Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Nutr Food Res ; 68(11): e2300898, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38752791

RESUMEN

SCOPE: Active ingredients in functional foods exhibit broad-spectrum antiviral activity. The objective of this study is to investigate the protective effect of quercetin derived from bee propolis, a natural product with antiviral activity and modulating effects on the gut microbiota, against vesicular stomatitis virus (VSV) infection. METHODS AND RESULTS: Through a cellular-based study, this study demonstrates that quercetin can modulate the activity of interferon-regulating factor 3 (IRF3). In vivo, it shows that quercetin protects mice from VSV infection by enhancing interferon production and inhibiting the production of proinflammatory cytokines. The study conducts 16S rRNA-based gut microbiota and nontargets metabolomics analyses to elucidate the mechanisms underlying quercetin-mediated bidirectional communication between the gut microbiome and host metabolome during viral infection. Quercetin not only ameliorates VSV-induced dysbiosis of the intestinal flora but also alters serum metabolites related to lipid metabolism. Cross-correlations between the gut bacteriome and the serum metabolome indicate that quercetin can modulate phosphatidylcholine (16:0/0:0) and 5-acetylamino-6-formylamino-3-methyluracil to prevent VSV infection. CONCLUSION: This study systematically elucidates the anti-VSV mechanism of quercetin through gut bacteriome and host metabolome assays, offering new insights into VSV treatment and revealing the mechanisms behind a novel disease management strategy using dietary flavonoid supplements.


Asunto(s)
Antivirales , Suplementos Dietéticos , Microbioma Gastrointestinal , Metaboloma , Quercetina , Animales , Quercetina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Metaboloma/efectos de los fármacos , Antivirales/farmacología , Ratones , Inmunidad Innata/efectos de los fármacos , Estomatitis Vesicular , Masculino , Ratones Endogámicos C57BL , Disbiosis , Vesiculovirus/efectos de los fármacos , Vesiculovirus/fisiología
2.
Arch Toxicol ; 98(7): 2185-2197, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38607375

RESUMEN

The emergence of coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to a pandemic, prompting rapid vaccine development. Although vaccines are effective, the occurrence of rare adverse events following vaccination highlights the necessity of determining whether the benefits outweigh the risks posed by the infection itself. The recombinant Vesicular Stomatitis Virus (rVSV) platform is a promising vector for vaccines against emerging viruses. However, limited studies have evaluated the genotoxicity and safety pharmacology of this viral vector vaccine, which is crucial to ensure the safety of vaccines developed using this platform. Hence, the present study aimed to assess the genotoxicity and safety pharmacology of the rVSVInd(GML)-mspSGtc COVID-19 vaccine using micronucleus and comet assays, as well as neurobehavioral, body temperature, respiratory, and cardiovascular assessments in Sprague-Dawley rats and beagle dogs. The intramuscular administration of rVSVInd(GML)-mspSGtc at doses up to 1.5 × 109 PFU/animal did not increase the number of bone marrow micronucleated polychromatic erythrocytes or cause liver DNA damage. Additionally, it had no significant impact on neurobehavioral functions in rats and showed marginal temporary changes in body temperature, respiratory rate, heart rate, and electrocardiogram parameters in rats and dogs, all of which resolved within 24 h. Overall, following genotoxicity and pharmacological safety assessments, rVSVInd(GML)-mspSGtc displayed no notable systemic adverse effects in rats and dogs, suggesting its potential as a vaccine candidate for human clinical trials.


Asunto(s)
Vacunas contra la COVID-19 , Pruebas de Micronúcleos , Ratas Sprague-Dawley , SARS-CoV-2 , Animales , Perros , Vacunas contra la COVID-19/toxicidad , Ratas , Masculino , SARS-CoV-2/inmunología , SARS-CoV-2/efectos de los fármacos , COVID-19/prevención & control , Femenino , Daño del ADN/efectos de los fármacos , Ensayo Cometa , Vesiculovirus/efectos de los fármacos , Vacunas Sintéticas/inmunología , Temperatura Corporal/efectos de los fármacos
3.
Arch Virol ; 166(11): 3143-3150, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34533641

RESUMEN

Chandipura virus (CHPV), belonging to the genus Vesiculovirus of the family Rhabdoviridae, has been identified as one of the causes of pediatric encephalitis in India. Currently, neither vaccines nor therapeutic drugs are available against this agent. Considering that the disease progresses very fast with a high mortality rate, working towards the development of potential therapeutics against it will have a public health impact. Although the use of viral inhibitors as antiviral agents is the most common way to curb virus replication, the mutation-prone nature of viruses results in the development of resistance to antiviral agents. The recent development of proteomic platforms for analysis of purified viral agents has allowed certain upregulated host proteins that are involved in the morphogenesis and replication of viruses to be identified. Thus, the alternative approach of inhibition of host proteins involved in the regulation of virus replication could be explored for their therapeutic effectiveness. In the current study, we have evaluated the effect of inhibition of cyclophilin A (CypA), an immunophilin with peptidyl-prolyl cis/trans-isomerase activity, on the replication of CHPV. Treatment with cyclosporin A, used in vitro for the inhibition of CypA, resulted in a 3-log reduction in CHPV titer and an undetectable level of CypA in comparison to an untreated control. An in silico analysis of the interaction of the CHPV nucleoprotein with the human CypA protein showed stable interaction in molecular docking and molecular dynamics simulations. Overall, the results of this study suggest a possible role of CypA in facilitating CHPV replication, thus making it one of the potential host factors to be explored in future antiviral studies.


Asunto(s)
Ciclofilina A/metabolismo , Interacciones Huésped-Patógeno/fisiología , Infecciones por Rhabdoviridae/virología , Vesiculovirus/patogenicidad , Ciclofilina A/antagonistas & inhibidores , Ciclofilina A/química , Ciclosporina/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/metabolismo , Vesiculovirus/efectos de los fármacos , Vesiculovirus/fisiología , Replicación Viral/efectos de los fármacos
4.
Cell ; 184(17): 4447-4463.e20, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34363755

RESUMEN

TANK binding kinase 1 (TBK1) regulates IFN-I, NF-κB, and TNF-induced RIPK1-dependent cell death (RCD). In mice, biallelic loss of TBK1 is embryonically lethal. We discovered four humans, ages 32, 26, 7, and 8 from three unrelated consanguineous families with homozygous loss-of-function mutations in TBK1. All four patients suffer from chronic and systemic autoinflammation, but not severe viral infections. We demonstrate that TBK1 loss results in hypomorphic but sufficient IFN-I induction via RIG-I/MDA5, while the system retains near intact IL-6 induction through NF-κB. Autoinflammation is driven by TNF-induced RCD as patient-derived fibroblasts experienced higher rates of necroptosis in vitro, and CC3 was elevated in peripheral blood ex vivo. Treatment with anti-TNF dampened the baseline circulating inflammatory profile and ameliorated the clinical condition in vivo. These findings highlight the plasticity of the IFN-I response and underscore a cardinal role for TBK1 in the regulation of RCD.


Asunto(s)
Inflamación/enzimología , Proteínas Serina-Treonina Quinasas/deficiencia , Factor de Necrosis Tumoral alfa/farmacología , Células A549 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Autoinmunidad/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Muerte Celular/efectos de los fármacos , Citocinas/metabolismo , Enzima Desubiquitinante CYLD/metabolismo , Femenino , Células HEK293 , Homocigoto , Humanos , Quinasa I-kappa B/metabolismo , Inmunofenotipificación , Inflamación/patología , Interferón Tipo I/metabolismo , Interferón gamma/metabolismo , Mutación con Pérdida de Función/genética , Masculino , Linaje , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Receptor Toll-Like 3/metabolismo , Transcriptoma/genética , Vesiculovirus/efectos de los fármacos , Vesiculovirus/fisiología
5.
J Biol Chem ; 296: 100701, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33895135

RESUMEN

The acid sphingomyelinase/ceramide system has been shown to be important for cellular infection with at least some viruses, for instance, rhinovirus or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Functional inhibition of the acid sphingomyelinase using tricyclic antidepressants prevented infection of epithelial cells, for instance with SARS-CoV-2. The structure of ambroxol, that is, trans-4-[(2,4-dibromanilin-6-yl)-methyamino]-cyclohexanol, a mucolytic drug applied by inhalation, suggests that the drug might inhibit the acid sphingomyelinase and thereby infection with SARS-CoV-2. To test this, we used vesicular stomatitis virus pseudoviral particles presenting SARS-CoV-2 spike protein on their surface (pp-VSV-SARS-CoV-2 spike), a bona fide system for mimicking SARS-CoV-2 entry into cells. Viral uptake and formation of ceramide localization were determined by fluorescence microscopy, activity of the acid sphingomyelinase by consumption of [14C]sphingomyelin and ceramide was quantified by a kinase method. We found that entry of pp-VSV-SARS-CoV-2 spike required activation of acid sphingomyelinase and release of ceramide, events that were all prevented by pretreatment with ambroxol. We also obtained nasal epithelial cells from human volunteers prior to and after inhalation of ambroxol. Inhalation of ambroxol reduced acid sphingomyelinase activity in nasal epithelial cells and prevented pp-VSV-SARS-CoV-2 spike-induced acid sphingomyelinase activation, ceramide release, and entry of pp-VSV-SARS-CoV-2 spike ex vivo. The addition of purified acid sphingomyelinase or C16 ceramide restored entry of pp-VSV-SARS-CoV-2 spike into ambroxol-treated epithelial cells. We propose that ambroxol might be suitable for clinical studies to prevent coronavirus disease 2019.


Asunto(s)
Ambroxol/farmacología , Antivirales/farmacología , SARS-CoV-2/efectos de los fármacos , Esfingomielina Fosfodiesterasa/genética , Vesiculovirus/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Administración por Inhalación , Animales , Transporte Biológico , Ceramidas/metabolismo , Chlorocebus aethiops , Reposicionamiento de Medicamentos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Células Epiteliales/virología , Expectorantes , Expresión Génica , Humanos , Cultivo Primario de Células , Virus Reordenados/efectos de los fármacos , Virus Reordenados/fisiología , SARS-CoV-2/fisiología , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielinas/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Vesiculovirus/fisiología
6.
mBio ; 12(2)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33849978

RESUMEN

Mammalian cells detect microbial molecules known as pathogen-associated molecular patterns (PAMPs) as indicators of potential infection. Upon PAMP detection, diverse defensive responses are induced by the host, including those that promote inflammation and cell-intrinsic antimicrobial activities. Host-encoded molecules released from dying or damaged cells, known as damage-associated molecular patterns (DAMPs), also induce defensive responses. Both DAMPs and PAMPs are recognized for their inflammatory potential, but only the latter are well established to stimulate cell-intrinsic host defense. Here, we report a class of DAMPs that engender an antiviral state in human epithelial cells. These DAMPs include oxPAPC (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine), PGPC (1-palmitoyl-2-glutaryl phosphatidylcholine), and POVPC [1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphatidylcholine], oxidized lipids that are naturally released from dead or dying cells. Exposing cells to these DAMPs prior to vesicular stomatitis virus (VSV) infection limits viral replication. Mechanistically, these DAMPs prevent viral entry, thereby limiting the percentage of cells that are productively infected and consequently restricting viral load. We found that the antiviral actions of oxidized lipids are distinct from those mediated by the PAMP Poly I:C, in that the former induces a more rapid antiviral response without the induction of the interferon response. These data support a model whereby interferon-independent defensive activities can be induced by DAMPs, which may limit viral replication before PAMP-mediated interferon responses are induced. This antiviral activity may impact viruses that disrupt interferon responses in the oxygenated environment of the lung, such as influenza virus and SARS-CoV-2.IMPORTANCE In this work, we explored how a class of oxidized lipids, spontaneously created during tissue damage and unprogrammed cell lysis, block the earliest events in RNA virus infection in the human epithelium. This gives us novel insight into the ways that we view infection models, unveiling a built-in mechanism to slow viral growth that neither engages the interferon response nor is subject to known viral antagonism. These oxidized phospholipids act prior to infection, allowing time for other, better-known innate immune mechanisms to take effect. This discovery broadens our understanding of host defenses, introducing a soluble factor that alters the cellular environment to protect from RNA virus infection.


Asunto(s)
Alarminas/farmacología , Antivirales/farmacología , Virus ARN/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Células A549 , Muerte Celular/efectos de los fármacos , Humanos , Inmunidad Innata , Interferones/genética , Interferones/metabolismo , Cinética , Moléculas de Patrón Molecular Asociado a Patógenos/farmacología , Fosfatidilcolinas/farmacología , Virus ARN/fisiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Vesiculovirus/efectos de los fármacos , Vesiculovirus/fisiología , Carga Viral
7.
Nat Commun ; 12(1): 1362, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649317

RESUMEN

Therapeutic application of RNA viruses as oncolytic agents or gene vectors requires a tight control of virus activity if toxicity is a concern. Here we present a regulator switch for RNA viruses using a conditional protease approach, in which the function of at least one viral protein essential for transcription and replication is linked to autocatalytical, exogenous human immunodeficiency virus (HIV) protease activity. Virus activity can be en- or disabled by various HIV protease inhibitors. Incorporating the HIV protease dimer in the genome of vesicular stomatitis virus (VSV) into the open reading frame of either the P- or L-protein resulted in an ON switch. Here, virus activity depends on co-application of protease inhibitor in a dose-dependent manner. Conversely, an N-terminal VSV polymerase tag with the HIV protease dimer constitutes an OFF switch, as application of protease inhibitor stops virus activity. This technology may also be applicable to other potentially therapeutic RNA viruses.


Asunto(s)
Virus ARN/genética , Virus ARN/fisiología , Replicación Viral/genética , Animales , Línea Celular Tumoral , Genoma Viral , Proteasa del VIH/química , Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/farmacología , Humanos , Ratones Endogámicos NOD , Fosfoproteínas/metabolismo , Multimerización de Proteína , Virus ARN/efectos de los fármacos , Vesiculovirus/efectos de los fármacos , Vesiculovirus/genética , Vesiculovirus/fisiología , Replicación Viral/efectos de los fármacos
8.
PLoS One ; 15(12): e0243965, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33326504

RESUMEN

The response to the COVID-19 epidemic is generating severe shortages of personal protective equipment around the world. In particular, the supply of N95 respirator masks has become severely depleted, with supplies having to be rationed and health care workers having to use masks for prolonged periods in many countries. We sought to test the ability of 7 different decontamination methods: autoclave treatment, ethylene oxide gassing (ETO), low temperature hydrogen peroxide gas plasma (LT-HPGP) treatment, vaporous hydrogen peroxide (VHP) exposure, peracetic acid dry fogging (PAF), ultraviolet C irradiation (UVCI) and moist heat (MH) treatment to decontaminate a variety of different N95 masks following experimental contamination with SARS-CoV-2 or vesicular stomatitis virus as a surrogate. In addition, we sought to determine whether masks would tolerate repeated cycles of decontamination while maintaining structural and functional integrity. All methods except for UVCI were effective in total elimination of viable virus from treated masks. We found that all respirator masks tolerated at least one cycle of all treatment modalities without structural or functional deterioration as assessed by fit testing; filtration efficiency testing results were mostly similar except that a single cycle of LT-HPGP was associated with failures in 3 of 6 masks assessed. VHP, PAF, UVCI, and MH were associated with preserved mask integrity to a minimum of 10 cycles by both fit and filtration testing. A similar result was shown with ethylene oxide gassing to the maximum 3 cycles tested. Pleated, layered non-woven fabric N95 masks retained integrity in fit testing for at least 10 cycles of autoclaving but the molded N95 masks failed after 1 cycle; filtration testing however was intact to 5 cycles for all masks. The successful application of autoclaving for layered, pleated masks may be of particular use to institutions globally due to the virtually universal accessibility of autoclaves in health care settings. Given the ability to modify widely available heating cabinets on hospital wards in well-resourced settings, the application of moist heat may allow local processing of N95 masks.


Asunto(s)
Descontaminación/métodos , Equipo Reutilizado , Respiradores N95/virología , COVID-19/patología , COVID-19/virología , Óxido de Etileno/farmacología , Humanos , Peróxido de Hidrógeno/farmacología , Ácido Peracético/farmacología , Gases em Plasma/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/efectos de la radiación , Rayos Ultravioleta , Vesiculovirus/efectos de los fármacos , Vesiculovirus/efectos de la radiación
9.
Nat Commun ; 11(1): 6182, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273464

RESUMEN

Upon sensing cytosolic DNA, the enzyme cGAS induces innate immune responses that underpin anti-microbial defenses and certain autoimmune diseases. Missense mutations of PRKDC encoding the DNA-dependent protein kinase (DNA-PK) catalytic subunit (DNA-PKcs) are associated with autoimmune diseases, yet how DNA-PK deficiency leads to increased immune responses remains poorly understood. In this study, we report that DNA-PK phosphorylates cGAS and suppresses its enzymatic activity. DNA-PK deficiency reduces cGAS phosphorylation and promotes antiviral innate immune responses, thereby potently restricting viral replication. Moreover, cells isolated from DNA-PKcs-deficient mice or patients carrying PRKDC missense mutations exhibit an inflammatory gene expression signature. This study provides a rational explanation for the autoimmunity of patients with missense mutations of PRKDC, and suggests that cGAS-mediated immune signaling is a potential target for therapeutic interventions.


Asunto(s)
Antivirales/metabolismo , Proteína Quinasa Activada por ADN/deficiencia , Inmunidad Innata , Nucleotidiltransferasas/metabolismo , Animales , Línea Celular , Cromonas/farmacología , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/metabolismo , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Morfolinas/farmacología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Multimerización de Proteína/efectos de los fármacos , ARN Guía de Kinetoplastida/metabolismo , Transducción de Señal/efectos de los fármacos , Simplexvirus/efectos de los fármacos , Simplexvirus/fisiología , Células THP-1 , Vesiculovirus/efectos de los fármacos , Vesiculovirus/fisiología , Replicación Viral/efectos de los fármacos
10.
Virol J ; 17(1): 93, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631404

RESUMEN

BACKGROUND: More than 3 years since the last Zika virus (ZIKV) outbreak in Brazil, researchers are still deciphering the molecular mechanisms of neurovirulence and vertical transmission, as well as the best way to control spread of ZIKV, a flavivirus. The use of pesticides was the main strategy of mosquito control during the last ZIKV outbreak. METHODS: We used vesicular stomatitis virus (VSV) tagged with green fluorescent protein (GFP) as our prototypical virus to study the impact of insecticide pyriproxyfen (PPF). VZV-GFP infected and uninfected Jurkat, HeLa and trophoblast cells were treated with PPF and compared to untreated cells (control). Cell viability was determined by the MTT assay. Cell morphology, presence of extracellular vesicles (EVs), virus infection/GFP expression as well as active mitochondrial levels/localization were examined by confocal microscopy. RESULTS: PPF, which was used to control mosquito populations in Brazil prior to the ZIKV outbreak, enhances VSV replication and has cell membrane-altering properties in the presence of virus. PPF causes enhanced viral replication and formation of large EVs, loaded with virus as well as mitochondria. Treatment of trophoblasts or HeLa cells with increasing concentrations of PPF does not alter cell viability, however, it proportionately increases Jurkat cell viability. Increasing concentrations of PPF followed by VSV infection does not interfere with HeLa cell viability. Both Jurkats and trophoblasts show proportionately increased cell death with increased concentrations of PPF in the presence of virus. CONCLUSIONS: We hypothesize that PPF disrupts the lipid microenvironment of mammalian cells, thereby interfering with pathways of viral replication. PPF lowers viability of trophoblasts and Jurkats in the presence of VSV, implying that the combination renders immune system impairment in infected individuals as well as enhanced vulnerability of fetuses towards viral vertical transmission. We hypothesize that similar viruses such as ZIKV may be vertically transmitted via EV-to-cell contact when exposed to PPF, thereby bypassing immune detection. The impact of pesticides on viral replication must be fully investigated before large scale use in future outbreaks of mosquito borne viruses.


Asunto(s)
Infecciones por Flavivirus/transmisión , Insecticidas/farmacología , Piridinas/farmacología , Vesiculovirus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Aedes/virología , Animales , Brasil , Supervivencia Celular/efectos de los fármacos , Virus del Dengue/efectos de los fármacos , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/virología , Proteínas Fluorescentes Verdes/genética , Células HeLa , Humanos , Células Jurkat , Trofoblastos/efectos de los fármacos , Trofoblastos/virología , Virulencia , Virus Zika/efectos de los fármacos
11.
Int J Biol Macromol ; 157: 75-82, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32344076

RESUMEN

Marine green algae are valuable sources of diverse health-promoting bioactive components. Ulvan is suitable for biological applications due to its unique structure and numerous bioactivities. Here, the complex structure of ulvan from Ulva pertusa was analyzed using specific ulvan lyase degradation, MS, and NMR detection. Its structure mainly consists of →4)-ß-d-GlcA-(1 â†’ 4)-α-l-Rha3S-(1 â†’ and →4)-ß-d-Xyl-(1 â†’ 4)-α-l-Rha3S-(1 â†’ repeating units. Small amounts of →4)-α-l-IdoA-(1 â†’ 4)-α-l-Rha3S-(1 â†’ unit also exist. In addition, a minor number of branches, a single GlcA, and a long branch containing GlcA-Glc were linked to Rha3S. The antiviral activity of the ulvan and its degraded fragments were further investigated. Ulvan (1068.2 kDa) and ulvan-F1 (38.5 kDa) with relatively high molecular weight showed potency of inhibiting the infection and replication of vesicular stomatitis virus (VSV) at 100 µg/mL, the inhibition rate of VSV replication was 40.75% and 40.13%, respectively. These results indicated that ulvan has potential as a functional agent.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Polisacárido Liasas/metabolismo , Polisacáridos/química , Polisacáridos/farmacología , Ulva/enzimología , Vesiculovirus/efectos de los fármacos , Antivirales/metabolismo , Secuencia de Carbohidratos , Peso Molecular , Polisacáridos/metabolismo , Vesiculovirus/fisiología , Replicación Viral/efectos de los fármacos
13.
Antiviral Res ; 178: 104750, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32205137

RESUMEN

Picornaviridae are positive-sense single stranded RNA viruses with a similar genomic structure lacking a cap at the 5' end, but with a highly structured 5'-untranslated region (UTR) containing an internal ribosome entry site (IRES). IRES allows ribosomes to be recruited by the viral RNA and initiate translation in a cap-independent manner. Coxsackie virus type B (CV-B) belong to Picornaviridae and are widespread in human population. They usually cause subclinical infections but, occasionally, also severe diseases with various clinical manifestations. CV-B have no specific therapy. DEAD-box polypeptide 3 (DDX3) is a member of the Asp-Glu-Ala-Asp (DEAD)-box family with an ATP-dependent RNA unwinding helicase activity. Recently, several positive-sense single strand RNA viruses have been shown to need DDX3 for their translation. Here, we show that several DDX3 inhibitors reduced CV-B replication and production of viral protein, particularly when added within 12 h of infection. Based on in vitro and in silico data, we hypothesized that DDX3 inhibitors hamper interaction between DDX3 and viral IRES in a stereodynamic fashion. Accordingly, the DDX3 inhibitors tested have no activity against the Vesicular Stomatitis virus and Measles virus, which are negative-sense single stranded RNA viruses and use cap-dependent translation. This study suggests that DDX3 is required by RNA viruses lacking a cap and show that this enzyme is a valuable target to design antiviral molecules against CV-B. Thus, DDX3 is dispensable for cap-dependent translation, but required for translation of transcripts containing secondary structure in their UTRs.


Asunto(s)
Antivirales/farmacología , ARN Helicasas DEAD-box/antagonistas & inhibidores , Enterovirus Humano B/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Antivirales/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ARN Helicasas DEAD-box/metabolismo , Enterovirus Humano B/clasificación , Enterovirus Humano B/fisiología , Inhibidores Enzimáticos/química , Humanos , Concentración 50 Inhibidora , Sitios Internos de Entrada al Ribosoma , Células KB , Virus del Sarampión/efectos de los fármacos , Virus del Sarampión/fisiología , Virus ARN de Sentido Negativo/efectos de los fármacos , Virus ARN de Sentido Negativo/fisiología , Conformación de Ácido Nucleico , Virus ARN Monocatenarios Positivos/efectos de los fármacos , Virus ARN Monocatenarios Positivos/fisiología , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Ribavirina/farmacología , Serogrupo , Vesiculovirus/efectos de los fármacos , Vesiculovirus/fisiología , Ensayo de Placa Viral , Proteínas Virales/biosíntesis , Replicación Viral/efectos de los fármacos
14.
Biotechnol Appl Biochem ; 67(3): 396-403, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31912548

RESUMEN

The host protective immunity against viral infection requires the effective detection of viral antigens and the subsequent production of type I interferons (IFNs) by host immune cells. Retinoic acid-inducible gene I (RIG-I) is the crucial signaling element responsible for sensing viral RNA component and initiating the downstream antiviral signaling pathways, leading to the production of type I IFNs. In this work, we identified microRNA-218 (miR-218) as a new virus-induced miRNA that dampens the expression of RIG-I in mouse and human macrophages, leading to the impaired production of type I IFNs. Interfering miR-218 expression rescued RIG-I-mediated antiviral signaling and thus protected macrophages from viral infection. Hence, our results provide new understanding of miRNA-mediated viral immune evasion and may be potentially useful for the treatment of viral infection in the future.


Asunto(s)
Antivirales/farmacología , Proteína 58 DEAD Box/antagonistas & inhibidores , Interferón Tipo I/antagonistas & inhibidores , Macrófagos/efectos de los fármacos , MicroARNs/inmunología , Vesiculovirus/efectos de los fármacos , Animales , Antivirales/inmunología , Células Cultivadas , Proteína 58 DEAD Box/inmunología , Evasión Inmune/efectos de los fármacos , Evasión Inmune/inmunología , Interferón Tipo I/biosíntesis , Macrófagos/inmunología , Macrófagos/virología , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Pruebas de Sensibilidad Microbiana
15.
Immunology ; 159(3): 309-321, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31691271

RESUMEN

Type-I interferons (IFN-I) are used as common antiviral drugs for a range of viral diseases in clinic. However, the antiviral efficacy of IFN-I is largely restricted by negative regulators of IFN-I signaling in cells. Therefore, identification of intracellular inhibitors of IFN-I signaling is important for developing novel targets to improve IFN-I antiviral therapy. In this study, we report that the deubiquitinase ubiquitin-specific protease 7 (USP7) negatively regulates IFN-I-mediated antiviral activity. USP7 physically interacts with suppressor of cytokine signaling 1 (SOCS1) and enhances SOCS1 protein stability by deubiquitination effects, which in turn restricts IFN-I-induced activation of Janus kinase-signal transducer and activator of transcription 1 signaling. Interestingly, viral infection up-regulates USP7 and therefore facilitates viral immune evasion. Importantly, the USP7 small-molecule inhibitors P5091 and P22077 inhibit SOCS1 expression and enhance IFN-I antiviral efficacy. Our findings identify a novel regulator of IFN-I antiviral activity and reveal that USP7 inhibitors could be potential enhancement agents for improving IFN-I antiviral therapy.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Interferón-alfa/farmacología , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Tiofenos/farmacología , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Vesiculovirus/efectos de los fármacos , Células A549 , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Quinasas Janus/metabolismo , Unión Proteica , Estabilidad Proteica , Proteolisis , Transducción de Señal , Proteína 1 Supresora de la Señalización de Citocinas/genética , Factores de Tiempo , Peptidasa Específica de Ubiquitina 7/metabolismo , Ubiquitinación , Vesiculovirus/inmunología , Vesiculovirus/patogenicidad
16.
Autophagy ; 16(3): 548-561, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31204557

RESUMEN

Glucosamine (GlcN), a dietary supplement widely utilized to promote joint health and effective in the treatment of osteoarthritis, is an effective macroautophagy/autophagy activator in vitro and in vivo. Previous studies have shown that autophagy is required for hepatitis B virus (HBV) replication and envelopment. The objective of this study was to determine whether and how GlcN affects HBV replication, using in vitro and in vivo experiments. Our data demonstrated that HBsAg production and HBV replication were significantly increased by GlcN treatment. Confocal microscopy and western blot analysis showed that the amount of autophagosomes and the levels of autophagic markers MAP1LC3/LC3-II and SQSTM1 were clearly elevated by GlcN treatment. GlcN strongly blocked autophagic degradation of HBV virions and proteins by inhibiting lysosomal acidification through its amino group. Moreover, GlcN further promoted HBV replication by inducing autophagosome formation via feedback inhibition of mechanistic target of rapamycin kinase complex 1 (MTORC1) signaling in an RRAGA (Ras related GTP binding A) GTPase-dependent manner. In vivo, GlcN application promoted HBV replication and blocked autophagic degradation in an HBV hydrodynamic injection mouse model. In addition, GlcN promoted influenza A virus, enterovirus 71, and vesicular stomatitis virus replication in vitro. In conclusion, GlcN efficiently promotes virus replication by inducing autophagic stress through its dual effects in suppressing autophagic degradation and inhibiting MTORC1 signaling. Thus, there is a potential risk of enhanced viral replication by oral GlcN intake in chronically virally infected patients.Abbreviations: ACTB: actin beta; ATG: autophagy-related; CMIA: chemiluminescence immunoassay; ConA: concanavalin A; CQ: chloroquine; CTSD: cathepsin D; DAPI: 4',6-diamidino-2-phenylindole; EV71: enterovirus 71; GalN: galactosamine; GFP: green fluorescence protein; GlcN: glucosamine; GNPNAT1: glucosamine-phosphate N-acetyltransferase 1; HBP: hexosamine biosynthesis pathway; HBV: hepatitis B virus; HBcAg: hepatitis B core antigen; HBsAg: hepatitis B surface antigen; HBeAg: hepatitis B e antigen; HBV RI: hepatitis B replicative intermediate; IAV: influenza A virus; LAMP1: lysosomal associated membrane protein 1; LAMTOR: late endosomal/lysosomal adaptor, MAPK and MTOR activator; ManN: mannosamine; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; PHH: primary human hepatocyte; RAB7: RAB7A, member RAS oncogene family; RPS6KB1: ribosomal protein S6 kinase B1; RRAGA: Ras related GTP binding A; RT-PCR: reverse transcriptase polymerase chain reaction; SEM: standard error of the mean; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; UAP1: UDP-N-acetylglucosamine pyrophosphorylase 1; VSV: vesicular stomatitis virus.


Asunto(s)
Autofagia/efectos de los fármacos , Glucosamina/farmacología , Virus de la Hepatitis B/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal , Replicación Viral/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Enterovirus/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B/efectos de los fármacos , Humanos , Hidrodinámica , Virus de la Influenza A/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Hígado/virología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Vesiculovirus/efectos de los fármacos
17.
Toxicol In Vitro ; 62: 104698, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31669364

RESUMEN

Both PM2.5 and respiratory viruses are part of the atmospheric constituents. Respiratory viruses are often associated with PM2.5 exposure, but the mechanism of toxicity remains to be explored. The vitro models that adequately reproduce healthy cells or diseased cells exposing to PM2.5 and infecting VSV can provide a useful tool for studying innate immune mechanisms and investigating new therapeutic focus. In the environment of PM2.5, an infection model in which VSV infected A549 cells was established, that mimics the state in which the antiviral innate immune pathways are activated after the respiratory system is infected with RNA viruses. Subsequently, the model was exposed to PM2.5 for 24 h. PM2.5 could be ingested by A549 cells and synergize with VSV to inhibit cell viability and promote apoptosis. The expression of VSV-G were more abundant after VSV-infected A549 cells were exposed to PM2.5. Furthermore, PM2.5 inhibits VSV-induced IFN-ß expression in A549 cells. ISG15, CCL-5, and CXCL-10 had the same expression tendency with IFN-ß mRNA, consistently. Interestingly, when MG132 was applied, the expression of p-IRF-3 and IFN-ß proteins reduced by PM2.5 were refreshed. Conversely, the expression of VSV-G proteins were decreased. PM2.5 could degrade p-IRF-3 proteins by ubiquitination pathway to inhibit VSV-induced IFN-ß expression in A549 cells. Therefore, replication of the VSV viruses was promoted.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Factor 3 Regulador del Interferón/metabolismo , Material Particulado/toxicidad , Ubiquitinación/efectos de los fármacos , Vesiculovirus/efectos de los fármacos , Células A549 , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Factor 3 Regulador del Interferón/efectos de los fármacos , Interferón beta/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estomatitis Vesicular/prevención & control , Estomatitis Vesicular/virología
18.
J Virol ; 93(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31578292

RESUMEN

Interferons (IFNs) induce the expression of interferon-stimulated genes (ISGs), many of which are responsible for the cellular antiviral state in which the replication of numerous viruses is blocked. How the majority of individual ISGs inhibit the replication of particular viruses is unknown. We conducted a loss-of-function screen to identify genes required for the activity of alpha interferon (IFN-α) against vesicular stomatitis virus, Indiana serotype (VSVIND), a prototype negative-strand RNA virus. Our screen revealed that TRIM69, a member of the tripartite motif (TRIM) family of proteins, is a VSVIND inhibitor. TRIM69 potently inhibited VSVIND replication through a previously undescribed transcriptional inhibition mechanism. Specifically, TRIM69 physically associates with the VSVIND phosphoprotein (P), requiring a specific peptide target sequence encoded therein. P is a cofactor for the viral polymerase and is required for viral RNA synthesis, as well as the assembly of replication compartments. By targeting P, TRIM69 inhibits pioneer transcription of the incoming virion-associated minus-strand RNA, thereby preventing the synthesis of viral mRNAs, and consequently impedes all downstream events in the VSVIND replication cycle. Unlike some TRIM proteins, TRIM69 does not inhibit viral replication by inducing degradation of target viral proteins. Rather, higher-order TRIM69 multimerization is required for its antiviral activity, suggesting that TRIM69 functions by sequestration or anatomical disruption of the viral machinery required for VSVIND RNA synthesis.IMPORTANCE Interferons are important antiviral cytokines that work by inducing hundreds of host genes whose products inhibit the replication of many viruses. While the antiviral activity of interferon has long been known, the identities and mechanisms of action of most interferon-induced antiviral proteins remain to be discovered. We identified gene products that are important for the antiviral activity of interferon against vesicular stomatitis virus (VSV), a model virus that whose genome consists of a single RNA molecule with negative-sense polarity. We found that a particular antiviral protein, TRIM69, functions by a previously undescribed molecular mechanism. Specifically, TRIM69 interacts with and inhibits the function of a particular phosphoprotein (P) component of the viral transcription machinery, preventing the synthesis of viral messenger RNAs.


Asunto(s)
Interferón-alfa/farmacología , Proteínas de Motivos Tripartitos/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Virus de la Estomatitis Vesicular Indiana/efectos de los fármacos , Vesiculovirus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Antivirales/farmacología , Línea Celular , Citocinas/farmacología , Humanos , Modelos Moleculares , Fosfoproteínas/genética , Conformación Proteica , Dominios Proteicos , ARN Mensajero/metabolismo , ARN Viral/biosíntesis , Proteínas de Motivos Tripartitos/química , Ubiquitina-Proteína Ligasas/química , Estomatitis Vesicular/virología , Virus de la Estomatitis Vesicular Indiana/genética , Vesiculovirus/genética , Proteínas Virales
19.
PLoS Pathog ; 15(10): e1008093, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31600344

RESUMEN

ISG20 is a broad spectrum antiviral protein thought to directly degrade viral RNA. However, this mechanism of inhibition remains controversial. Using the Vesicular Stomatitis Virus (VSV) as a model RNA virus, we show here that ISG20 interferes with viral replication by decreasing protein synthesis in the absence of RNA degradation. Importantly, we demonstrate that ISG20 exerts a translational control over a large panel of non-self RNA substrates including those originating from transfected DNA, while sparing endogenous transcripts. This activity correlates with the protein's ability to localize in cytoplasmic processing bodies. Finally, these functions are conserved in the ISG20 murine ortholog, whose genetic ablation results in mice with increased susceptibility to viral infection. Overall, our results posit ISG20 as an important defense factor able to discriminate the self/non-self origins of the RNA through translation modulation.


Asunto(s)
Antivirales/farmacología , Exorribonucleasas/farmacología , Biosíntesis de Proteínas , ARN Viral/metabolismo , Estomatitis Vesicular/inmunología , Vesiculovirus/inmunología , Replicación Viral/efectos de los fármacos , Animales , Exorribonucleasas/fisiología , Células HeLa , Humanos , Ratones , Ratones Noqueados , Estabilidad del ARN , ARN Viral/genética , Estomatitis Vesicular/tratamiento farmacológico , Estomatitis Vesicular/virología , Vesiculovirus/efectos de los fármacos
20.
Viruses ; 11(9)2019 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-31540123

RESUMEN

Vesicular stomatitis virus (VSV) represents a promising platform for developing oncolytic viruses, as well as vaccines against significant human pathogens. To safely control VSV infection in humans, small-molecule drugs that selectively inhibit VSV infection may be needed. Here, using a cell-based high-throughput screening assay followed by an in vitro transcription assay, compounds with a 7-hydroxy-6-methyl-3,4-dihydroquinolin-2(1H)-one structure and an aromatic group at position 4 (named vesiculopolins, VPIs) were identified as VSV RNA polymerase inhibitors. The most effective compound, VPI A, inhibited VSV-induced cytopathic effects and in vitro mRNA synthesis with micromolar to submicromolar 50% inhibitory concentrations. VPI A was found to inhibit terminal de novo initiation rather than elongation for leader RNA synthesis, but not mRNA capping, with the VSV L protein, suggesting that VPI A is targeted to the polymerase domain in the L protein. VPI A inhibited transcription of Chandipura virus, but not of human parainfluenza virus 3, suggesting that it specifically acts on vesiculoviral L proteins. These results suggest that VPIs may serve not only as molecular probes to elucidate the mechanisms of transcription of vesiculoviruses, but also as lead compounds to develop antiviral drugs against vesiculoviruses and other related rhabdoviruses.


Asunto(s)
Antivirales/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Transcripción Genética/efectos de los fármacos , Vesiculovirus/efectos de los fármacos , Vesiculovirus/genética , Animales , Línea Celular , Cricetinae , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , ARN Viral , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Virus de la Estomatitis Vesicular Indiana/efectos de los fármacos , Virus de la Estomatitis Vesicular Indiana/genética , Proteínas Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...