Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Virol J ; 20(1): 187, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37605141

RESUMEN

BACKGROUND: Influenza A virus (IAV) causes respiratory disease in pigs and is a major concern for public health. Vaccination of pigs is the most successful measure to mitigate the impact of the disease in the herds. Influenza-based virosome is an effective immunomodulating carrier that replicates the natural antigen presentation pathway and has tolerability profile due to their purity and biocompatibility. METHODS: This study aimed to develop a polyvalent virosome influenza vaccine containing the hemagglutinin and neuraminidase proteins derived from the swine IAVs (swIAVs) H1N1, H1N2 and H3N2 subtypes, and to investigate its effectiveness in mice as a potential vaccine for swine. Mice were immunized with two vaccine doses (1 and 15 days), intramuscularly and intranasally. At 21 days and eight months later after the second vaccine dose, mice were euthanized. The humoral and cellular immune responses in mice vaccinated intranasally or intramuscularly with a polyvalent influenza virosomal vaccine were investigated. RESULTS: Only intramuscular vaccination induced high hemagglutination inhibition (HI) titers. Seroconversion and seroprotection (> 4-fold rise in HI antibody titers, reaching a titer of ≥ 1:40) were achieved in 80% of mice (intramuscularly vaccinated group) at 21 days after booster immunization. Virus-neutralizing antibody titers against IAV were detected at 8 months after vaccination, indicating long-lasting immunity. Overall, mice immunized with the virosome displayed greater ability for B, effector-T and memory-T cells from the spleen to respond to H1N1, H1N2 and H3N2 antigens. CONCLUSIONS: All findings showed an efficient immune response against IAVs in mice vaccinated with a polyvalent virosome-based influenza vaccine.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Vacunas de Virosoma , Lavado Broncoalveolar , Subtipo H1N1 del Virus de la Influenza A , Subtipo H1N2 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Bazo/citología , Bazo/inmunología , Vacunas Combinadas/administración & dosificación , Vacunas de Virosoma/administración & dosificación , Vacunas de Virosoma/inmunología , Virosomas/ultraestructura , Humanos , Animales , Ratones
2.
Virology ; 537: 186-197, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31505320

RESUMEN

Porcine circovirus 2 (PCV2) has a major impact on the swine industry. Eight PCV2 genotypes (a-h) have been identified using capsid sequence analysis. PCV2d has been designated as the emerging genotype. The cryo-electron microscopy molecular envelope of PCV2d virus-like particles identifies differences between PCV2a, b and d genotypes that accompany the emergence of PCV2b from PCV2a, and PCV2d from PCV2b. These differences indicate that sequence analysis of genotypes is insufficient, and that it is important to determine the PCV2 capsid structure as the virus evolves. Structure-based sequence comparison demonstrate that each genotype possesses a unique combination of amino acids located on the surface of the capsid that undergo substitution. We also demonstrate that the capsid N-terminus moves in response to increasing amount of nucleic acid packaged into the capsid. Furthermore, we model a tetranucleotide between the 5- and 2-fold axes of symmetry that appears to be responsible for capsid stability.


Asunto(s)
Cápside/ultraestructura , Circovirus/ultraestructura , Virosomas/ultraestructura , Sustitución de Aminoácidos , Circovirus/genética , Microscopía por Crioelectrón , Genotipo , Virosomas/genética
3.
J Virol Methods ; 261: 156-159, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30145180

RESUMEN

In this study, we generated recombinant virus-like particles (VLPs) against family Filoviridae, genus Ebolavirus, species Zaire ebolavirus, strain Makona (EBOV) in Drosophila melanogaster Schneider 2 (S2) cells using the EBOV Makona. S2 cells were cotransfected with four viral plasmids encoding EBOV Makona proteins and protein expression was analyzed by immunoblotting. We confirmed that EBOV Makona proteins were successfully expressed in S2 cells. Additionally, we further examined the formation of intracellular and extracellular VLPs by electron microscopy. eVLPs were produced by sucrose gradient ultracentrifugation of S2 cells transfected with EBOV Makona genes, and production of VLPs was confirmed by immunoblot analysis. Collectively, our findings showed that the S2 cell system could be a promising tool for efficient production of eVLPs.


Asunto(s)
Ebolavirus/genética , Recombinación Genética , Virosomas/genética , Virosomas/metabolismo , Animales , Línea Celular , Centrifugación por Gradiente de Densidad , Drosophila melanogaster , Ebolavirus/ultraestructura , Expresión Génica , Immunoblotting , Microscopía Electrónica , Transfección , Proteínas Virales/análisis , Virosomas/aislamiento & purificación , Virosomas/ultraestructura
4.
Arch Virol ; 162(12): 3863-3868, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28866835

RESUMEN

In this study, we successfully produced VLPs derived from full-length or chimeric VP1 of a documented GII.6 strain. Trypsin digestion of purified VLPs led to total cleavage of VP1, while the integrity of assembled VLPs was not affected. In vitro VLP-histo-blood group antigen (HBGA) binding and binding blockade assays indicated that trypsin digestion enhanced the binding of GII.6 VLPs to salivary HBGAs and that this binding could only be blocked by serum produced against a homologous strain. The data regarding the assembly, morphology and binding patterns of GII.6 NoV VLPs presented here might be useful for further study of GII.6 NoVs.


Asunto(s)
Proteínas de la Cápside/genética , Norovirus/genética , Virosomas/genética , Virosomas/metabolismo , Antígenos de Grupos Sanguíneos/metabolismo , Humanos , Multimerización de Proteína , Virosomas/ultraestructura , Ensamble de Virus , Acoplamiento Viral
5.
Virology ; 510: 216-223, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28750325

RESUMEN

In minute virus of mice (MVM) capsids, icosahedral five-fold channels serve as portals mediating genome packaging, genome release, and the phased extrusion of viral peptides. Previous studies suggest that residues L172 and V40 are essential for channel function. The structures of MVMi wildtype, and mutant L172T and V40A virus-like particles (VLPs) were solved from cryo-EM data. Two constriction points, termed the mid-gate and inner-gate, were observed in the channels of wildtype particles, involving residues L172 and V40 respectively. While the mid-gate of V40A VLPs appeared normal, in L172T adjacent channel walls were altered, and in both mutants there was major disruption of the inner-gate, demonstrating that direct L172:V40 bonding is essential for its structural integrity. In wildtype particles, residues from the N-termini of VP2 map into claw-like densities positioned below the channel opening, which become disordered in the mutants, implicating both L172 and V40 in the organization of VP2 N-termini.


Asunto(s)
Cápside/ultraestructura , Microscopía por Crioelectrón , Virus Diminuto del Ratón/ultraestructura , Mutación , Virosomas/ultraestructura
6.
PLoS One ; 12(4): e0175633, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28423032

RESUMEN

A putative novel rhabdovirus (SfRV) was previously identified in a Spodoptera frugiperda cell line (Sf9 cells [ATCC CRL-1711 lot 58078522]) by next generation sequencing and extensive bioinformatic analysis. We performed an extensive analysis of our Sf9 cell bank (ATCC CRL-1711 lot 5814 [Sf9L5814]) to determine whether this virus was already present in cells obtained from ATCC in 1987. Inverse PCR of DNA isolated from Sf9 L5814 cellular DNA revealed integration of SfRV sequences in the cellular genome. RT-PCR of total RNA showed a deletion of 320 nucleotides in the SfRV RNA that includes the transcriptional motifs for genes X and L. Concentrated cell culture supernatant was analyzed by sucrose density gradient centrifugation and revealed a single band at a density of 1.14 g/ml. This fraction was further analysed by electron microscopy and showed amorphous and particulate debris that did not resemble a rhabdovirus in morphology or size. SDS-PAGE analysis confirmed that the protein composition did not contain the typical five rhabdovirus structural proteins and LC-MS/MS analysis revealed primarily of exosomal marker proteins, the SfRV N protein, and truncated forms of SfRV N, P, and G proteins. The SfRV L gene fragment RNA sequence was recovered from the supernatant after ultracentrifugation of the 1.14 g/ml fraction treated with diethyl ether suggesting that the SfRV L gene fragment sequence is not associated with a diethyl ether resistant nucleocapsid. Interestingly, the 1.14 g/ml fraction was able to transfer baculovirus DNA into Sf9L5814 cells, consistent with the presence of functional exosomes. Our results demonstrate the absence of viral particles in ATCC CRL-1711 lot 5814 Sf9 cells in contrast to a previous study that suggested the presence of infectious rhabdoviral particles in Sf9 cells from a different lot. This study highlights how cell lines with different lineages may present different virosomes and therefore no general conclusions can be drawn across Sf9 cells from different laboratories.


Asunto(s)
Genoma Viral , ARN Viral/genética , Rhabdoviridae/genética , Células Sf9/virología , Virosomas/genética , Animales , Baculoviridae/genética , Baculoviridae/ultraestructura , Centrifugación por Gradiente de Densidad , ADN/genética , ADN/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Viral/aislamiento & purificación , Rhabdoviridae/ultraestructura , Spodoptera , Virión/genética , Virión/ultraestructura , Virosomas/aislamiento & purificación , Virosomas/ultraestructura
7.
J Virol ; 91(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28446665

RESUMEN

HIV-1 is rare among viruses for having a low number of envelope glycoprotein (Env) spikes per virion, i.e., ∼7 to 14. This exceptional feature has been associated with avoidance of humoral immunity, i.e., B cell activation and antibody neutralization. Virus-like particles (VLPs) with increased density of Env are being pursued for vaccine development; however, these typically require protein engineering that alters Env structure. Here, we used instead a strategy that targets the producer cell. We employed fluorescence-activated cell sorting (FACS) to sort for cells that are recognized by trimer cross-reactive broadly neutralizing antibody (bnAb) and not by nonneutralizing antibodies. Following multiple iterations of FACS, cells and progeny virions were shown to display higher levels of antigenically correct Env in a manner that correlated between cells and cognate virions (P = 0.027). High-Env VLPs, or hVLPs, were shown to be monodisperse and to display more than a 10-fold increase in spikes per particle by electron microscopy (average, 127 spikes; range, 90 to 214 spikes). Sequencing revealed a partial truncation in the C-terminal tail of Env that had emerged in the sort; however, iterative rounds of "cell factory" selection were required for the high-Env phenotype. hVLPs showed greater infectivity than standard pseudovirions but largely similar neutralization sensitivity. Importantly, hVLPs also showed superior activation of Env-specific B cells. Hence, high-Env HIV-1 virions, obtained through selection of producer cells, represent an adaptable platform for vaccine design and should aid in the study of native Env.IMPORTANCE The paucity of spikes on HIV is a unique feature that has been associated with evasion of the immune system, while increasing spike density has been a goal of vaccine design. Increasing the density of Env by modifying it in various ways has met with limited success. Here, we focused instead on the producer cell. Cells that stably express HIV spikes were screened on the basis of high binding by bnAbs and low binding by nonneutralizing antibodies. Levels of spikes on cells correlated well with those on progeny virions. Importantly, high-Env virus-like particles (hVLPs) were produced with a manifest array of well-defined spikes, and these were shown to be superior in activating desirable B cells. Our study describes HIV particles that are densely coated with functional spikes, which should facilitate the study of HIV spikes and their development as immunogens.


Asunto(s)
VIH-1/ultraestructura , Virión/ultraestructura , Virosomas/ultraestructura , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Linfocitos B/inmunología , Células Cultivadas , VIH-1/crecimiento & desarrollo , VIH-1/inmunología , Humanos , Microscopía Electrónica de Transmisión , Pruebas de Neutralización , Virosomas/inmunología , Virosomas/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
8.
J Virol Methods ; 243: 146-150, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28131868

RESUMEN

Although porcine circovirus type 2 (PCV2) virus-like particles (VLPs) have been successfully harvested from various protein expression systems, conditions to promote their stability and integrity during long-term storage have not been well defined since only the intact VLPs, instead of the monomeric capsid protein (Cap), can induce neutralizing antibodies in pigs in previous studies. In this study, freshly prepared PCV2 VLPs were stored in several media (various concentrations of NaCl, sorbitol, sucrose and trehalose) at three temperatures (4°C, -20°C and -80°C) and their stability and integration were evaluated after 7 month. Addition of 15% trehalose in storage buffer promoted long-term preservation of PCV2 VLPs. In contrast, storage buffer with 5% osmolytes (sucrose, trehalose and sorbitol) did not confer stabilization for long-term storage. These refined storage conditions for stabilization of PCV2 VLPs should enhance their use in vaccines.


Asunto(s)
Circovirus/ultraestructura , Almacenaje de Medicamentos/métodos , Virosomas/ultraestructura , Animales , Circovirus/inmunología , Crioprotectores , Microscopía Electrónica de Transmisión , Cloruro de Sodio/metabolismo , Porcinos , Temperatura , Vacunas Virales/inmunología , Virosomas/inmunología
9.
J Virol Methods ; 236: 77-86, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27435337

RESUMEN

The causative agent of Porcine Reproductive and Respiratory Syndrome (PRRS) is an enveloped ssRNA (+) virus belonging to the Arteriviridae family. Gp5 and M proteins form disulfide-linked heterodimers that constitute the major components of PRRSV envelope. Gp2, Gp3, Gp4 and E are the minor structural proteins, being the first three incorporated as multimeric complexes in the virus surface. The disease has become one of the most important causes of economic losses in the swine industry. Despite efforts to design an effective vaccine, the available ones allow only partial protection. In the last years, VLPs have become good vaccine alternatives because of safety issues and their potential to activate both branches of the immunological response. The characteristics of recombinant baculoviruses as heterologous expression system have been exploited for the production of VLPs of a wide variety of viruses. In this work, two multiple baculovirus expression vectors (BEVs) with PRRS virus envelope proteins were engineered in order to generate PRRS VLPs: on the one hand, Gp5 and M cDNAs were cloned to generate the pBAC-Gp5M vector; on the other hand, Gp2, Gp3, Gp4 and E cDNAs have been cloned to generate the pBAC-Gp234E vector. The corresponding recombinant baculoviruses BAC-Gp5M and BAC-Gp234E were employed to produce two types of VLPs: basic Gp5M VLPs, by the simultaneous expression of Gp5 and M proteins; and complete VLPs, by the co-expression of the six PRRS proteins after co-infection. The characterization of VLPs by Western blot confirmed the presence of the recombinant proteins using the available specific antibodies (Abs). The analysis by Electron microscopy showed that the two types of VLPs were indistinguishable between them, being similar in shape and size to the native PRRS virus. This system represents a potential alternative for vaccine development and a useful tool to study the implication of specific PRRS proteins in the response against the virus.


Asunto(s)
Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Proteínas Recombinantes/análisis , Proteínas Virales/análisis , Virosomas/química , Virosomas/aislamiento & purificación , Animales , Baculoviridae/genética , Western Blotting , Expresión Génica , Vectores Genéticos , Microscopía Electrónica de Transmisión , Proteínas Recombinantes/genética , Células Sf9 , Spodoptera , Proteínas Virales/genética , Virosomas/ultraestructura
10.
J Virol ; 90(18): 8074-84, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27356903

RESUMEN

UNLABELLED: The Gag protein is the main retroviral structural protein, and its expression alone is usually sufficient for production of virus-like particles (VLPs). In this study, we sought to investigate-in parallel comparative analyses-Gag cellular distribution, VLP size, and basic morphological features using Gag expression constructs (Gag or Gag-YFP, where YFP is yellow fluorescent protein) created from all representative retroviral genera: Alpharetrovirus, Betaretrovirus, Deltaretrovirus, Epsilonretrovirus, Gammaretrovirus, Lentivirus, and Spumavirus. We analyzed Gag cellular distribution by confocal microscopy, VLP budding by thin-section transmission electron microscopy (TEM), and general morphological features of the VLPs by cryogenic transmission electron microscopy (cryo-TEM). Punctate Gag was observed near the plasma membrane for all Gag constructs tested except for the representative Beta- and Epsilonretrovirus Gag proteins. This is the first report of Epsilonretrovirus Gag localizing to the nucleus of HeLa cells. While VLPs were not produced by the representative Beta- and Epsilonretrovirus Gag proteins, the other Gag proteins produced VLPs as confirmed by TEM, and morphological differences were observed by cryo-TEM. In particular, we observed Deltaretrovirus-like particles with flat regions of electron density that did not follow viral membrane curvature, Lentivirus-like particles with a narrow range and consistent electron density, suggesting a tightly packed Gag lattice, and Spumavirus-like particles with large envelope protein spikes and no visible electron density associated with a Gag lattice. Taken together, these parallel comparative analyses demonstrate for the first time the distinct morphological features that exist among retrovirus-like particles. Investigation of these differences will provide greater insights into the retroviral assembly pathway. IMPORTANCE: Comparative analysis among retroviruses has been critically important in enhancing our understanding of retroviral replication and pathogenesis, including that of important human pathogens such as human T-cell leukemia virus type 1 (HTLV-1) and HIV-1. In this study, parallel comparative analyses have been used to study Gag expression and virus-like particle morphology among representative retroviruses in the known retroviral genera. Distinct differences were observed, which enhances current knowledge of the retroviral assembly pathway.


Asunto(s)
Productos del Gen gag/metabolismo , Productos del Gen gag/ultraestructura , Retroviridae/genética , Virosomas/metabolismo , Virosomas/ultraestructura , Membrana Celular/química , Núcleo Celular/química , Microscopía por Crioelectrón , Productos del Gen gag/genética , Células HeLa , Humanos , Microscopía Confocal , Microscopía Electrónica de Transmisión , Virosomas/genética
11.
J Gen Virol ; 97(8): 1865-1876, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27147296

RESUMEN

An effective immune response against hepatitis C virus (HCV) requires the early development of multi-specific class 1 CD8+ and class II CD4+ T-cells together with broad neutralizing antibody responses. We have produced mammalian-cell-derived HCV virus-like particles (VLPs) incorporating core, E1 and E2 of HCV genotype 1a to produce such immune responses. Here we describe the biochemical and morphological characterization of the HCV VLPs and study HCV core-specific T-cell responses to the particles. The E1 and E2 glycoproteins in HCV VLPs formed non-covalent heterodimers and together with core protein assembled into VLPs with a buoyant density of 1.22 to 1.28 g cm-3. The HCV VLPs could be immunoprecipited with anti-ApoE and anti-ApoC. On electron microscopy, the VLPs had a heterogeneous morphology and ranged in size from 40 to 80 nm. The HCV VLPs demonstrated dose-dependent binding to murine-derived dendritic cells and the entry of HCV VLPs into Huh7 cells was blocked by anti-CD81 antibody. Vaccination of BALB/c mice with HCV VLPs purified from iodixanol gradients resulted in the production of neutralizing antibody responses while vaccination of humanized MHC class I transgenic mice resulted in the prodution of HCV core-specific CD8+ T-cell responses. Furthermore, IgG purified from the sera of patients chronically infected with HCV genotypes 1a and 3a blocked the binding and entry of the HCV VLPs into Huh7 cells. These results show that our mammalian-cell-derived HCV VLPs induce humoral and HCV-specific CD8+ T-cell responses and will have important implications for the development of a preventative vaccine for HCV.


Asunto(s)
Hepacivirus/inmunología , Anticuerpos contra la Hepatitis C/sangre , Linfocitos T/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Línea Celular , Células Cultivadas , Hepacivirus/genética , Hepatocitos/virología , Humanos , Ratones Endogámicos BALB C , Ratones Transgénicos , Microscopía Electrónica , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/aislamiento & purificación , Proteínas del Núcleo Viral/genética , Proteínas del Núcleo Viral/inmunología , Proteínas del Núcleo Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo , Virosomas/genética , Virosomas/inmunología , Virosomas/metabolismo , Virosomas/ultraestructura
12.
Nanoscale ; 8(15): 7933-41, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27006101

RESUMEN

Immunostimulating reconstituted influenza virosomes (IRIVs) are liposomes with functional viral envelope glycoproteins: influenza virus hemagglutinin (HA) and neuraminidase intercalated in the phospholipid bilayer. Here we address the fusion of IRIVs to artificial supported lipid membranes assembled on polyelectrolyte multilayers on both colloidal particles and planar substrates. The R18 assay is used to prove the IRIV fusion in dependence of pH, temperature and HA concentration. IRIVs display a pH-dependent fusion mechanism, fusing at low pH in analogy to the influenza virus. The pH dependence is confirmed by the Quartz Crystal Microbalance technique. Atomic Force Microscopy imaging shows that at low pH virosomes are integrated in the supported membrane displaying flattened features and a reduced vertical thickness. Virosome fusion offers a new strategy for transferring biological functions on artificial supported membranes with potential applications in targeted delivery and sensing.


Asunto(s)
Virosomas/química , Bioingeniería , Coloides , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Humanos , Concentración de Iones de Hidrógeno , Subtipo H1N1 del Virus de la Influenza A/química , Fusión de Membrana , Lípidos de la Membrana/química , Membranas Artificiales , Microscopía de Fuerza Atómica , Nanopartículas/química , Nanopartículas/ultraestructura , Tecnicas de Microbalanza del Cristal de Cuarzo , Virosomas/ultraestructura
13.
J Virol ; 90(3): 1169-77, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26537684

RESUMEN

UNLABELLED: Chikungunya virus is a positive-stranded RNA alphavirus. Structures of chikungunya virus-like particles in complex with strongly neutralizing antibody Fab fragments (8B10 and 5F10) were determined using cryo-electron microscopy and X-ray crystallography. By fitting the crystallographically determined structures of these Fab fragments into the cryo-electron density maps, we show that Fab fragments of antibody 8B10 extend radially from the viral surface and block receptor binding on the E2 glycoprotein. In contrast, Fab fragments of antibody 5F10 bind the tip of the E2 B domain and lie tangentially on the viral surface. Fab 5F10 fixes the B domain rigidly to the surface of the virus, blocking exposure of the fusion loop on glycoprotein E1 and therefore preventing the virus from becoming fusogenic. Although Fab 5F10 can neutralize the wild-type virus, it can also bind to a mutant virus without inhibiting fusion or attachment. Although the mutant virus is no longer able to propagate by extracellular budding, it can, however, enter the next cell by traveling through junctional complexes without being intercepted by a neutralizing antibody to the wild-type virus, thus clarifying how cell-to-cell transmission can occur. IMPORTANCE: Alphaviral infections are transmitted mainly by mosquitoes. Chikungunya virus (CHIKV), which belongs to the Alphavirus genus, has a wide distribution in the Old World that has expanded in recent years into the Americas. There are currently no vaccines or drugs against alphaviral infections. Therefore, a better understanding of CHIKV and its associated neutralizing antibodies will aid in the development of effective treatments.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Virus Chikungunya/inmunología , Virus Chikungunya/ultraestructura , Virosomas/inmunología , Virosomas/ultraestructura , Virus Chikungunya/química , Virus Chikungunya/fisiología , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Fragmentos Fab de Inmunoglobulinas/metabolismo , Modelos Moleculares , Unión Proteica , Virosomas/química , Acoplamiento Viral
14.
J Virol ; 90(5): 2664-75, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26699644

RESUMEN

UNLABELLED: The capsid protein (VP1) of all caliciviruses forms an icosahedral particle with two principal domains, shell (S) and protruding (P) domains, which are connected via a flexible hinge region. The S domain forms a scaffold surrounding the nucleic acid, while the P domains form a homodimer that interacts with receptors. The P domain is further subdivided into two subdomains, termed P1 and P2. The P2 subdomain is likely an insertion in the P1 subdomain; consequently, the P domain is divided into the P1-1, P2, and P1-2 subdomains. In order to investigate capsid antigenicity, N-terminal (N-term)/S/P1-1 and P2/P1-2 were switched between two sapovirus genotypes GI.1 and GI.5. The chimeric VP1 constructs were expressed in insect cells and were shown to self-assemble into virus-like particles (VLPs) morphologically similar to the parental VLPs. Interestingly, the chimeric VLPs had higher levels of cross-reactivities to heterogeneous antisera than the parental VLPs. In order to better understand the antigenicity from a structural perspective, we determined an intermediate-resolution (8.5-Å) cryo-electron microscopy (cryo-EM) structure of a chimeric VLP and developed a VP1 homology model. The cryo-EM structure revealed that the P domain dimers were raised slightly (∼5 Å) above the S domain. The VP1 homology model allowed us predict the S domain (67-229) and P1-1 (229-280), P2 (281-447), and P1-2 (448-567) subdomains. Our results suggested that the raised P dimers might expose immunoreactive S/P1-1 subdomain epitopes. Consequently, the higher levels of cross-reactivities with the chimeric VLPs resulted from a combination of GI.1 and GI.5 epitopes. IMPORTANCE: We developed sapovirus chimeric VP1 constructs and produced the chimeric VLPs in insect cells. We found that both chimeric VLPs had a higher level of cross-reactivity against heterogeneous VLP antisera than the parental VLPs. The cryo-EM structure of one chimeric VLP (Yokote/Mc114) was solved to 8.5-Å resolution. A homology model of the VP1 indicated for the first time the putative S and P (P1-1, P2, and P1-2) domains. The overall structure of Yokote/Mc114 contained features common among other caliciviruses. We showed that the P2 subdomain was mainly involved in the homodimeric interface, whereas a large gap between the P1 subdomains had fewer interactions.


Asunto(s)
Microscopía por Crioelectrón , Sapovirus/química , Sapovirus/ultraestructura , Virosomas/química , Virosomas/ultraestructura , Secuencia de Aminoácidos , Anticuerpos Antivirales/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Antígenos Virales/metabolismo , Antígenos Virales/ultraestructura , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/ultraestructura , Reacciones Cruzadas , Datos de Secuencia Molecular , Multimerización de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Recombinación Genética , Sapovirus/genética , Sapovirus/inmunología , Virosomas/genética , Virosomas/inmunología
15.
Virol J ; 12: 177, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26502988

RESUMEN

BACKGROUND: Virus-like particle (VLP) technology is considered one of the most promising approaches in animal vaccines, due to the intrinsic immunogenic properties as well as high safety profile of VLPs. In this study, we developed a VLP vaccine against infectious bursal disease virus (IBDV), which causes morbidity and mortality in chickens, by expressing a baculovirus in insect cells. METHODS: To improve the self-proteolytic processing of precursor polyprotein (PP), we constructed a recombinant baculovirus transfer vector that co-expresses PP and the VP4 protease gene of IBDV. RESULTS: Expression and VLP assembly of recombinant proteins and antigenicity of the VLP were examined by Western blotting, ELISA, and transmission electron microscopy. In animal experiments, vaccination with the recombinant VLP induced strong and uniform humoral immunity and provided complete protection against challenge with very virulent (vv) IBDV in SPF chickens (n = 12). As determined by the bursa of Fabricius (BF)/body weight (B/BW) ratio, the protection against post-challenge bursal atrophy was significantly higher (P < 0.001) in VLP-vaccinated birds than in non-vaccinated controls. CONCLUSIONS: Since the protective efficacy of the VLP vaccine was comparable to that of a commercially available inactivated vaccine, the recombinant VLP merits further investigation as an alternative means of protection against vvIBD.


Asunto(s)
Infecciones por Birnaviridae/veterinaria , Virus de la Enfermedad Infecciosa de la Bolsa/inmunología , Enfermedades de las Aves de Corral/prevención & control , Vacunas de Partículas Similares a Virus/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Baculoviridae/genética , Infecciones por Birnaviridae/patología , Infecciones por Birnaviridae/prevención & control , Western Blotting , Bolsa de Fabricio/patología , Línea Celular , Pollos , Ensayo de Inmunoadsorción Enzimática , Vectores Genéticos , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Virus de la Enfermedad Infecciosa de la Bolsa/metabolismo , Insectos , Microscopía Electrónica de Transmisión , Poliproteínas , Enfermedades de las Aves de Corral/patología , Multimerización de Proteína , Resultado del Tratamiento , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/ultraestructura , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Virosomas/genética , Virosomas/metabolismo , Virosomas/ultraestructura
16.
Virus Res ; 210: 8-17, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26160190

RESUMEN

Dromedary camel hepatitis E virus (DcHEV), a novel hepatitis E virus, has been identified in dromedary camels in Dubai, United Arab Emirates. The antigenicity, pathogenicity and epidemiology of this virus have been unclear. Here we first used a recombinant baculovirus expression system to express the 13 and 111 N-terminus amino-acid-truncated DcHEV ORF2 protein in insect Tn5 cells, and we obtained two types of virus-like particles (VLPs) with densities of 1.300 g/cm(3) and 1.285 g/cm(3), respectively. The small VLPs (Dc4sVLPs) were estimated to be 24 nm in diameter, and were assembled by a protein with the molecular mass 53 kDa. The large VLPs (Dc3nVLPs and Dc4nVLPs) were 35 nm in diameter, and were assembled by a 64-kDa protein. An antigenic analysis demonstrated that DcHEV was cross-reactive with G1, G3-G6, ferret and rat HEVs, and DcHEV showed a stronger cross-reactivity to G1 G3-G6 HEV than it did to rat and ferret HEV. In addition, the antibody against DcHEV-LPs neutralized G1 and G3 HEV in a cell culture system, suggesting that the serotypes of these HEVs are identical. We also found that the amino acid residue Met-358 affects the small DcHEV-LPs assembly.


Asunto(s)
Virus de la Hepatitis E/metabolismo , Multimerización de Proteína , Proteínas Virales/metabolismo , Virosomas/metabolismo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/análisis , Baculoviridae , Camelus , Línea Celular , Reacciones Cruzadas , Femenino , Hurones , Vectores Genéticos , Virus de la Hepatitis E/clasificación , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/inmunología , Insectos , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Peso Molecular , Ratas Wistar , Análisis de Secuencia de ADN , Emiratos Árabes Unidos , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/inmunología , Virosomas/química , Virosomas/genética , Virosomas/ultraestructura
17.
J Gen Virol ; 96(Pt 5): 1006-1014, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25593161

RESUMEN

The prM glycoprotein is thought to be a chaperone for the proper folding, membrane association and assembly of the envelope protein (E) of flaviviruses. The prM-E and E proteins of the Japanese encephalitis virus (JEV) were expressed in insect cells using both the baculovirus-expression system and the transient expression method. Protein expression was analysed by Western blotting and the cytopathic effect was observed by microscopy. In the baculovirus-expression system the E protein, with or without the prM protein, induced syncytial formation in Sf9 cells. Transient expression of prM-E also induced syncytia in Sf9 cells. Immunofluorescence revealed that in presence of prM, E proteins were endoplasmic reticulum-like in distribution, while in the absence of prM, E proteins were located on the cell surface. Sucrose gradient sedimentation and Western blot analysis indicated that the E protein expressed with or without the prM protein was secreted into the culture medium in particulate form. The formation of virus-like particles (VLPs) in the medium was confirmed by electron microscopy and immunoelectron microscopy. The results suggest that the E protein of JEV in the absence of prM, retained its fusion ability, by either cell surface expression or formation of VLPs. Moreover, based on the observation that co-expression of prM-E in Sf9 cells induced considerable syncytial formation, a novel, safe and simple antiviral screening approach is proposed for studying inhibitory antibodies, peptides or small molecules targeting the JEV E protein.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/genética , Células Gigantes/virología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Multimerización de Proteína , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Virosomas/metabolismo , Animales , Baculoviridae/genética , Western Blotting , Efecto Citopatogénico Viral , Expresión Génica , Vectores Genéticos , Microscopía , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Virosomas/ultraestructura
18.
J Med Virol ; 87(1): 102-11, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24797918

RESUMEN

In this study, stable high-five insect cell line constitutively expressing rotavirus (RV) VP2 was co-transfected with VP6 and VP7-recombinant plasmids. The presence of RV proteins in stably transfected high-five cells was verified by molecular and protein analyses. To yield self-assembled triple-layered RV-like particles (tlRLPs), a stable insect high-five cell line was generated to produce RV VP6 and VP7 besides VP2. Self-assembled tlRLPs were observed by transmission electron microscopy (TEM), and enzyme-linked immunosorbent assay (ELISA) was used to assess their antigenicity in vivo. The results suggest that the stable transfected high-five cells are able to generate tlRLPs with the efficient antigenicity.


Asunto(s)
Antígenos Virales/metabolismo , Proteínas de la Cápside/metabolismo , Vacunas contra Rotavirus/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Virosomas/metabolismo , Animales , Anticuerpos Antivirales/sangre , Antígenos Virales/genética , Proteínas de la Cápside/genética , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Femenino , Expresión Génica , Insectos , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Multimerización de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vacunas contra Rotavirus/administración & dosificación , Vacunas contra Rotavirus/genética , Vacunas contra Rotavirus/aislamiento & purificación , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/aislamiento & purificación , Virosomas/ultraestructura
19.
Hum Vaccin Immunother ; 10(8): 2303-11, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25424936

RESUMEN

We sought to develop an IL-33 vaccine and evaluate its efficacy in a mouse model of asthma. The full-length molecules of putative mature IL-33 were inserted into the immunodominant epitope region of hepatitis B core antigen using gene recombination techniques. The expressed chimeric protein presented as virus-like particles (VLPs) under observation using an electron microscopy. To investigate immunization characteristics of the VLPs, mice were immunized by using different doses, adjuvants, and routes. The VLPs induced sustained and high titers of IL-33-specific IgG and IgA even without the use of a conventional adjuvant, and the lowered ratio of IgG1/IgG2a in vaccinated mice indicated a shift from Th2 to Th1-like responses. To assess the vaccine effects on blocking the signaling of IL-33/ST2 pathway, mice receiving 3 vaccinations subjected to intraperitoneal sensitization and intranasal challenge with ovalbumin (OVA). Control animals received carrier or PBS in place of the vaccine. Immunization with the VLPs significantly suppressed inflammatory cell number and IL-33 level in BALF. OVA -induced goblet cell hyperplasia and lung tissue inflammatory cell infiltration were significantly suppressed in vaccinated mice. Our data indicate that IL-33 molecule-based vaccine, which may block IL-33/ST2 signaling pathway on a persistent basis, holds potential for treatment of asthma and, by extension, other diseases where overexpressed IL-33 plays a pivotal role in pathogenesis.


Asunto(s)
Asma/terapia , Inmunoterapia/métodos , Interleucinas/antagonistas & inhibidores , Interleucinas/inmunología , Receptores de Interleucina/antagonistas & inhibidores , Transducción de Señal , Vacunas de Partículas Similares a Virus/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33 , Interleucinas/genética , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/genética , Virosomas/ultraestructura
20.
Influenza Other Respir Viruses ; 8(6): 605-12, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25087607

RESUMEN

BACKGROUND: Annual seasonal and pandemic influenza vaccines need to be produced in a very tight time frame. Haemagglutinin (HA) is the major immunogenic component of influenza vaccines, and there is a lot of interest in improving candidate vaccine viruses. OBJECTIVES: It has been shown elsewhere that mutations introduced in the non-coding region of influenza genome segments can upregulate protein expression. Our objective was to assess a virus based on the laboratory strain A/PR/8/34 (PR8) containing a modified 3' non-coding region of RNA segment 4 (haemagglutinin). METHODS: NIBRG-93 was generated using reverse genetics. HA protein expression and growth properties were assessed. The virus phenotype suggested that it could be a candidate for use as a live attenuated vaccine, so in vivo studies were performed to assess its suitability. RESULTS: NIBRG-93 virus has enhanced haemagglutinin production and is significantly attenuated. Electron microscopy (EM) shows that the modified virus produces a large proportion of 'virus-like particles' that consist of budded cell membrane covered in HA but lacking M1 protein. The virus was shown to be attenuated in mice and offered complete protection against lethal challenge. CONCLUSIONS: We demonstrate that NIBRG-93 is an effective live attenuated vaccine virus protecting mice against lethal challenge and reducing virus shedding.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Mutación , Regiones Promotoras Genéticas , Animales , Modelos Animales de Enfermedad , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Virus de la Influenza A/genética , Virus de la Influenza A/ultraestructura , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Genética Inversa , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Virosomas/ultraestructura , Esparcimiento de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...