Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
PeerJ ; 12: e17465, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854802

RESUMEN

Salt stress is one of the significant abiotic stress factors that exert harmful effects on plant growth and yield. In this study, five cultivars of mung bean (Vigna radiata L.) were treated with different concentrations of NaCl and also inoculated with a salt-tolerant bacterial strain to assess their growth and yield. The bacterial strain was isolated from the saline soil of Sahiwal District, Punjab, Pakistan and identified as Bacillus pseudomycoides. Plant growth was monitored at 15-days interval and finally harvested after 120 days at seed set. Both sodium and potassium uptake in above and below-ground parts were assessed using a flame photometer. Fresh and dry mass, number of pods, seeds per plant, weight of seeds per plant and weight of 100 seeds reduced significantly as the concentration of NaCl increased from 3 to 15 dSm-1. There was a significant reduction in the growth and yield of plants exposed to NaCl stress without bacterial inoculum compared to the plants with bacterial inoculum. The latter plants showed a significant increase in the studied parameters. It was found that the cultivar Inqelab mung showed the least reduction in growth and yield traits among the studied cultivars, while Ramzan mung showed the maximum reduction. Among all the cultivars, maximum Na+ uptake occurred in roots, while the least uptake was observed in seeds. The study concludes that NaCl stress significantly reduces the growth and yield of mung bean cultivars, but Bacillus pseudomycoides inoculum alleviates salt stress. These findings will be helpful to cultivate the selected cultivars in soils with varying concentrations of NaCl.


Asunto(s)
Bacillus , Cloruro de Sodio , Vigna , Bacillus/efectos de los fármacos , Vigna/microbiología , Vigna/efectos de los fármacos , Vigna/crecimiento & desarrollo , Cloruro de Sodio/farmacología , Estrés Salino , Potasio/metabolismo , Pakistán , Microbiología del Suelo , Sodio/metabolismo , Semillas/microbiología , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/efectos de los fármacos , Tolerancia a la Sal
2.
Sci Rep ; 14(1): 13721, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877078

RESUMEN

The beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae), has become a significant pest of chickpea in recent years. The polyphagous nature allows it to survive on various hosts during the off-season, creating a great menace to the crop in the following season. To assess the incidence and document the alternate hosts of S. exigua, a rapid roving survey was conducted in 11 chickpea-growing areas of Prakasam district, Andhra Pradesh, India. Additionally, the life history traits of S. exigua were studied on major alternate host plants under laboratory conditions (27 ± 1 °C and 70 ± 2% RH) to understand the survival, life expectancy and potential contribution to future populations. The results show that, among the different crops surveyed, the maximum larval incidence was noticed in maize (1.93 larvae/plant), cowpea (1.73 larvae/plant), and sunflower (1.68 larvae/plant) during the off-season. Life history studies of S. exigua showed that highest larval survival percentage was observed on chickpea (83.6%), while the lowest was on maize (44.5%). The mean developmental time for larvae was longest on maize (27.1 days) and shortest on chickpea (14.9 days). Larvae did not develop beyond the third instar when fed with chilli. The growth index statistics showed chickpea (9.2) was the most suitable host plant, whereas maize (0.9) was the least suitable host. The age-stage-specific survival rate (Sxj) varied across developmental stages, and the survival curves overlapped, indicating different growth rates among individuals. The life expectancy (exj) at age zero was highest on groundnut (37.06 days). The intrinsic rate of increase (r) of S. exigua was lowest on maize (0.10 ± 0.0013) and highest on chickpea (0.22 ± 0.0010). Similarly, the net reproductive rate (R0) was highest on chickpea (846.39 ± 18.22) and lowest on maize (59.50 ± 2.06). The population doubled every 3.08 ± 0.011 days on chickpea compared to 7.22 ± 0.80 days on maize. The study conclusively indicates that chickpea and sunflower, primarily cultivated during the rabi season in India, are the most preferred hosts for S. exigua. In contrast, maize and cotton, mainly grown during the kharif season, are less preferred and merely support the pest's survival. Consequently, S. exigua switches hosts between different crops growing seasons, so effective management of S. exigua during the kharif season can help prevent pest outbreaks during the rabi season.


Asunto(s)
Cicer , Larva , Estaciones del Año , Spodoptera , Animales , Spodoptera/crecimiento & desarrollo , Spodoptera/fisiología , Larva/crecimiento & desarrollo , Cicer/parasitología , Productos Agrícolas/parasitología , India , Zea mays/parasitología , Vigna/parasitología , Vigna/crecimiento & desarrollo
3.
J Hazard Mater ; 474: 134671, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38833953

RESUMEN

Cadmium (Cd), one of the most phytotoxic heavy metals, is a major contributor to yield losses in several crops. Silicon (Si) is recognized for its vital role in mitigating Cd toxicity, however, the specific mechanisms governing this mitigation process are still not fully understood. In the present study, the effect of Si supplementation on mungbean (Vigna radiata (L.) Wilczek) plants grown under Cd stress was investigated to unveil the intricate pathways defining Si derived stress tolerance. Non-invasive leaf imaging technique revealed improved growth, biomass, and photosynthetic efficiency in Si supplemented mungbean plants under Cd stress. Further, physiological and biochemical analysis revealed Si mediated increase in activity of glutathione reductase (GR), ascorbate peroxidase (APX), and catalase (CAT) enzymes involved in reactive oxygen species (ROS) metabolism leading to mitigation of cellular damage and oxidative stress. Untargeted metabolomic analysis using liquid chromatography coupled with mass spectrometry (LC-MS/MS) provided insights into Si mediated changes in metabolites and their respective pathways under Cd stress. Alteration in five different metabolic pathways with major changes in flavanols and flavonoids biosynthesis pathway which is essential for controlling plants antioxidant defense system and oxidative stress management were observed. The information reported here about the effects of Si on photosynthetic efficiency, antioxidant responses, and metabolic changes will be helpful in understanding the Si-mediated resistance to Cd stress in plants.


Asunto(s)
Antioxidantes , Cadmio , Metabolómica , Estrés Oxidativo , Silicio , Vigna , Cadmio/toxicidad , Silicio/farmacología , Silicio/metabolismo , Silicio/toxicidad , Vigna/efectos de los fármacos , Vigna/metabolismo , Vigna/crecimiento & desarrollo , Vigna/genética , Antioxidantes/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Catalasa/metabolismo , Ascorbato Peroxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Reductasa/genética
4.
PLoS One ; 19(6): e0304674, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38941312

RESUMEN

Drought stress following climate change is likely a scenario that will have to face crop growers in tropical regions. In mitigating this constraint, the best option should be the selection and use of resilient varieties that can withstand drought threats. Therefore, a pot experiment was conducted under greenhouse conditions at the Research and Teaching Farm of the Faculty of Agronomy and Agricultural Sciences of the University of Dschang. The objectives are to identify sensitive growth stage, to identify drought-tolerant genotypes with the help of yield-based selection indices and to identify suitable selection indices that are associated with yield under non-stress and stress circumstances. Eighty-eight cowpea genotypes from the sahelian and western regions of Cameroon were subjected to drought stress at vegetative (VDS) and flowering (FDS) stages by withholding water for 28 days, using a split plot design with two factors and three replications. Seed yields under stress (Ys) and non-stress (Yp) conditions were recorded. Fifteen drought indices were calculated for the two drought stress levels against the yield from non-stress plants. Drought Intensity Index (DII) under VDS and FDS were 0.71 and 0.84 respectively, indicating severe drought stress for both stages. However, flowering stage was significantly more sensitive to drought stress compared to vegetative stage. Based on PCA and correlation analysis, Stress Tolerance Index (STI), Relative Efficiency Index (REI), Geometric Mean Productivity (GMP), Mean Productivity (MP), Yield Index (YI) and Harmonic Mean (HM) correlated strongly with yield under stress and non-stress conditions and are therefore suitable to discriminate high-yielding and tolerant genotypes under both stress and non-stress conditions. Either under VDS and FDS, CP-016 exhibited an outstanding performance under drought stress and was revealed as the most drought tolerant genotype as shown by ranking, PCA and cluster analysis. Taking into account all indices, the top five genotypes namely CP-016, CP-021, MTA-22, CP-056 and CP-060 were identified as the most drought-tolerant genotypes under VDS. For stress activated at flowering stage (FDS), CP-016, CP-056, CP-021, CP-028 and MTA-22 were the top five most drought-tolerant genotypes. Several genotypes with insignificant Ys and irrelevant rank among which CP-037, NDT-001, CP-036, CP-034, NDT-002, CP-031, NDT-011 were identified as highly drought sensitive with low yield stability. This study identified the most sensitive stage and drought tolerant genotypes that are proposed for genetic improvement of cowpea.


Asunto(s)
Adaptación Fisiológica , Sequías , Genotipo , Estrés Fisiológico , Vigna , Camerún , Vigna/genética , Vigna/crecimiento & desarrollo , Vigna/fisiología , Adaptación Fisiológica/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/fisiología , Semillas/crecimiento & desarrollo , Semillas/genética
5.
Int J Biol Macromol ; 273(Pt 1): 133058, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866278

RESUMEN

Sustainable agriculture initiatives are needed to ensure the food security of the people all over the world. Soilless cultivation methods using hydrogels may give a revolutionary response as well as a more ecological and productive alternative to conventional farming. This study attempted extraction of pectin from the rind of albedo yellow passion fruit (Passiflora edulis var. flavicarpa Degener)and hydrogels from pectin and activated carbon was compared with pure pectin hydrogel; Pectin- Activated Carbon hydrogels (PAC) showed a microporous structure with excellent hydrophilicity and showed superior water holding capacity. Then the prepared hydrogels were examined with various instrumental techniques like FTIR, SEM, XRD, Raman, BET and rheological properties. In the BET analysis, PAC3 shows the highest surface area of 28.771 m2/g when compared to PAC0 at 15.063 m2/g. The germination experiments were performed using mung beans. This study provides an opportunity for the application of pectin hydrogels in agriculture field specifically for home garden or rooftop cultivation.


Asunto(s)
Hidrogeles , Pectinas , Vigna , Pectinas/química , Hidrogeles/química , Vigna/crecimiento & desarrollo , Germinación/efectos de los fármacos , Agua/química , Passiflora/química , Passiflora/crecimiento & desarrollo
6.
Theor Appl Genet ; 137(7): 146, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834825

RESUMEN

KEY MESSAGE: The major QTL Sdp1.1+ controlling seed dormancy in cowpea was finely mapped, and two CCoAOMT1 genes were identified as candidate genes for the dormancy. Seed dormancy in wild cowpea may be useful in breeding cultivated cowpea with pre-harvest sprouting resistance. A previous study identified a major quantitative trait locus (QTL) for seed dormancy, Sdp1.1+ , using the population of the cross between cultivated cowpea 'JP81610' and wild cowpea 'JP89083.' However, the molecular basis of seed dormancy in cowpea is not yet known. In this study, we aimed to finely map the locus Sdp1.1+ and identify candidate gene(s) for it. Germination tests demonstrated that the seed coat is the major factor controlling seed dormancy in the wild cowpea JP89083. Microscopic observations revealed that wild cowpea seeds, unlike cultivated cowpea seeds, possessed a palisade cuticle layer. Fine mapping using a large F2 population of the cross JP81610 × JP89083 grown in Thailand revealed a single QTL, Sdp1.1+ , controlling seed dormancy. The Sdp1.1+ was confirmed using a small F2 population of the same cross grown in Japan. The Sdp1.1+ was mapped to a 37.34-Kb region containing three genes. Two closely linked genes, Vigun03g278900 (VuCCoAOMT1a) and Vigun03g290000 (VuCCoAOMT1b), located 4.844 Kb apart were considered as candidate genes for seed dormancy. The two genes encoded caffeoyl coenzyme A O-methyltransferase 1 (CCoAOMT1). DNA sequencing and alignment of VuCCoAOMT1a and VuCCoAOMT1b between JP89083 and JP81610 revealed a single nucleotide polymorphism (SNP) causing an amino acid change in VuCCoAOMT1a and several SNPs leading to six amino acid changes in VuCCoAOMT1b. Altogether, these results indicate that VuCCoAOMT1a and VuCCoAOMT1b are candidate genes controlling physical seed dormancy in the wild cowpea JP89083.


Asunto(s)
Mapeo Cromosómico , Germinación , Metiltransferasas , Latencia en las Plantas , Sitios de Carácter Cuantitativo , Semillas , Vigna , Latencia en las Plantas/genética , Vigna/genética , Vigna/crecimiento & desarrollo , Vigna/fisiología , Semillas/genética , Semillas/crecimiento & desarrollo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Germinación/genética , Genes de Plantas , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
PeerJ ; 12: e17191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699184

RESUMEN

Context: Exogenous use of potential organic compounds through different modes is a promising strategy for the induction of water stress tolerance in crop plants for better yield. Aims: The present study aimed to explore the potential role of alpha-lipoic acid (ALA) in inducing water stress tolerance in mungbean lines when applied exogenously through various modes. Methods: The experiment was conducted in a field with a split-plot arrangement, having three replicates for each treatment. Two irrigation regimes, including normal and reduced irrigation, were applied. The plants allocated to reduced irrigation were watered only at the reproductive stage. Three levels of ALA (0, 0.1, 0.15 mM) were applied through different modes (seed priming, foliar or priming+foliar). Key results: ALA treatment through different modes manifested higher growth under reduced irrigation (water stress) and normal irrigation. Compared to the other two modes, the application of ALA as seed priming was found more effective in ameliorating the adverse impacts of water stress on growth and yield associated with their better content of leaf photosynthetic pigments, maintenance of plant water relations, levels of non-enzymatic antioxidants, improved activities of enzymatic antioxidants, and decreased lipid peroxidation and H2O2 levels. The maximum increase in shoot fresh weight (29% and 28%), shoot dry weight (27% and 24%), 100-grain weight (24% and 23%) and total grain yield (20% and 21%) in water-stressed mungbean plants of line 16003 and 16004, respectively, was recorded due to ALA seed priming than other modes of applications. Conclusions: Conclusively, 0.1 and 0.15 mM levels of ALA as seed priming were found to reduce the adverse impact of water stress on mungbean yield that was associated with improved physio-biochemical mechanisms. Implications: The findings of the study will be helpful for the agriculturalists working in arid and semi-arid regions to obtain a better yield of mungbean that will be helpful to fulfill the food demand in those areas to some extent.


Asunto(s)
Antioxidantes , Sequías , Fotosíntesis , Ácido Tióctico , Vigna , Vigna/crecimiento & desarrollo , Vigna/efectos de los fármacos , Vigna/metabolismo , Ácido Tióctico/farmacología , Antioxidantes/metabolismo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Deshidratación , Clorofila/metabolismo , Peroxidación de Lípido/efectos de los fármacos
8.
Sci Rep ; 14(1): 10654, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724579

RESUMEN

Molecular mechanisms which underpin compound leaf development in some legumes have been reported, but there is no previous study on the molecular genetic control of compound leaf formation in Vigna unguiculata (cowpea), an important dryland legume of African origin. In most studied species with compound leaves, class 1 KNOTTED-LIKE HOMEOBOX genes expressed in developing leaf primordia sustain morphogenetic activity, allowing leaf dissection and the development of leaflets. Other genes, such as, SINGLE LEAFLET1 in Medicago truncatula and Trifoliate in Solanum lycopersicum, are also implicated in regulating compound leaf patterning. To set the pace for an in-depth understanding of the genetics of compound leaf development in cowpea, we applied RNA-seq and whole genome shotgun sequence datasets of a spontaneous cowpea unifoliate mutant and its trifoliate wild-type cultivar to conduct comparative reference-based gene expression, de novo genome-wide isoform switch, and genome variant analyses between the two genotypes. Our results suggest that genomic variants upstream of LATE ELONGATED HYPOCOTYL and down-stream of REVEILLE4, BRASSINOSTERIOD INSENSITIVE1 and LATERAL ORGAN BOUNDARIES result in down-regulation of key components of cowpea circadian rhythm central oscillator and brassinosteroid signaling, resulting in unifoliate leaves and brassinosteroid-deficient-like phenotypes. We have stated hypotheses that will guide follow-up studies expected to provide more insights.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Mutación , Hojas de la Planta , Vigna , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Vigna/genética , Vigna/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genómica/métodos , Genoma de Planta
9.
BMC Plant Biol ; 24(1): 460, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38797833

RESUMEN

Trehalose serves as a crucial osmolyte and plays a significant role in stress tolerance. The influence of exogenously added trehalose (1 and 5 mM) in alleviating the chromium (Cr; 0.5 mM) stress-induced decline in growth, photosynthesis, mineral uptake, antioxidant system and nitrate reductase activity in Vigna radiata was studied. Chromium (Cr) significantly declined shoot height (39.33%), shoot fresh weight (35.54%), shoot dry weight (36.79%), total chlorophylls (50.70%), carotenoids (29.96%), photosynthesis (33.97%), net intercellular CO2 (26.86%), transpiration rate (36.77%), the content of N (35.04%), P (35.77%), K (31.33%), S (23.91%), Mg (32.74%), and Ca (29.67%). However, the application of trehalose considerably alleviated the decline. Application of trehalose at both concentrations significantly reduced hydrogen peroxide accumulation, lipid peroxidation and electrolyte leakage, which were increased due to Cr stress. Application of trehalose significantly mitigated the Cr-induced oxidative damage by up-regulating the activity of reactive oxygen species (ROS) scavenging enzymes, including superoxide dismutase (182.03%), catalase (125.40%), ascorbate peroxidase (72.86%), and glutathione reductase (68.39%). Besides this, applied trehalose proved effective in enhancing ascorbate (24.29%) and reducing glutathione content (34.40%). In addition, also alleviated the decline in ascorbate by Cr stress to significant levels. The activity of nitrate reductase enhanced significantly (28.52%) due to trehalose activity and declined due to Cr stress (34.15%). Exogenous application of trehalose significantly improved the content of osmolytes, including proline, glycine betaine, sugars and total phenols under normal and Cr stress conditions. Furthermore, Trehalose significantly increased the content of key mineral elements and alleviated the decline induced by Cr to considerable levels.


Asunto(s)
Cromo , Estrés Oxidativo , Fotosíntesis , Especies Reactivas de Oxígeno , Trehalosa , Vigna , Trehalosa/metabolismo , Trehalosa/farmacología , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Vigna/efectos de los fármacos , Vigna/crecimiento & desarrollo , Vigna/metabolismo , Minerales/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Clorofila/metabolismo , Antioxidantes/metabolismo
10.
J Hazard Mater ; 472: 134534, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38733786

RESUMEN

Cowpea plants, renowned for their high edibility, pose a significant risk of pesticide residue contamination. Elucidating the behavior of pesticide residues and their key metabolic pathways is critical for ensuring cowpea safety and human health. This study investigated the migration of pesticide residues and their key metabolic pathways in pods throughout the growth process of cowpea plants via in situ mass spectrometry. To this end, four pesticides--including systemic (thiram), and nonsystemic (fluopyram, pyriproxyfen, and cyromazine) pesticides--were selected. The results indicate the direct upward and downward transmission of pesticides in cowpea stems and pods. Systemic pesticides gradually migrate to the core of cowpea plants, whereas nonsystemic pesticides remain on the surface of cowpea peels. The migration rate is influenced by the cowpea maturity, logarithmic octanol-water partition coefficient (log Kow) value, and molecular weight of the pesticide. Further, 20 types of key metabolites related to glycolysis, tricarboxylic acid cycle, and flavonoid synthesis were found in cowpea pods after pesticide treatment. These findings afford insights into improving cowpea quality and ensuring the safe use of pesticides.


Asunto(s)
Espectrometría de Masas , Residuos de Plaguicidas , Vigna , Vigna/crecimiento & desarrollo , Vigna/metabolismo , Vigna/efectos de los fármacos , Residuos de Plaguicidas/metabolismo , Residuos de Plaguicidas/análisis , Redes y Vías Metabólicas
11.
BMC Plant Biol ; 24(1): 379, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720284

RESUMEN

BACKGROUND: Rice bean (Vigna umbellata), an underrated legume, adapts to diverse climatic conditions with the potential to support food and nutritional security worldwide. It is used as a vegetable, minor food crop and a fodder crop, being a rich source of proteins, minerals, and essential fatty acids. However, little effort has been made to decipher the genetic and molecular basis of various useful traits in this crop. Therefore, we considered three economically important traits i.e., flowering, maturity and seed weight of rice bean and identified the associated candidate genes employing an associative transcriptomics approach on 100 diverse genotypes out of 1800 evaluated rice bean accessions from the Indian National Genebank. RESULTS: The transcriptomics-based genotyping of one-hundred diverse rice bean cultivars followed by pre-processing of genotypic data resulted in 49,271 filtered markers. The STRUCTURE, PCA and Neighbor-Joining clustering of 100 genotypes revealed three putative sub-populations. The marker-trait association analysis involving various genome-wide association study (GWAS) models revealed significant association of 82 markers on 48 transcripts for flowering, 26 markers on 22 transcripts for maturity and 22 markers on 21 transcripts for seed weight. The transcript annotation provided information on the putative candidate genes for the considered traits. The candidate genes identified for flowering include HSC80, P-II PsbX, phospholipid-transporting-ATPase-9, pectin-acetylesterase-8 and E3-ubiquitin-protein-ligase-RHG1A. Further, the WRKY1 and DEAD-box-RH27 were found to be associated with seed weight. Furthermore, the associations of PIF3 and pentatricopeptide-repeat-containing-gene with maturity and seed weight, and aldo-keto-reductase with flowering and maturity were revealed. CONCLUSION: This study offers insights into the genetic basis of key agronomic traits in rice bean, including flowering, maturity, and seed weight. The identified markers and associated candidate genes provide valuable resources for future exploration and targeted breeding, aiming to enhance the agronomic performance of rice bean cultivars. Notably, this research represents the first transcriptome-wide association study in pulse crop, uncovering the candidate genes for agronomically useful traits.


Asunto(s)
Flores , Estudio de Asociación del Genoma Completo , Semillas , Transcriptoma , Semillas/genética , Semillas/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Vigna/genética , Vigna/crecimiento & desarrollo , Genes de Plantas , Genotipo , Perfilación de la Expresión Génica , Mapeo Cromosómico , Sitios de Carácter Cuantitativo/genética , Fenotipo
12.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674099

RESUMEN

In agriculture, soil-borne fungal pathogens, especially Fusarium oxysporum strains, are posing a serious threat to efforts to achieve global food security. In the search for safer agrochemicals, silica nanoparticles (SiO2NPs) have recently been proposed as a new tool to alleviate pathogen damage including Fusarium wilt. Hollow mesoporous silica nanoparticles (HMSNs), a unique class of SiO2NPs, have been widely accepted as desirable carriers for pesticides. However, their roles in enhancing disease resistance in plants and the specific mechanism remain unknown. In this study, three sizes of HMSNs (19, 96, and 406 nm as HMSNs-19, HMSNs-96, and HMSNs-406, respectively) were synthesized and characterized to determine their effects on seed germination, seedling growth, and Fusarium oxysporum f. sp. phaseoli (FOP) suppression. The three HMSNs exhibited no side effects on cowpea seed germination and seedling growth at concentrations ranging from 100 to 1500 mg/L. The inhibitory effects of the three HMSNs on FOP mycelial growth were very weak, showing inhibition ratios of less than 20% even at 2000 mg/L. Foliar application of HMSNs, however, was demonstrated to reduce the FOP severity in cowpea roots in a size- and concentration-dependent manner. The three HMSNs at a low concentration of 100 mg/L, as well as HMSNs-19 at a high concentration of 1000 mg/L, were observed to have little effect on alleviating the disease incidence. HMSNs-406 were most effective at a concentration of 1000 mg/L, showing an up to 40.00% decline in the disease severity with significant growth-promoting effects on cowpea plants. Moreover, foliar application of HMSNs-406 (1000 mg/L) increased the salicylic acid (SA) content in cowpea roots by 4.3-fold, as well as the expression levels of SA marker genes of PR-1 (by 1.97-fold) and PR-5 (by 9.38-fold), and its receptor gene of NPR-1 (by 1.62-fold), as compared with the FOP infected control plants. Meanwhile, another resistance-related gene of PAL was also upregulated by 8.54-fold. Three defense-responsive enzymes of POD, PAL, and PPO were also involved in the HMSNs-enhanced disease resistance in cowpea roots, with varying degrees of reduction in activity. These results provide substantial evidence that HMSNs exert their Fusarium wilt suppression in cowpea plants by activating SA-dependent SAR (systemic acquired resistance) responses rather than directly suppressing FOP growth. Overall, for the first time, our results indicate a new role of HMSNs as a potent resistance inducer to serve as a low-cost, highly efficient, safe and sustainable alternative for plant disease protection.


Asunto(s)
Resistencia a la Enfermedad , Fusarium , Germinación , Nanopartículas , Enfermedades de las Plantas , Plantones , Dióxido de Silicio , Fusarium/efectos de los fármacos , Dióxido de Silicio/química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Nanopartículas/química , Germinación/efectos de los fármacos , Resistencia a la Enfermedad/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/microbiología , Vigna/microbiología , Vigna/crecimiento & desarrollo , Vigna/efectos de los fármacos , Porosidad
13.
Food Chem ; 449: 139263, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38657553

RESUMEN

Crab meatballs with more unsaturated fat tend to spoil. Ginger essential oil (GEO) with oxidation resistance was encapsulated into microcapsules (GM) by complex cohesion of mung bean protein isolate (MBPI) and chitosan (CS) in a ratio of 8:1 at pH = 6.4, encapsulation efficiency (EE) and payload (PL) of GM (D50 = 26.16 ± 0.45 µm) with high thermal stability were 78.35 ± 1.02% and 55.43 ± 0.64%. GM (0.6%, w/w) did not interfere with the original flavor of crab meatballs, and lowered values of pH, thiobarbituric acid reactive substances (TBARS) and total bacteria counts (TBC) of the products than those spiked with GEO and the control. The prediction accuracy of the logistic first-order growth kinetic equation in line with TBC (2.84%) was better than that of zero-order and Arrhenius coupled equation based on pH (7.48%) and TBARS (5.94%), but all of them could predict the shelf life of crab meatballs containing GM stored at 4-25 °C.


Asunto(s)
Quitosano , Composición de Medicamentos , Conservación de Alimentos , Almacenamiento de Alimentos , Aceites Volátiles , Vigna , Zingiber officinale , Quitosano/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Animales , Conservación de Alimentos/métodos , Zingiber officinale/química , Vigna/química , Vigna/crecimiento & desarrollo , Proteínas de Plantas/química , Braquiuros/química , Braquiuros/microbiología , Mariscos/análisis , Mariscos/microbiología
14.
Environ Sci Process Impacts ; 26(5): 832-842, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38619070

RESUMEN

Soil and terrestrial contamination with microplastics and nanoplastics has been discussed extensively, while tire wear particles (TWPs) have been largely overlooked. We investigated the root-surface interactions and growth response of mung bean (Vigna radiata L.) plants exposed to tire wear particles (TWPs) (0.05, 0.1, and 0.25% w/w) and nickel sulfate (50 and 100 mg kg-1 NiSO4) alone and in co-exposure scenarios for the full life cycle (105 days) under soil conditions. The results show that TWPs adhered to the root surface and reduced the water and nutrient uptake by the plant, particularly at higher concentrations of TWPs (0.25% w/w), without any observed organic contaminant accumulation in the root tissue. TWPs alone at 0.01, 0.1, and 0.25% (w/w) decreased mung bean yield by 11, 28, and 52%, respectively. Co-exposure to TWPs at 0.01, 0.1 and 0.25% w/w with 100 mg kg-1 NiSO4 decreased yield by 73, 79 and 88%, respectively. However, co-exposure to TWPs at 0.01 and 0.1% w/w with 50 mg kg-1 NiSO4 enhanced the yield by 32% and 7%, respectively. These changes in yield and nutritional aspects appear to be linked to Ni's regulatory influence on mineral homeostasis. Moreover, exposure to NiSO4 at 100 mg kg-1 increased Ni uptake in the root, shoot, and grain by 9, 26, and 20-fold, respectively as compared to the unamended control; this corresponded to increased antioxidant enzyme activity (10-127%) as compared to the control. TWPs caused blockages, significantly reducing plant yield and altering nutrient dynamics, highlighting emerging risks to plant health.


Asunto(s)
Níquel , Contaminantes del Suelo , Vigna , Vigna/crecimiento & desarrollo , Vigna/metabolismo , Vigna/efectos de los fármacos , Contaminantes del Suelo/metabolismo , Nutrientes/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Suelo/química
15.
Sci Rep ; 14(1): 9378, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654029

RESUMEN

Uneven rainfall and high temperature cause drought in tropical and subtropical regions which is a major challenge to cultivating summer mung bean. Potassium (K), a major essential nutrient of plants can alleviate water stress (WS) tolerance in plants. A field trial was executed under a rainout shelter with additional K fertilization including recommended K fertilizer (RKF) for relieving the harmful impact of drought in response to water use efficiency (WUE), growth, yield attributes, nutrient content, and yield of mung bean at the Regional Agricultural Research Station, BARI, Ishwardi, Pabna in two successive summer season of 2018 and 2019. Drought-tolerant genotype BMX-08010-2 (G1) and drought-susceptible cultivar BARI Mung-1 (G2) were grown by applying seven K fertilizer levels (KL) using a split-plot design with three replications, where mung bean genotypes were allotted in the main plots, and KL were assigned randomly in the sub-plots. A considerable variation was observed in the measured variables. Depending on the different applied KL and seed yield of mung bean, the water use efficiency (WUE) varied from 4.73 to 8.14 kg ha-1 mm-1. The treatment applying 125% more K with RKF (KL7) under WS gave the maximum WUE (8.14 kg ha-1 mm-1) obtaining a seed yield of 1093.60 kg ha-1. The treatment receiving only RKF under WS (KL2) provided the minimum WUE (4.73 kg ha-1 mm-1) attaining a seed yield of 825.17 kg ha-1. Results showed that various characteristics including nutrients (N, P, K, and S) content in stover and seed, total dry matter (TDM) in different growth stages, leaf area index (LAI), crop growth rate (CGR), root volume (RV), root density (RD), plant height, pod plant-1, pod length, seeds pod-1, seed weight, and seed yield in all pickings increased with increasing K levels, particularly noted with KL7. The highest grain yield (32.52%) was also obtained from KL7 compared to lower K with RKF. Overall, yield varied from 1410.37 kg ha-1 using 281 mm water (KL1; well-watered condition with RKF) to 825.17 kg ha-1 using 175 mm water (KL2). The results exhibited that the application of additional K improves the performance of all traits under WS conditions. Therefore, mung beans cultivating under WS requires additional K to diminish the negative effect of drought, and adequate use of K contributes to accomplishing sustainable productivity.


Asunto(s)
Sequías , Potasio , Vigna , Vigna/crecimiento & desarrollo , Vigna/genética , Vigna/efectos de los fármacos , Potasio/metabolismo , Agua/metabolismo , Fertilizantes , Nutrientes/metabolismo , Genotipo , Semillas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/metabolismo , Deshidratación , Resistencia a la Sequía
16.
Cells ; 12(15)2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37566039

RESUMEN

Modern irrigation practices and industrial pollution can contribute to the simultaneous occurrence of salinity and heavy metal contamination in large areas of the world, resulting in significant negative effects on crop productivity and sustainability. This study aimed to investigate the growth-promoting potentials of an important endophytic fungal strain SL3 and to compare its potential with exogenous IAA (indole-3-acetic acid) in the context of salt and heavy metal stress. The strain was assessed for plant growth-promoting traits such as the production of indole-3-acetic acid, gibberellins (GA), and siderophore. We selected two important crops, mung bean and maize, and examined various physiological and biochemical characteristics under 300 mM NaCl and 2.5 mM Pb stress conditions, with and without the application of IAA and SL3. This study's results demonstrated that both IAA and SL3 positively impacted the growth and development of plants under normal and stressed conditions. In NaCl and Pb-induced stress conditions, the growth of mung bean and maize plants was significantly reduced. However, the application of IAA and SL3 helped to alleviate stress, leading to a significant increase in shoot/root length and weight compared to IAA and SL3 non-treated plants. The results revealed that photosynthetic pigments, accumulation of catalase (CAT), phenolic contents, polyphenol oxidase, and flavanols are higher in the IAA and SL3-treated plants than in the non-inoculated plants. This study's findings revealed that applying the SL3 fungal strain positively influenced various physiological and biochemical processes in tested plant species under normal and stress conditions of NaCl and Pb. These findings also suggested that SL3 could be a potential replacement for widely used IAA to promote plant growth by improving photosynthetic efficiency, reducing oxidative stress, and enhancing metabolic activities in plants, including mung and maize. Moreover, this study highlights that SL3 has synergistic effects with IAA in enhancing resilience to salt and heavy stress and offers a promising avenue for future agricultural applications in salt and heavy metal-affected regions.


Asunto(s)
Hongos , Metales Pesados , Microbiología del Suelo , Vigna , Zea mays , Vigna/efectos de los fármacos , Vigna/crecimiento & desarrollo , Vigna/metabolismo , Vigna/microbiología , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Zea mays/microbiología , Riego Agrícola , Hongos/clasificación , Hongos/metabolismo , Salinidad , Contaminantes del Suelo , Reguladores del Crecimiento de las Plantas
17.
Plant Sci ; 315: 111136, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35067306

RESUMEN

The majority of cowpea (Vigna unguiculata (L.) Walp.) produced in the U.S. is planted shortly after the summer rains and subsequently depends on rain or artificial irrigation. Therefore, excessive precipitation and poor soil drainage will cause cowpea plants to suffer temporary waterlogging, reducing the submerged tissue's oxygen level. Although cowpea is sensitive to waterlogging, excessive moisture can induce several morpho-physiological changes with adverse impacts on yield in its early stages of development. The current study subjected 30 cowpea genotypes to 10-days of waterlogging at the seedling stage under a controlled environment. The dynamic changes of 24 morpho-physiological parameters under waterlogging and optimal water conditions were analyzed to understand cowpea's response to waterlogging. Significant waterlogging treatment, cowpea genotypes, and their interactions (P < 0.001) were observed for most of the measured parameters. The results indicated that plant height (PH), leaf area (LA), fresh (FW) and dry weight (DW) of cowpea genotypes were significantly decreased under waterlogging compared to the control treatments. Similar results were obtained for net photosynthesis (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (E). However, the water use efficiency (WUE) and adventitious roots (ARs) increased linearly under waterlogging conditions. Waterlogging also declined chlorophyll fluorescence parameters except non-photochemical quenching (qN), which increased with excess soil moisture. In addition, waterlogging tolerance coefficient (WTC) and multivariate analysis (MCA) methods were used to characterize cowpea genotypes for waterlogging tolerance. Accordingly, the cowpea genotype Dagupan Pangasinan, UCR 369, and Negro were classified as waterlogging tolerant, while EpicSelect.4 and ICARDA 140071, as the most waterlogging sensitive. The cowpea genotypes and morpho-physiological traits determined from this study may be useful for genetic engineering and breeding programs that integrate cowpea waterlogging tolerance.


Asunto(s)
Adaptación Fisiológica/genética , Deshidratación/genética , Deshidratación/fisiopatología , Fenotipo , Vigna/crecimiento & desarrollo , Vigna/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Variación Genética , Genotipo
18.
Sci Rep ; 12(1): 245, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996953

RESUMEN

In a breeding program, studies of genotypic and phenotypic relationships among agricultural crop traits are useful to design, evaluate, and develop selection criteria for desirable traits. Using path coefficient analysis, the present study was executed to estimate the phenotypic, genotypic, and environmental correlation coefficients between yield and yield-related traits and to determine the direct and indirect effects of yield-related traits on yield per plant. A total of 30 genotypes of Vigna subterranea were studied under tropical conditions at two sites over two planting seasons (considered as four environments). The experiment at each site used a randomized complete block design with three replicates. Data were collected on vegetative and yield component attributes. Based on analysis of variance, pooled results showed that there were positive and highly significant differences (p ≤ 0.01) among the 30 genotypes for all attributes studied. Highly significant and positive strong correlation at phenotypic level was observed for dry seed weight (0.856), hundred seed weight (0.754), fresh pod weight (0.789), and total pod weight (0.626) with yield in kg per hectare, while moderate positive correlations were observed for harvest cut (0.360) and days to maturity (0.356). However, a perfect positive correlation was observed for the dry weight of pods with seed yield. In contrast, days to 50% flowering (- 0.350) showed a negative significant relationship with yield per hectare. The dried pod weight attribute (1.00) had a high positive direct effect on yield. Fresh pod weight had the greatest indirect effect on yield per hectare, followed by the number of total pods by dry pod weight. As a result, dry pod weight, hundred seed weight, number of total pods, and fresh pod weight could be used as selection criteria to improve the seed yield of Bambara groundnut (Vigna subterranea).


Asunto(s)
Productos Agrícolas/genética , Interacción Gen-Ambiente , Genes de Plantas , Patrón de Herencia , Estaciones del Año , Semillas/genética , Vigna/genética , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genotipo , Fenotipo , Fitomejoramiento , Semillas/crecimiento & desarrollo , Vigna/crecimiento & desarrollo
19.
J Biosci ; 472022.
Artículo en Inglés | MEDLINE | ID: mdl-35092412

RESUMEN

Mungbean root rot caused by Rhizoctonia bataticola (Taub.) Butler is the most devastating disease inflicting yield loss up to 60%. The use of beneficial antagonist, viz., Streptomyces with diverse antifungal activity and prolific secondary metabolites production, is the ecofriendly and environmentally acceptable alternative to the existing chemical control methods. In this investigation we have identified the promising isolate of Streptomyces sp. which potentially reduced the mungbean root rot. A total of nine mungbean rhizospheric actinobacterial isolates were evaluated for their antagonistic potential against root rot pathogen and growth promoting trait of mungbean. The actinobacterial isolate GgS 48 was shown to be effective in reducing the mycelial growth of R. bataticola by 65.3% in dual culture technique and enhancing the growth of mugbean under in vitro condition. Morphological, biochemical and molecular characterization confirmed the isolate GgS 48 as Streptomyces rameus. The actinobacteria S. rameus GgS 48 exerted antifungal action against R. bataticola by hyphal coiling, which was confirmed under scanning electron microscopy (SEM), and promoted the growth through the production of IAA. It showed positive for the production of siderophore and hydrolytic enzymes, viz., chitinase and protease. The chitinase produced by the GgS 48 was purified and its molecular weight was determined as 40 kDa and it had great potential in reducing the mycelial growth of R. bataticola. The talc-based formulation of S. rameus GgS 48 was found to be promising in suppressing the root rot severity and enhancing the growth and yield attributes of mungbean both under glass house and field conditions.


Asunto(s)
Antibiosis/fisiología , Ascomicetos/patogenicidad , Streptomyces , Vigna/microbiología , Quitinasas/aislamiento & purificación , Quitinasas/metabolismo , Microscopía Electrónica de Rastreo , Péptido Hidrolasas/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Rizosfera , Sideróforos/metabolismo , Streptomyces/genética , Streptomyces/aislamiento & purificación , Vigna/crecimiento & desarrollo
20.
Int J Biol Macromol ; 194: 933-944, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34856219

RESUMEN

The evaluation of nano-priming effect with galactomannan stabilized Phyto-complexed calcium hydroxide (Ca(OH)2), selenium oxyanion­calcium hydroxide SeO-(Ca(OH)2), and selenium­calcium hydroxide Se-(Ca(OH)2) nanocomposites was carried out in Vigna radiata (Green gram) seeds. The green source Cassia angustifolia seed rich in galactomannan and other phytoconstituents was detected experimentally and characterized with GC-MS, UV, FT-IR, NMR, XRD, and SEM studies. The highly active galactomannan and other biomolecules, enable their terminal oxygen and hydroxide groups to bind with calcium and selenium ions through bidentate and monodentate chelation, followed by bio-reduction. On the mild-thermal agitation, bio-stabilized (Ca(OH)2), SeO-(Ca(OH)2), and Se-(Ca(OH)2) nanocomposite coated with seed-derived biomolecules were precipitated under an alkaline condition. The size and morphological parameters of bio-fabricated nanocomposites were characterized to exhibit the spherical and hexagonal shape in nanoscale images of size 17.9 nm for (Ca(OH)2), 56.2 nm for SeO-(Ca(OH)2), and 69.3 nm Se-(Ca(OH)2). The sub-standard seed lot of Vigna radiata (Green gram) seeds (71%) was examined using synthesized nanocomposites at various concentrations, and the obtained physiological parameters in seedlings were compared with hydro-primed seeds. The nano-priming action of all the Phyto-complexed nanocomposites was predicted with a positive response, where the porous Se-(Ca(OH)2) possess high efficacy interaction on seed embryos and beneficially results at 90% germination.


Asunto(s)
Hidróxido de Calcio/química , Galactosa/análogos & derivados , Germinación , Mananos/química , Nanocompuestos/química , Selenio/química , Vigna/crecimiento & desarrollo , Galactosa/química , Cromatografía de Gases y Espectrometría de Masas , Espectroscopía de Resonancia Magnética , Estructura Molecular , Nanocompuestos/ultraestructura , Fitoquímicos/química , Plantones , Semillas/crecimiento & desarrollo , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...