Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Aging Cell ; 20(10): e13491, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34605151

RESUMEN

Advanced maternal age (AMA) pregnancies are rapidly increasing and are associated with aberrant trophoblast cell function, poor placentation, and unfavorable pregnancy outcomes, presumably due to premature placental senescence. SIRT1 is an NAD+ -dependent deacetylase with well-known antiaging effects, but its connection with placental senescence is unreported. In this study, human term placentas and first-trimester villi were collected from AMA and normal pregnancies, and a mouse AMA model was established by cross breeding young and aged male and female C57 mice. SIRT1 expression and activity in HTR8/SVneo cells were genetically or pharmacologically manipulated. Trophoblast-specific Sirt1-knockout (KO) mouse placentas were generated by mating Elf5-Cre and Sirt1fl/fl mice. Trophoblast cell mobility was assessed with transwell invasion and wound-healing assays. SIRT1-binding proteins in HTR8/SVneo cells and human placental tissue were identified by mass spectrometry. We identified SIRT1 as the only differentially expressed sirtuin between AMA and normal placentas. It is downregulated in AMA placentas early in the placental life cycle and is barely impacted by paternal age. SIRT1 loss upregulates P53 acetylation and P21 expression and impairs trophoblast invasion and migration. Sirt1-KO mouse placentas exhibit senescence markers and morphological disruption, along with decreased fetal weight. In trophoblasts, SIRT1 interacts with vimentin, regulating its acetylation. In conclusion, SIRT1 promotes trophoblast epithelial-mesenchymal transition (EMT) to enhance invasiveness by modulating vimentin acetylation. AMA placentas are associated with premature senescence during placentation due to SIRT1 loss. Therefore, SIRT1 may be an antiaging therapeutic target for improving placental development and perinatal outcomes in AMA pregnancies.


Asunto(s)
Transición Epitelial-Mesenquimal/inmunología , Sirtuina 1/metabolismo , Trofoblastos/metabolismo , Vimentina/efectos adversos , Acetilación , Anciano , Animales , Femenino , Humanos , Edad Materna , Ratones , Embarazo
2.
Cell Death Differ ; 28(9): 2745-2764, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33963314

RESUMEN

The prerequisite function of vimentin for the epithelial-mesenchymal transition (EMT) is not clearly elucidated yet. Here, we show that vimentin phosphorylated by PLK1, triggers TGF-ß-signaling, which consequently leads to metastasis and PD-L1 expression for immune suppression in lung adenocarcinoma. The clinical correlation between expression of both vimentin and PLK1, and overall survival rates of patients was significant in lung adenocarcinoma but not in squamous cell carcinoma. The phosphorylation of vimentin was accompanied by the activation of PLK1 during TGF-ß-induced EMT in lung adenocarcinoma. Among the several phosphorylation sites determined by phospho-proteomic analysis and the site-specific mutagenesis, the phosphorylation at S339 displayed the most effective metastasis and tumourigenesis with the highest expression of PD-L1, compared with that of wild-type and other versions in both 3D cell culture and tail-vein injection metastasis models. Phosphomimetic vimentin at S339 interacted with p-Smad2 for its nuclear localization, leading to the expression of PD-L1. Clinical relevance revealed the inverse correlation between the survival rates of patients and the expressions of VIM, PLK1, and CD274 in primary and metastatic lung adenocarcinoma. Thus, PLK1-mediated phosphorylation of vimentin activates TGF-ß signaling pathway, leading to the metastasis and immune escape through the expression of PD-L1, functioning as a shuttling protein in lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/genética , Proteína Smad2/metabolismo , Escape del Tumor/genética , Vimentina/efectos adversos , Adenocarcinoma del Pulmón/patología , Animales , Humanos , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Pronóstico , Transducción de Señal , Microambiente Tumoral
3.
Cytoskeleton (Hoboken) ; 74(11): 420-425, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28752964

RESUMEN

Preeclampsia is a pregnancy complication that is the result of abnormal placentation because of inadequate trophoblast invasion into spiral arteries that prevent normal blood flow to the placenta. We report the alteration in vimentin protein proteolysis in placenta of normotensive and preeclamptic women, which is known to have a role in many physiological functions other than its major function in the structural integrity of the cell. Placental proteome from normotensive (n = 25) and preeclamptic pregnancies (n = 25) showed eight differentially accumulated protein spots of vimentin (proteolytic fragments) by two-dimensional electrophoresis. Immunoblots of normotensive and preeclamptic placenta revealed a difference in proteolytic processing of vimentin. In particular, lower molecular weight vimentin fragments of 32 and 20 kDa were 3.3 and 2.6-fold (p < 0.0001) higher, respectively, in preeclampsia compared with normotensive placenta.


Asunto(s)
Placenta/fisiopatología , Preeclampsia/etiología , Vimentina/efectos adversos , Femenino , Humanos , Embarazo , Vimentina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA