Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Med Microbiol ; 73(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39145776

RESUMEN

Introduction. The frequency of multidrug-resistant organisms (MDROs) in hospitals and the risk of delaying effective treatment result in the culture of respiratory secretions for nearly all patients with suspected pneumonia. Culture delays contribute to over prescribing and use of broader spectrum antibiotics.Gap statement. The need for improved rapid diagnostics for early assessment of suspected hospital pneumonia.Aim. To validate a new metric, enhanced Gram stain (EGS), to provide a rapid diagnostic test of high diagnostic accuracy that could be assessed in clinical trials of the use of antibiotics in suspected pneumonia.Methodology. Ninety-two residual lower respiratory samples previously tested by culture and Gram stain were re-tested by 16S ribosomal DNA real-time polymerase chain reaction (16S qPCR) and reported as a combined metric with Gram stain termed EGS. The EGS was assessed for diagnostic accuracy, standard performance measurements and correlation against culture. For samples with discordance between culture and EGS, 16S ribosomal DNA whole operon sequencing (16S rDNA WOS) was used for test resolution. An amended EGS (A-EGS was reassessed against culture.Results. Gram stain, 16S qPCR, EGS and A-EGS had respective diagnostic accuracies of 77.01 %, 82.76 %, 84.04 % and 94.19 %. The same platforms had respective correlation with culture of r = 0.67, r = 0.71, r = 0.81 and r = 0.89. EGS had the highest negative predictive value (NPV) of 93.18 % (81.99 %-97.62 %). Adding an 16S qPCR result is achievable in most routine laboratories and, combined with Gram stain, could improve early decision-making in patients with suspected hospital pneumonia.Conclusion. EGS could improve early decision-making in patients with suspected hospital pneumonia and could be assessed in clinical trials. The 16S rDNA WOS results in the A-EGS also supported the use of pathogen genomic sequencing in early decision making of suspected pneumonia.


Asunto(s)
Violeta de Genciana , Fenazinas , ARN Ribosómico 16S , Reacción en Cadena en Tiempo Real de la Polimerasa , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Sensibilidad y Especificidad , Neumonía Bacteriana/diagnóstico , Neumonía Bacteriana/microbiología , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/microbiología , Neumonía/diagnóstico , Neumonía/microbiología , Bacterias/aislamiento & purificación , Bacterias/genética , Bacterias/clasificación , Masculino
2.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955371

RESUMEN

AIMS: This study aimed to explore potential synergistic effects of medicinal dyes with antimicrobials against pathogens responsible for skin infections. METHODS AND RESULTS: Antimicrobial testing was conducted using minimum inhibitory concentrations and minimum bactericidal/fungicidal concentration assays. The fractional inhibitory index (ΣFIC) of combinations was calculated, and isobolograms were constructed on selected combinations. Toxicity studies were conducted using the brine-shrimp lethality assay. Combination (1:1 ratio) studies noted that 26% of dye-antibiotic combinations were synergistic against the Gram-positive strains, 15% against the Gram-negative strains, and 14% against the yeasts. The Mercurochrome: Betadine® combination noted synergy at ratios against all the Staphylococcus aureus strains with ΣFIC values ranging from 0.05 to 0.48. The combination of Gentian violet with Gentamycin noted a 15-fold decrease in toxicity, and a selectivity index of 977.50 against the Escherichia coli (DSM 22314) strain. Time-kill studies were conducted on the combinations with the highest safe selectivity index (SI) value and lowest safe SI value i.e. Gentian violet with Gentamycin and Malachite green with Neomycin. Both combinations demonstrated better antimicrobial activity in comparison to the independent values and the controls. CONCLUSION: This study highlights the potential for medicinal dye combinations as a treatment for skin infections.


Asunto(s)
Colorantes , Pruebas de Sensibilidad Microbiana , Colorantes/farmacología , Staphylococcus aureus/efectos de los fármacos , Sinergismo Farmacológico , Antiinfecciosos/farmacología , Violeta de Genciana/farmacología , Antibacterianos/farmacología , Colorantes de Rosanilina/farmacología , Escherichia coli/efectos de los fármacos
3.
Molecules ; 29(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065013

RESUMEN

Gac fruit (Momordica cochinchinensis Spreng.) is a prominent source of carotenoids, renowned for its exceptional concentration of these compounds. This study focuses on optimizing the extraction of active components from the aril of gac fruit by evaluating the effects of extraction temperature, solid-liquid ratio, and extraction time. The primary objective is to maximize the yield of gac oil while assessing its antioxidant capacity. To analyze the kinetics of the solid-liquid extraction process, both first-order and second-order kinetic models were employed, with the second-order model providing the best fit for the experimental data. In addition, the potential of gac fruit peel as a precursor for biochar production was investigated through carbonization. The resultant biochars were evaluated for their efficacy in adsorbing crystal violet (CV) dye from aqueous solutions. The adsorption efficiency of the biochars was found to be dependent on the carbonization temperature, with the highest efficiency observed for BCMC550 (91.72%), followed by BCM450 (81.35%), BCMC350 (78.35%), and BCMC250 (54.43%). The adsorption isotherm data conformed well to the Langmuir isotherm model, indicating monolayer adsorption behavior. Moreover, the adsorption kinetics were best described by the pseudo-second-order model. These findings underscore the potential of gac fruit and its byproducts for diverse industrial and environmental applications, highlighting the dual benefits of optimizing gac oil extraction and utilizing the peel for effective dye removal.


Asunto(s)
Carbón Orgánico , Frutas , Violeta de Genciana , Carbón Orgánico/química , Adsorción , Frutas/química , Violeta de Genciana/química , Violeta de Genciana/aislamiento & purificación , Cinética , Colorantes/química , Colorantes/aislamiento & purificación , Temperatura , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación
4.
Chemosphere ; 363: 142842, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39009089

RESUMEN

In today's world, major pollutants, such as cationic dyes and heavy metals, pose a serious threat to human health and the environment. In this study, a novel adsorbent was created through the electrospinning of polyvinyl alcohol/polyacrylic acid (PVA/PAA), incorporated with hexagonal boron nitride (hBN) coated with polydopamine (PDA). The integration of hBN and PDA substantially enhanced the adsorption capacity of the PVA/PAA fibers, making them highly effective in adsorbing cationic dyes such as methylene blue and crystal violet, as well as cobalt (II) ions, from contaminated water. The adsorbents were assessed to understand how their adsorption behavior varies with pH, as well as to examine their adsorption kinetics and isotherms. The results indicate that the PVA/PAA-hBN@PDA adsorbent has maximum adsorption capacities of 1029.57 mg/g, 793.65 mg/g, and 62.46 mg/g for methylene blue, crystal violet, and cobalt (II) ions, respectively. This underscores the superior performance of the PVA/PAA-hBN@PDA adsorbent when compared to both the PVA/PAA and PVA/PAA-hBN adsorbents. The adsorption kinetics adhered to a pseudo-second-order model, indicating chemisorption, whereas the Langmuir model implied a monolayer adsorption. Overall, the findings of this study highlight the efficacy of harnessing the synergistic capabilities of hBN and PDA within the PVA/PAA-hBN@PDA adsorbents, providing an efficient and eco-friendly approach to removing cationic dyes and heavy metals from contaminated water, and thereby contributing to a cleaner and safer environment for all.


Asunto(s)
Cobalto , Colorantes , Violeta de Genciana , Indoles , Azul de Metileno , Nanofibras , Polímeros , Contaminantes Químicos del Agua , Azul de Metileno/química , Cobalto/química , Indoles/química , Adsorción , Nanofibras/química , Contaminantes Químicos del Agua/química , Violeta de Genciana/química , Polímeros/química , Colorantes/química , Cinética , Resinas Acrílicas/química , Alcohol Polivinílico/química , Compuestos de Boro/química , Purificación del Agua/métodos
5.
Int J Biol Macromol ; 276(Pt 2): 133909, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39025186

RESUMEN

In this research, aluminum metal-organic framework encapsulated with poly (itaconic acid) grafted crosslinked chitosan composite sponge (Al-MOF@PIC) was prepared. SEM, FTIR, XPS, XRD, and BET techniques were employed to thoroughly characterize the synthesized material and establish its structure and characteristics. The study discovered that the Al-MOF@PIC is an efficient way to remove dyes, which constitute a significant number of contaminants in industrial wastewater. Subsequently the adsorption of methyl violet 2B (MV-2B) dye, the surface area, pore size, and pore volume of the adsorbent decreased from 1860.68 m2/g, 1.62 nm, and 1.52 cc/g to 1426.45 m2/g, 1.11 nm, and 0.92 cc/g, individually. This modification suggested that a portion of the MV-2B dye had been removed by adsorption over the adsorbent's pores. The excellent adsorption capacity of the material was further confirmed by batch adsorption tests, which displayed a maximum adsorption capability of 646.76 mg/g for the elimination of MV-2B dye. The high adsorption energy of 26.8 kJ/mol designates that chemisorption is primarily responsible for MV-2B dye adsorption against the sponge adsorbent. The Al-MOF@PIC composite sponge demonstrated exceptional reusability over six cycles, demonstrating its strength and durability. The Al-MOF@PIC composite sponge successfully removes MV-2B from water by pore filling, π-π stacking, hydrogen bonding, and electrostatic interactions, which are the key mechanisms behind the adsorption of the dye pollutant. Its potential for practical applications is further demonstrated using Box Behnken-design (BBD) to optimize the adsorption consequences.


Asunto(s)
Aluminio , Quitosano , Violeta de Genciana , Estructuras Metalorgánicas , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Quitosano/química , Aguas Residuales/química , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Estructuras Metalorgánicas/química , Violeta de Genciana/química , Violeta de Genciana/aislamiento & purificación , Purificación del Agua/métodos , Aluminio/química , Teoría Funcional de la Densidad , Cinética , Succinatos
6.
PLoS One ; 19(7): e0304684, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985698

RESUMEN

To effectively remove Diazinon (DZ), Amoxicillin (AMX), and Crystal Violet (CV) from aquatic environments, a novel granular activated carbon (GAC) modified with Polyethylene glycol 600 (PEG) was created and manufactured. The chemical properties were investigated using a variety of characteristic analyses, including FT-IR, XRD, FESEM, and N2 adsorption/desorption. The effectiveness of GAC-PEG's adsorption for the removal of DZ, AMX, and CV was assessed under a variety of conditions, including a pH of 4-9 for the solution, 0.003-0.05 g doses of adsorbent, 50-400 ppm starting concentration, and a reaction time of 5-25 min. For DZ, AMX, and CV adsorption, the maximum adsorption capacity (Qmax) was 1163.933, 1163.100, and 1150.300 mg g-1, respectively. The Langmuir isotherm described all of the data from these adsorption experiments, and the pseudo-second-order well explains all-adsorption kinetics. Most contacts between molecules, electrostatic interactions, π-π interactions, hydrogen bonding, and entrapment in the modified CAG network were used to carry out the DZ, AMX, and CV adsorption on the GAC-PEG. The retrievability of the prepared adsorbent was successfully investigated in studies up to two cycles without loss of adsorption efficiency, and it was shown that it can be efficiently separated.


Asunto(s)
Carbón Orgánico , Polietilenglicoles , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Polietilenglicoles/química , Aguas Residuales/química , Cinética , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Carbón Orgánico/química , Purificación del Agua/métodos , Amoxicilina/química , Concentración de Iones de Hidrógeno , Violeta de Genciana/química , Violeta de Genciana/aislamiento & purificación , Espectroscopía Infrarroja por Transformada de Fourier
7.
Arch Microbiol ; 206(8): 344, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967798

RESUMEN

Uropathogenic Escherichia coli, the most common cause for urinary tract infections, forms biofilm enhancing its antibiotic resistance. To assess the effects of compounds on biofilm formation of uropathogenic Escherichia coli UMN026 strain, a high-throughput combination assay using resazurin followed by crystal violet staining was optimized for 384-well microplate. Optimized assay parameters included, for example, resazurin and crystal violet concentrations, and incubation time for readouts. For the assay validation, quality parameters Z' factor, coefficient of variation, signal-to-noise, and signal-to-background were calculated. Microplate uniformity, signal variability, edge well effects, and fold shift were also assessed. Finally, a screening with known antibacterial compounds was conducted to evaluate the assay performance. The best conditions found were achieved by using 12 µg/mL resazurin for 150 min and 0.023% crystal violet. This assay was able to detect compounds displaying antibiofilm activity against UMN026 strain at sub-inhibitory concentrations, in terms of metabolic activity and/or biomass.


Asunto(s)
Antibacterianos , Biopelículas , Violeta de Genciana , Ensayos Analíticos de Alto Rendimiento , Oxazinas , Escherichia coli Uropatógena , Xantenos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/fisiología , Ensayos Analíticos de Alto Rendimiento/métodos , Xantenos/química , Antibacterianos/farmacología , Violeta de Genciana/metabolismo , Oxazinas/farmacología , Oxazinas/metabolismo , Oxazinas/química , Pruebas de Sensibilidad Microbiana , Infecciones Urinarias/microbiología , Humanos
8.
Environ Monit Assess ; 196(8): 728, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38997474

RESUMEN

This study investigates the potential of using Ficus religiosa inflorescence (peepal tree) as an efficient solution for removing crystal violet from simulated and industrial wastewater. Various analyses were conducted to understand the adsorbent's structure, including particle morphology, BET surface area, FTIR, and pHZPC. The adsorption process was studied under different physicochemical factors such as temperature, concentration, contact time, and pH. Results revealed rapid adsorption, with 94.15% removal efficiency within the first 15 min at neutral pH. The highest observed adsorption capacity was 198.03 mg g-1, following pseudo-second-order kinetics (R2 = 0.99), indicating chemisorption. The Langmuir model accurately described the adsorption pathway (R2 = 0.99), showing monolayer adsorption. Thermodynamic analysis indicated an exothermic, feasible, and spontaneous process with increased entropy. The adsorbent could be easily regenerated using a 1:1 MeOH/H2O mixture for up to three cycles, yielding up to 73.86%. Real-time application with industrial effluent containing crystal violet showed up to 44.70% adsorption. The experiments demonstrated reliability with evaluated standard deviations (0.017935-0.000577) and relative standard deviations (0.439-0.673%), confirming statistical reliability. In conclusion, it presents a sustainable and eco-friendly approach for removing crystal violet dye from diverse wastewater sources.


Asunto(s)
Ficus , Violeta de Genciana , Contaminantes Químicos del Agua , Ficus/química , Violeta de Genciana/química , Contaminantes Químicos del Agua/análisis , Adsorción , Aguas Residuales/química , Inflorescencia/química , Eliminación de Residuos Líquidos/métodos , Cinética , Polvos , Termodinámica
9.
Endocrinol Diabetes Metab ; 7(4): e00503, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38924696

RESUMEN

BACKGROUND: Diabetic foot ulcers in developing countries often become infected. The healthcare systems are often not equipped to conduct the culture and the sensitivity tests required for prescribing a targeted antibiotic treatment for diabetic foot infection (DFI). METHODS: We evaluate antibiotic stewardship programmes for DFIs, at every level of health care, with an emphasis on resource-poor settings such as in Africa. RESULTS: The management of DFI very often is adapted to the financial and practical realities of the resource-poor regions. The application of the point-of-care Gram stain of deep tissue samples is efficient, rapid, low cost and ubiquitously available. Upon the identification of the predominant pathogen in the Gram stain, a semi-quantitative preemptive antibiotic treatment can be started in accordance with the World Health Organization Aware, Watch and Restrict Essential Medicine List. This list is catered to every country and is a powerful tool. However, some basic knowledge of the local microbiological epidemiology is necessary to choose the most appropriate agent. We report our experience on using the rapidly available Gram stain for narrowing the preemptive choice of listed antibiotic agents, as an economic tool for antibiotic stewardship in DFIs. CONCLUSIONS: In the practical and resource-saving management of DFI, the 'therapeutic' use of Gram stains is not common in resource-rich countries but should be added to the arsenal of the general efforts for antibiotic stewardship.


Asunto(s)
Antibacterianos , Programas de Optimización del Uso de los Antimicrobianos , Países en Desarrollo , Pie Diabético , Pie Diabético/tratamiento farmacológico , Pie Diabético/microbiología , Humanos , Antibacterianos/administración & dosificación , Antibacterianos/uso terapéutico , Violeta de Genciana , Fenazinas
10.
J Microbiol Methods ; 223: 106976, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925440

RESUMEN

Pellet production represents a critical step for several processes requiring fungal biomass, nevertheless, its optimization is seldom reported. The use of finely ground rice husk as a microcarrier and co-substrate permitted a marked increase (≈ 2.7×) in the productivity of fungal pellet production using Trametes versicolor compared to traditional production methods. The pellets show similar structure and smaller size compared to typical sole-mycelium pellets, as well as comparable laccase activity. The efficiency of the pellets for biodegradation was confirmed by the removal of the crystal violet dye, achieving significantly faster decolorization rates compared to the traditionally produced pellets. The use of these pellets during the continuous treatment of the dye in a stirred tank bioreactor resulted in 97% decolorization operating at a hydraulic residence time of 4.5 d.


Asunto(s)
Biodegradación Ambiental , Reactores Biológicos , Colorantes , Oryza , Oryza/microbiología , Colorantes/metabolismo , Colorantes/química , Reactores Biológicos/microbiología , Lacasa/metabolismo , Biomasa , Violeta de Genciana/metabolismo , Violeta de Genciana/química , Trametes/metabolismo , Trametes/enzimología , Micelio/metabolismo , Polyporaceae/metabolismo
11.
J Microbiol Methods ; 223: 106979, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944284

RESUMEN

Given the significant impact of biofilms on human health and material corrosion, research in this field urgently needs more accessible techniques to facilitate the testing of new control agents and general understanding of biofilm biology. Microtiter plates offer a convenient format for standardized evaluations, including high-throughput assays of alternative treatments and molecular modulators. This study introduces a novel Biofilm Analysis Software (BAS) for quantifying biofilms from microtiter plate images. We focused on early biofilm growth stages and compared BAS quantification to common techniques: direct turbidity measurement, intrinsic fluorescence detection linked to pyoverdine production, and standard crystal violet staining which enables image analysis and optical density measurement. We also assessed their sensitivity for detecting subtle growth effects caused by cyclic AMP and gentamicin. Our results show that BAS image analysis is at least as sensitive as the standard method of spectrophotometrically quantifying the crystal violet retained by biofilms. Furthermore, we demonstrated that bacteria adhered after short incubations (from 10 min to 4 h), isolated from planktonic populations by a simple rinse, can be monitored until their growth is detectable by intrinsic fluorescence, BAS analysis, or resolubilized crystal violet. These procedures are widely accessible for many laboratories, including those with limited resources, as they do not require a spectrophotometer or other specialized equipment.


Asunto(s)
Biopelículas , Procesamiento de Imagen Asistido por Computador , Programas Informáticos , Biopelículas/crecimiento & desarrollo , Procesamiento de Imagen Asistido por Computador/métodos , Violeta de Genciana , Bacterias/crecimiento & desarrollo , Adhesión Bacteriana , Gentamicinas/farmacología
12.
Biomolecules ; 14(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38927020

RESUMEN

Deposition of extracellular Amyloid Beta (Aß) and intracellular tau fibrils in post-mortem brains remains the only way to conclusively confirm cases of Alzheimer's Disease (AD). Substantial evidence, though, implicates small globular oligomers instead of fibrils as relevant biomarkers of, and critical contributors to, the clinical symptoms of AD. Efforts to verify and utilize amyloid oligomers as AD biomarkers in vivo have been limited by the near-exclusive dependence on conformation-selective antibodies for oligomer detection. While antibodies have yielded critical evidence for the role of both Aß and tau oligomers in AD, they are not suitable for imaging amyloid oligomers in vivo. Therefore, it would be desirable to identify a set of oligomer-selective small molecules for subsequent development into Positron Emission Tomography (PET) probes. Using a kinetics-based screening assay, we confirm that the triarylmethane dye Crystal Violet (CV) is oligomer-selective for Aß42 oligomers (AßOs) grown under near-physiological solution conditions in vitro. In postmortem brains of an AD mouse model and human AD patients, we demonstrate that A11 antibody-positive oligomers but not Thioflavin S (ThioS)-positive fibrils colocalize with CV staining, confirming in vitro results. Therefore, our kinetic screen represents a robust approach for identifying new classes of small molecules as candidates for oligomer-selective dyes (OSDs). Such OSDs, in turn, provide promising starting points for the development of PET probes for pre-mortem imaging of oligomer deposits in humans.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Encéfalo , Violeta de Genciana , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/química , Humanos , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Ratones , Violeta de Genciana/química , Amiloide/metabolismo , Amiloide/química , Tomografía de Emisión de Positrones , Femenino
13.
Int J Biol Macromol ; 275(Pt 1): 133208, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889837

RESUMEN

Jatobá-do-cerrado fruit shells, archetypical of lignocellulosic-based biomass, were used as an adsorbent to remove crystal violet (CV) and methylene blue (MB) from water. The adsorbent was characterized using various techniques, and kinetic studies showed dye adsorption followed second-order kinetics. An experimental design investigated the effects of pH and temperature on removal efficiency, with a quadratic model fitting the data best. The results suggest pH influences MB's adsorption capacity more than temperature and at 25 °C and pH 8, MB had a desirability value of 0.89, with 95 % removal efficiency. For CV, temperature had a greater influence, with a desirability value of 0.874 at 25 °C and pH 10, and 95 % removal efficiency. Adsorption isotherm studies revealed maximum adsorption capacities of 123.0 mg·g-1 and 113.0 mg·g-1 for CV and MB, respectively. Experimental thermodynamic parameters indicated an endothermic and spontaneous process which it was supported by quantum chemistry calculations. The protocols developed confirmed the potential for adsorbing CV and MB dyes in water, achieving over 73.1 and 74.4 mg g-1 dyes removal.


Asunto(s)
Biomasa , Colorantes , Lignina , Azul de Metileno , Contaminantes Químicos del Agua , Adsorción , Lignina/química , Colorantes/química , Colorantes/aislamiento & purificación , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno/química , Azul de Metileno/aislamiento & purificación , Temperatura , Purificación del Agua/métodos , Violeta de Genciana/química , Violeta de Genciana/aislamiento & purificación , Termodinámica , Teoría Funcional de la Densidad
14.
Environ Res ; 258: 119428, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897437

RESUMEN

Cationic synthetic dyes are one of the hazards in aqueous solutions that can affect the health of humans and living organisms. In the current work, polyacrylamide (PAM)-g-gelatin hydrogel and modified PAM-g-gelatin hydrogel using activated carbon of Luffa cylindrica (ACL) and ACL/Mg-Fe LDH were applied to eliminate crystal violet (CV), a cationic dye, from water media. The hydrogels were synthesized using free radical polymerization approach, and the hydrogels were characterized using FTIR, XRD, TGA-DTG, BET, SEM, and EDX-Map. The surface area of ACL, ACL/Mg-Fe LDH, PAM-g-gelatin, PAM-g-gelatin/ACL, and PAM-g-gelatin/ACL/Mg-Fe LDH were 99.71, 141.99, 0.74, 1.47, and 1.65 m2/g, respectively, which shows that the presence of ACL and ACL/Mg-Fe LDH improved the area of the hydrogels. The maximum abatement of CV using PAM-g-gelatin (92.81%), PAM-g-gelatin/ACL (95.71%), and PAM-g-gelatin/ACL/Mg-Fe LDH (98.25%) was obtained at pH = 9, temperature 25 °C, 10 mg/L CV, 60 min time, and adsorber dose of 2 g/L (for PAM-g-gelatin) and 1.5 g/L (other samples). The value of thermodynamic factors confirmed that the abatement process is exothermic and spontaneous. The kinetics data followed the pseudo-second kinetic (PSO) model. The Langmuir isotherm model had a more remarkable ability to describe the equilibrium data. The maximum adsorption capacity for PAM-g-gelatin, PAM-g-gelatin/ACL, and PAM-g-gelatin/ACL/Mg-Fe LDH was determined 35.45, 39.865, and 44.952 mg/g, respectively. Generally, the studied hydrogels can eliminate dyes from wastewater and be used as effective adsorbers.


Asunto(s)
Resinas Acrílicas , Gelatina , Violeta de Genciana , Hidrogeles , Resinas Acrílicas/química , Gelatina/química , Violeta de Genciana/química , Hidrogeles/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Colorantes/química , Adsorción
15.
Arch Microbiol ; 206(7): 318, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904719

RESUMEN

In this study, we propose an Ethanol Pretreatment Gram staining method that significantly enhances the color contrast of the stain, thereby improving the accuracy of judgement, and demonstrated the effectiveness of the modification by eliminating unaided-eye observational errors with unsupervised machine learning image analysis. By comparing the traditional Gram staining method with the improved method on various bacterial samples, results showed that the improved method offers distinct color contrast. Using multimodal assessment strategies, including unaided-eye observation, manual image segmentation, and advanced unsupervised machine learning automatic image segmentation, the practicality of ethanol pretreatment on Gram staining was comprehensively validated. In our quantitative analysis, the application of the CIEDE2000, and CMC color difference standards confirmed the significant effect of the method in enhancing the discrimination of Gram staining.This study not only improved the efficacy of Gram staining, but also provided a more accurate and standardized strategy for analyzing Gram staining results, which might provide an useful analytical tool in microbiological diagnostics.


Asunto(s)
Etanol , Procesamiento de Imagen Asistido por Computador , Coloración y Etiquetado , Aprendizaje Automático no Supervisado , Etanol/farmacología , Coloración y Etiquetado/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Violeta de Genciana , Fenazinas/farmacología , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación
16.
Environ Monit Assess ; 196(6): 569, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777943

RESUMEN

Nanomaterials are widely employed in wastewater treatment, among which nanoferrites and their composites hold significant prominence. This study adopts a green approach to synthesize zinc ferrite nanoparticles, subsequently integrating them with polyaniline (PANI) to fabricate the ZnFe2O4-PANI nanocomposite. Characterization of the prepared ZnFe2O4-PANI nanocomposite was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopic (SEM) techniques. Using Scherrer's equation, the crystallite size of the synthesized zinc ferrite nanoparticles was found to be 17.67 nm. SEM micrographs of the ZnFe2O4-PANI nanocomposite revealed that in situ polymerization of ZnFe2O4 with polyaniline transforms the amorphous surface morphology of the polymer into a homogeneous nanoparticle structure. The adsorption of crystal violet (CV) dye onto the surface of the ZnFe2O4-PANI nanocomposite depends on pH, adsorbent dosage, temperature, concentration levels and duration. The Langmuir adsorption model fitted the data well, indicating adherence to a pseudo-second-order kinetic pattern. Thermodynamic values ΔG°, ΔH° and ΔS° indicated that the adsorption process occurred spontaneously. Advantages and disadvantages of the technique have also been highlighted. Mechanism of adsorption is discussed. From the obtained results, it is evident that the ZnFe2O4-PANI nanocomposite holds promise as a sorbent for the removal of dye from wastewater.


Asunto(s)
Compuestos de Anilina , Compuestos Férricos , Violeta de Genciana , Nanocompuestos , Contaminantes Químicos del Agua , Zinc , Compuestos de Anilina/química , Violeta de Genciana/química , Nanocompuestos/química , Contaminantes Químicos del Agua/química , Compuestos Férricos/química , Zinc/química , Adsorción , Eliminación de Residuos Líquidos/métodos , Cinética , Purificación del Agua/métodos
17.
Int J Biol Macromol ; 271(Pt 2): 132638, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38797296

RESUMEN

In the study, a novel chitosan biopolymer and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid (IL)-incorporated sulfonated poly (ether ether ketone) (SPEEK) composite (Ch-IL@SPEEK) was prepared for adsorption of cationic crystal violet (CV) dye. The proposed composite was well characterized by several techniques. CV adsorption performance was examined via batch studies by varying various variables involving adsorbent dosage, contact time pH and temperature. The isotherm results were demonstrated the adsorption characters of the processes were Langmuirian. The maximum adsorption capacity was determined as 77.66 mg g-1 for the composite which was significantly higher than SPEEK (qmax = 45.36 mg g-1). The determined equilibrium time of the operated system was 360 min and the kinetic model was assessed as Elovich. At low pHs the protonated surface groups repelled the positively charged CV and the adsorption rate increased with increasing pH. The process is spontaneous and favorable as it proceeds via endothermic interactions. Furthermore, even at the end of 5 successful adsorption cycles, 77.86 % CV removal was obtained. Remarkable efficiencies were also achieved in the removal performance of different organic pollutants. Based on the reported results, Ch-IL@SPEEK composite were exhibited as an impressive adsorbent material for adsorption processes.


Asunto(s)
Quitosano , Violeta de Genciana , Líquidos Iónicos , Contaminantes Químicos del Agua , Quitosano/química , Líquidos Iónicos/química , Violeta de Genciana/química , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Temperatura , Colorantes/química , Colorantes/aislamiento & purificación , Purificación del Agua/métodos , Polímeros/química , Polietilenglicoles/química
18.
Luminescence ; 39(5): e4778, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38772865

RESUMEN

To establish a new method for detecting crystal violet (CV), a harmful dye, herein, a genre of novel biomass carbon dots (CDs) was synthesized via a microwave method and employed as a fluorescent probe, in which water spinach and polyethylene glycol (PEG) performed as raw materials. Based on the inner filter effect (IFE) between the luminescent CDs and CV, the blue emission of this probe at 430 nm could be quenched by CV. Hence, a new strategy was proposed to selectively determine CV in aquaculture ambient. Moreover, under the optimal experiment conditions, this method showed a good linearity between the concentration of CV (c) and fluorescence quenching rate (ΔF/F0) in the concentration range of 4-200 µmol/L with the corresponding correlation coefficient (r) and the detection limit of 0.997 and 710 nmol/L, respectively. With advantages of environmental protectivity, sensitivity, affordability, and user-friendliness, the facilely fabricated CDs could be successfully applied in detecting CV in aquaculture samples, providing a technical foundation for monitoring the pollution of CV and ensuring the quality and safety of aquatic products.


Asunto(s)
Biomasa , Carbono , Colorantes Fluorescentes , Violeta de Genciana , Microondas , Puntos Cuánticos , Violeta de Genciana/química , Carbono/química , Puntos Cuánticos/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Espectrometría de Fluorescencia , Fluorescencia , Polietilenglicoles/química
19.
Int J Phytoremediation ; 26(10): 1691-1700, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725313

RESUMEN

Synthetic dyes are prevalent in aquatic environments, they have high toxicities, are non-degradable, and accumulate in the water. The removal of Crystal violet (CV) is carried out using batch experiments on the Salsola Tetragona (ST) plant as a novel adsorbent. The prepared adsorbent was analyzed by various methods (MEB, EDX, IRTF and PZC), to support its applicability as adsorbent. The adsorption study of CV is performed by optimizing the parameters affecting the adsorption process. The adsorption kinetics study is represented by pseudo-second-order (R2 = 0.999) and the adsorption process is limited by external mass transport. In addition, the isotherm results demonstrate that the Langmuir model interprets better the adsorption isotherm. The thermodynamic parameters suggest that the adsorption phenomena are spontaneous and exothermic. Furthermore, the adsorption reactions involved are of physisorption type, which facilitates the desorption of pollutants from the surface of the adsorbent. The results show that ST adsorbent effectively removes CV in an aqueous solution, which is demonstrated by the maximum amount adsorption of 246.7 mg.g-1 at optimum adsorption conditions: pH = 6, adsorbent dose of 0.5 g.L-1, initial CV concentration of 10 mg.L-1, and adsorption time of 30 min at 298 K. Finally, these results can be considered as a useful reference for wastewater treatment using ST.


The novelty of our work, entitled "Salsola Tetragona as a New Low-Cost Adsorbent for Water Treatment: Highly Effective Adsorption of Crystal Violet", lies in the utilization of a new biomass abundant in the southwestern region of Morocco. This plant as a novel material is used in its raw state as an adsorbent for removing a cationic dye. According to the literature, this material has not been previously employed in water treatment. Hence, to fill the gap in the literature, we examined its in-batch adsorption to remove crystal violet from the aqueous solution. The results show a high adsorption capacity compared to other natural biomass.


Asunto(s)
Violeta de Genciana , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Purificación del Agua/métodos , Cinética , Biodegradación Ambiental , Termodinámica , Eliminación de Residuos Líquidos/métodos , Colorantes/química
20.
PeerJ ; 12: e17442, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818456

RESUMEN

Confronting the environmental threat posed by textile dyes, this study highlights bioremediation as a pivotal solution to mitigate the impacts of Crystal Violet, a widely-utilized triphenylmethane dye known for its mutagenic and mitotic toxicity. We isolated and identified several bacterial strains capable of degrading Crystal Violet under various environmental conditions. Newly identified strains, including Mycolicibacterium nivoides, Chryseobacterium sp., Agrobacterium rhizogenes, Pseudomonas crudilactis, and Pseudomonas koreensis demonstrated significant decolorization activity of Crystal Violet, complementing the already known capabilities of Stenotrophomonas maltophilia. Initial experiments using crude extracts confirmed their degradation potential, followed by detailed studies that investigated the impact of different pH levels and temperatures on some strains' degradation efficiency. Depending on the bacteria, the degree of activity change according to pH and temperature was different. At 37 °C, Chryseobacterium sp. and Stenotrophomonas maltophilia exhibited higher degradation activity compared to 25 °C, while Pseudomonas crudilactis and Mycolicibacterium nivoides did not exhibit a statistically significant difference between the two temperatures. Mycolicibacterium nivoides performed optimally at pH 8, while Pseudomonas crudilactis showed high activity at pH 5. Stenotrophomonas maltophilia's activity remained consistent across the pH range. These findings not only underscore the effectiveness of these bacteria as agents for Crystal Violet degradation but also pave the way for their application in large-scale bioremediation processes for the treatment of textile effluents, marking them as vital to environmental sustainability efforts.


Asunto(s)
Biodegradación Ambiental , Violeta de Genciana , Violeta de Genciana/metabolismo , Concentración de Iones de Hidrógeno , Temperatura , Pseudomonas/metabolismo , Pseudomonas/genética , Stenotrophomonas maltophilia/metabolismo , Colorantes/metabolismo , Bacterias/metabolismo , Bacterias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...