Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Planta ; 253(1): 1, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33245411

RESUMEN

MAIN CONCLUSION: Light, hormones and their interaction regulate different aspects of development in non-flowering plants. They might have played a role in the evolution of different plant groups by conferring specific adaptive evolutionary changes. Plants are sessile organisms. Unlike animals, they lack the opportunity to abandon their habitat in unfavorable conditions. They respond to different environmental cues and adapt accordingly to control their growth and developmental pattern. While phytohormones are known to be internal regulators of plant development, light is a major environmental signal that shapes plant processes. It is plausible that light-hormone crosstalk might have played an important role in plant evolution. But how the crosstalk between light and phytohormone signaling pathways might have shaped the plant evolution is unclear. One of the possible reasons is that flowering plants have been studied extensively in context of plant development, which cannot serve the purpose of evolutionary comparisons. In order to elucidate the role of light, hormone and their crosstalk in the evolutionary adaptation in plant kingdom, one needs to understand various light- and hormone-mediated processes in diverse non-flowering plants. This review is an attempt to outline major light- and phytohormone-mediated responses in non-flowering plant groups such as algae, bryophytes, pteridophytes and gymnosperms.


Asunto(s)
Luz , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Viridiplantae , Briófitas/crecimiento & desarrollo , Briófitas/efectos de la radiación , Chlorophyta/crecimiento & desarrollo , Chlorophyta/efectos de la radiación , Cycadopsida/crecimiento & desarrollo , Cycadopsida/efectos de la radiación , Desarrollo de la Planta/efectos de la radiación , Reguladores del Crecimiento de las Plantas/metabolismo , Tracheophyta/crecimiento & desarrollo , Tracheophyta/efectos de la radiación , Viridiplantae/crecimiento & desarrollo , Viridiplantae/efectos de la radiación
2.
Int J Mol Sci ; 20(20)2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614592

RESUMEN

As organelles for photosynthesis in green plants, chloroplasts play a vital role in solar energy capture and carbon fixation. The maintenance of normal chloroplast physiological functions is essential for plant growth and development. Low temperature is an adverse environmental stress that affects crop productivity. Low temperature severely affects the growth and development of plants, especially photosynthesis. To date, many studies have reported that chloroplasts are not only just organelles of photosynthesis. Chloroplasts can also perceive chilling stress signals via membranes and photoreceptors, and they maintain their homeostasis and promote photosynthesis by regulating the state of lipid membranes, the abundance of photosynthesis-related proteins, the activity of enzymes, the redox state, and the balance of hormones and by releasing retrograde signals, thus improving plant resistance to low temperatures. This review focused on the potential functions of chloroplasts in fine tuning photosynthesis processes under low-temperature stress by perceiving stress signals, modulating the expression of photosynthesis-related genes, and scavenging excess reactive oxygen species (ROS) in chloroplasts to survive the adverse environment.


Asunto(s)
Cloroplastos/metabolismo , Estrés Fisiológico , Viridiplantae/crecimiento & desarrollo , Ciclo del Carbono , Frío , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Viridiplantae/metabolismo
4.
J Exp Bot ; 70(13): 3401-3414, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31173086

RESUMEN

Phytohormones regulate the plasticity of plant growth and development, and responses to biotic and abiotic stresses. Many hormone signal transduction cascades involve ubiquitination and subsequent degradation of proteins by the 26S proteasome. The conjugation of ubiquitin to a substrate is facilitated by the E1 activating, E2 conjugating, and the substrate-specifying E3 ligating enzymes. The most prevalent type of E3 ligase in plants is the Cullin-RING ligase (CRL)-type, with F-box proteins (FBPs) as the substrate recognition component. The activity of these SKP-Cullin-F-box (SCF) complexes needs to be tightly regulated in time and place. Here, we review the regulation of SCF function in plants on multiple levels, with a focus on the auxin and jasmonate SCF-type receptor complexes. We discuss in particular the relevance of protein-protein interactions and post-translational modifications as mechanisms to keep SCF functioning under control. Additionally, we highlight the unique property of SCFTIR1/AFB and SCFCOI1 to recognize substrates by forming co-receptor complexes. Finally, we explore how engineered selective agonists can be used to study and uncouple the outcomes of the complex auxin and jasmonate signaling networks that are governed by these FBPs.


Asunto(s)
Ciclopentanos/metabolismo , Proteínas F-Box , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Proteínas Ligasas SKP Cullina F-box , Viridiplantae/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Genes de Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Ubiquitinación , Viridiplantae/crecimiento & desarrollo
5.
J Exp Bot ; 70(13): 3415-3424, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31089685

RESUMEN

The Mediator complex is an essential, multisubunit transcriptional coactivator that is highly conserved in eukaryotes. Mediator interacts with gene-specific transcription factors, the RNA polymerase II transcriptional machinery, as well as several other factors involved in transcription, and acts as an integral hub to regulate various aspects of transcription. Recent studies of the plant Mediator complex have established that it functions in diverse aspects of plant development and fitness. Jasmonate (JA) is an oxylipin-derived plant hormone that regulates plant immunity and development. The basic helix-loop-helix transcription factor MYC2, which is a master regulator of JA signaling, orchestrates genome-wide transcriptional reprogramming of plant cells to coordinate defense- and growth-related processes. Here, we review the function of the plant Mediator complex in regulating JA signaling. We focus on the multifunctional Mediator subunit MED25, which emerges as an integrative hub for the transcriptional regulation of jasmonate signaling.


Asunto(s)
Proteínas de Arabidopsis , Ciclopentanos/metabolismo , Proteínas de Unión al ADN , Complejo Mediador , Oxilipinas/metabolismo , Inmunidad de la Planta , Viridiplantae/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Complejo Mediador/genética , Complejo Mediador/metabolismo , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Viridiplantae/crecimiento & desarrollo , Viridiplantae/inmunología
6.
J Exp Bot ; 70(13): 3425-3434, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31099390

RESUMEN

The growth-defense trade-off in plant biology has gained enormous traction in the last two decades, highlighting the importance of understanding how plants deal with two of the greatest challenges for their survival and reproduction. It has been well established that in response to competition signals perceived by informational photoreceptors, shade-intolerant plants typically activate the shade-avoidance syndrome (SAS). In turn, in response to signals of biotic attack, plants activate a suite of defense responses, many of which are directed to minimize the loss of plant tissue to the attacking agent (broadly defined, the defense syndrome, DS). We argue that components of the SAS, including increased elongation, apical dominance, reduced leaf mass per area (LMA), and allocation to roots, are in direct conflict with configurational changes that plants require to maximize defense. We hypothesize that these configurational trade-offs provide a functional explanation for the suppression of components of the DS in response to competition cues. Based on this premise, we discuss recent advances in the understanding of the mechanisms by which informational photoreceptors, by interacting with jasmonic acid (JA) signaling, help the plant to make intelligent allocation and developmental decisions that optimize its configuration in complex biotic contexts.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Fotorreceptores de Plantas/metabolismo , Fitocromo/metabolismo , Viridiplantae , Desarrollo de la Planta/fisiología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/fisiología , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Transducción de Señal , Viridiplantae/crecimiento & desarrollo , Viridiplantae/inmunología , Viridiplantae/metabolismo
7.
J Exp Bot ; 70(8): 2239-2259, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30870564

RESUMEN

The target of rapamycin (TOR)-sucrose non-fermenting 1 (SNF1)-related protein kinase 1 (SnRK1) signaling is an ancient regulatory mechanism that originated in eukaryotes to regulate nutrient-dependent growth. Although the TOR-SnRK1 signaling cascade shows highly conserved functions among eukaryotes, studies in the past two decades have identified many important plant-specific innovations in this pathway. Plants also possess SnRK2 and SnRK3 kinases, which originated from the ancient SnRK1-related kinases and have specialized roles in controlling growth, stress responses and nutrient homeostasis in plants. Recently, an integrative picture has started to emerge in which different SnRKs and TOR kinase are highly interconnected to control nutrient and stress responses of plants. Further, these kinases are intimately involved with phytohormone signaling networks that originated at different stages of plant evolution. In this review, we highlight the evolution and divergence of TOR-SnRK signaling components in plants and their communication with each other as well as phytohormone signaling to fine-tune growth and stress responses in plants.


Asunto(s)
Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR , Evolución Biológica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Homeostasis , Filogenia , Desarrollo de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Viridiplantae/genética , Viridiplantae/crecimiento & desarrollo , Viridiplantae/fisiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-30044417

RESUMEN

Many studies have established that urban greenness is associated with better health outcomes. Yet most studies assess urban greenness with overhead-view measures, such as park area or tree count, which often differs from the amount of greenness perceived by a person at eye-level on the ground. Furthermore, those studies are often criticized for the limitation of residential self-selection bias. In this study, urban greenness was extracted and assessed from profile view of streetscape images by Google Street View (GSV), in conjunction with deep learning techniques. We also explored a unique research opportunity arising in a citywide residential reallocation scheme of Hong Kong to reduce residential self-selection bias. Two multilevel regression analyses were conducted to examine the relationships between urban greenness and (1) the odds of walking for 24,773 public housing residents in Hong Kong, (2) total walking time of 1994 residents, while controlling for potential confounders. The results suggested that eye-level greenness was significantly related to higher odds of walking and longer walking time in both 400 m and 800 m buffers. Distance to the closest Mass Transit Rail (MTR) station was also associated with higher odds of walking. Number of shops was related to higher odds of walking in the 800 m buffer, but not in 400 m. Eye-level greenness, assessed by GSV images and deep learning techniques, can effectively estimate residents' daily exposure to urban greenness, which is in turn associated with their walking behavior. Our findings apply to the entire public housing residents in Hong Kong, because of the large sample size.


Asunto(s)
Aprendizaje Profundo , Planificación Ambiental , Población Urbana , Viridiplantae/crecimiento & desarrollo , Caminata , Adulto , Femenino , Conductas Relacionadas con la Salud , Hong Kong , Vivienda , Humanos , Entrevistas como Asunto , Masculino , Investigación Cualitativa , Características de la Residencia , Encuestas y Cuestionarios
9.
PLoS One ; 13(12): e0209432, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30596699

RESUMEN

Rhizophagus irregularis, an arbuscular mycorrhizal fungus, and Bacillus amyloliquefaciens, a bacterium, are microorganisms that promote plant growth. They associate with plant roots and facilitate nutrient absorption by their hosts, increase resistance against pathogens and pests, and regulate plant growth through phytohormones. In this study, eight local plant species in Finland (Antennaria dioica, Campanula rotundifolia, Fragaria vesca, Geranium sanguineum, Lotus corniculatus, Thymus serpyllum, Trifolium repens, and Viola tricolor) were inoculated with R. irregularis and/or B. amyloliquefaciens in autoclaved substrates to evaluate the plant growth-promoting effects of different plant/microbe combinations under controlled conditions. The eight plant species were inoculated with R. irregularis, B. amyloliquefaciens, or both microbes or were not inoculated as a control. The impact of the microbes on the plants was evaluated by measuring dry shoot weight, colonization rate by the arbuscular mycorrhizal fungus, bacterial population density, and chlorophyll fluorescence using a plant phenotyping facility. Under dual inoculation conditions, B. amyloliquefaciens acted as a "mycorrhiza helper bacterium" to facilitate arbuscular mycorrhizal fungus colonization in all tested plants. In contrast, R. irregularis did not demonstrate reciprocal facilitation of the population density of B. amyloliquefaciens. Dual inoculation with B. amyloliquefaciens and R. irregularis resulted in the greatest increase in shoot weight and photosynthetic efficiency in T. repens and F. vesca.


Asunto(s)
Fotosíntesis/genética , Desarrollo de la Planta/genética , Simbiosis/genética , Biomasa , Fósforo/metabolismo , Especificidad de la Especie , Viridiplantae/genética , Viridiplantae/crecimiento & desarrollo
10.
Funct Integr Genomics ; 18(1): 55-66, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28986655

RESUMEN

Lipopolysaccharide-induced tumor necrosis factor-α (LITAF) is a membrane protein that is highly dependent on correct location to exert transcription factor activity and protein quality control. In humans, LITAF, PIG7 (p53-inducible gene 7), and SIMPLE (small integral membrane protein of the lysosome/late endosome) refer to the same gene, which acts as a tumor suppressor. Several studies have shown that the transcription factor activity and nuclear translocation of LITAF protein are critical for the induction of several immune cells via classical pathways. In plants, LITAF protein corresponds to the plasma membrane protein AtGILP (Arabidopsis thaliana GSH-induced LITAF domain protein). The conservation of LITAF proteins across species and their putative role is still unclear. In this study, we investigate the LITAF-containing proteins, which we call GILP proteins, in Viridiplantae. We identified a total of 59 genes in 46 species, whose gene copies range from one to three. Phylogenetic analysis showed that multiple copies were originated via block duplication posteriorly to monocot and eudicot separation. Analysis of the LITAF domain of GILP proteins allowed the identification of a putative domain signature in Viridiplantae, containing a CXXCX41HXCPXC motif. The subcellular location for the majority of GILP proteins was predicted to be in the plasma membrane, based on a transmembrane domain positioned within the LITAF domain. In silico analysis showed that the GILP genes are neither tissue-specific nor ubiquitously expressed, being responsive to stress conditions. Finally, investigation of the GILP protein network resulted in the identification of genes whose families are known to be involved with biotic and/or abiotic stress responses. Together, the expression modulation of GILP genes associated with their plasma membrane location suggests that they could act in the signaling of biotic/abiotic stress response in plants.


Asunto(s)
Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Viridiplantae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estrés Fisiológico , Viridiplantae/citología , Viridiplantae/genética , Viridiplantae/crecimiento & desarrollo
11.
Trends Plant Sci ; 20(2): 70-1, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25612461

RESUMEN

Patterning of land plant bodies is determined by positioning of cell walls. A crucial event in land plant evolution was the ability to utilize spatial information to direct cell wall deposition. Recent studies of DEK1 in Physcomitrella patens support a role for DEK1 in position dependent cell wall orientation.


Asunto(s)
Calpaína/genética , Evolución Molecular , Proteínas de Plantas/genética , Viridiplantae/fisiología , Bryopsida/citología , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Bryopsida/fisiología , Calpaína/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Proteínas de Plantas/metabolismo , Viridiplantae/genética , Viridiplantae/crecimiento & desarrollo
12.
Evol Dev ; 15(6): 466-74, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24261447

RESUMEN

Multinucleate cells, tissues, or organisms occur in 60 families of land plants and in five otherwise diverse algal lineages (Rhodophyceae, Xanthophyceae, Chlorophyceae, Ulvophyceae, and Charophyceae). Inspection of a morphospace constructed out of eight developmental processes reveals a large number of possible variants of multinucleate cells and organisms that, with two exceptions, are represented by one or more plant species in one or more clades. Thus, most of these permutations of developmental processes exist in nature. Inspection of the morphospace also shows how the siphonous body plan (a multinucleate cell with the capacity for indeterminate growth in size) can theoretically serve as the direct progenitor of a multicellular organism by a process similar to segregative cell division observed in siphonocladean algae. Using molecular phylogenies of algal clades, different evolutionary scenarios are compared to see how the multicellular condition may have evolved from a multinucleate unicellular progenitor. We also show that the siphonous progenitor of a multicellular organism has previously passed through the alignment-of-fitness phase (in which genetic similarity among cells/nuclei minimizes internal genomic conflict) and the export-of-fitness phase (in which genetically similar cells/nuclei collaborate to achieve a reproductively integrated multicellular organism). All that is theoretically required is the evolutionary acquisition of the capacity to compartmentalize its cytoplasm.


Asunto(s)
Evolución Biológica , Eucariontes/genética , Viridiplantae/citología , Viridiplantae/genética , División Celular , Eucariontes/clasificación , Eucariontes/citología , Eucariontes/crecimiento & desarrollo , Plantas/metabolismo , Viridiplantae/clasificación , Viridiplantae/crecimiento & desarrollo
13.
Microb Ecol ; 63(1): 74-84, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21898102

RESUMEN

Microbes in supraglacial ecosystems have been proposed to be significant contributors to regional and possibly global carbon cycling, and quantifying the biogeochemical cycling of carbon in glacial ecosystems is of great significance for global carbon flow estimations. Here we present data on microbial abundance and productivity, collected along a transect across the ablation zone of the Greenland ice sheet (GrIS) in summer 2010. We analyse the relationships between the physical, chemical and biological variables using multivariate statistical analysis. Concentrations of debris-bound nutrients increased with distance from the ice sheet margin, as did both cell numbers and activity rates before reaching a peak (photosynthesis) or a plateau (respiration, abundance) between 10 and 20 km from the margin. The results of productivity measurements suggest an overall net autotrophy on the GrIS and support the proposed role of ice sheet ecosystems in carbon cycling as regional sinks of CO(2) and places of production of organic matter that can be a potential source of nutrients for downstream ecosystems. Principal component analysis based on chemical and biological data revealed three clusters of sites, corresponding to three 'glacier ecological zones', confirmed by a redundancy analysis (RDA) using physical data as predictors. RDA using data from the largest 'bare ice zone' showed that glacier surface slope, a proxy for melt water flow, accounted for most of the variation in the data. Variation in the chemical data was fully explainable by the determined physical variables. Abundance of phototrophic microbes and their proportion in the community were identified as significant controls of the carbon cycling-related microbial processes.


Asunto(s)
Bacterias/crecimiento & desarrollo , Cubierta de Hielo/microbiología , Viridiplantae/crecimiento & desarrollo , Procesos Autotróficos , Técnicas de Tipificación Bacteriana , Cianobacterias/crecimiento & desarrollo , Ecosistema , Groenlandia , Procesos Heterotróficos , Análisis Multivariante , Procesos Fototróficos , Virus/crecimiento & desarrollo
14.
Proc Natl Acad Sci U S A ; 107(45): 19362-7, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-20974978

RESUMEN

Downscaling from the predictions of general climate models is critical to current strategies for mitigating species loss caused by climate change. A key impediment to this downscaling is that we lack a fully developed understanding of how variation in physical, biological, or land-use characteristics mediates the effects of climate change on ecological communities within regions. We analyzed change in understory herb communities over a 60-y period (1949/1951-2007/2009) in a complex montane landscape (the Siskiyou Mountains, Oregon) where mean temperatures have increased 2 °C since 1948, similar to projections for other terrestrial communities. Our 185 sites included primary and secondary-growth lower montane forests (500-1.200 m above sea level) and primary upper montane to subalpine forests (1,500-2,100 m above sea level). In lower montane forests, regardless of land-use history, we found multiple herb-community changes consistent with an effectively drier climate, including lower mean specific leaf area, lower relative cover by species of northern biogeographic affinity, and greater compositional resemblance to communities in southerly topographic positions. At higher elevations we found qualitatively different and more modest changes, including increases in herbs of northern biogeographic affinity and in forest canopy cover. Our results provide community-level validation of predicted nonlinearities in climate change effects.


Asunto(s)
Ecología , Calentamiento Global , Árboles/crecimiento & desarrollo , Viridiplantae/crecimiento & desarrollo , Altitud , Clima
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...