizes GABA release. The clinical response of the patient to 2 years of off-label aminopyridine treatment includes improved emotional and behavioral regulation by parental report, and objective improvement in standardized cognitive measures. Aminopyridine treatment may extend to patients with pathogenic variants in VAMP2 and other genes influencing presynaptic function or GABAergic tone, and tested in vitro before treatment.


Asunto(s)
4-Aminopiridina/farmacología , Mutación/genética , Proteína 2 de Membrana Asociada a Vesículas/genética , Adulto , Electrofisiología , Exocitosis/efectos de los fármacos , Femenino , Humanos , Masculino , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...