Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.601
Filtrar
1.
J Hazard Mater ; 471: 134365, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38669926

RESUMEN

The disinfection of fabrics is crucial in preventing the spread of infectious diseases caused by pathogenic microorganisms to maintain public health. A previous study proved that plasma-activated nebulized mist (PANM) could effectively inactivate microorganisms both in aerosol and attached to the surface. In this study, the PANM driven by different plasma gases were employed to inactivate microorganisms on diverse fabrics. The PANM could efficiently inactivate a variety of microorganisms, including bacteria, fungi, and viruses, contaminating different fabrics, and even across covering layers of different fabrics. The mites residing on the cotton fabrics both uncovered and covered with various types of fabrics were also effectively inactivated by the PANM. After 30 times repeated treatments of the PANM, notable changes were observed in the color of several fabrics while the structural integrity and mechanical strength of the fabrics were unaffected and maintained similarly to the untreated fabrics with slight changes in elemental composition. Additionally, only trace amounts of nitrate remained in the fabrics after the PANM treatment. Therefore, the PANM treatment supplied an efficient, broad-spectrum, and environmentally friendly strategy for industrial and household disinfection of fabrics.


Asunto(s)
Gases em Plasma , Textiles , Gases em Plasma/farmacología , Animales , Desinfección/métodos , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Nebulizadores y Vaporizadores , Virus/efectos de los fármacos
2.
Cell Commun Signal ; 22(1): 239, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654309

RESUMEN

Cancer, ranked as the second leading cause of mortality worldwide, leads to the death of approximately seven million people annually, establishing itself as one of the most significant health challenges globally. The discovery and identification of new anti-cancer drugs that kill or inactivate cancer cells without harming normal and healthy cells and reduce adverse effects on the immune system is a potential challenge in medicine and a fundamental goal in Many studies. Therapeutic bacteria and viruses have become a dual-faceted instrument in cancer therapy. They provide a promising avenue for cancer treatment, but at the same time, they also create significant obstacles and complications that contribute to cancer growth and development. This review article explores the role of bacteria and viruses in cancer treatment, examining their potential benefits and drawbacks. By amalgamating established knowledge and perspectives, this review offers an in-depth examination of the present research landscape within this domain and identifies avenues for future investigation.


Asunto(s)
Bacterias , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Bacterias/efectos de los fármacos , Animales , Viroterapia Oncolítica , Virus/efectos de los fármacos
3.
Virus Res ; 344: 199368, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588924

RESUMEN

Several viruses are now known to code for deubiquitinating proteases in their genomes. Ubiquitination is an essential post-translational modification of cellular substrates involved in many processes in the cell, including in innate immune signalling. This post-translational modification is regulated by the ubiquitin conjugation machinery, as well as various host deubiquitinating enzymes. The conjugation of ubiquitin chains to several innate immune related factors is often needed to induce downstream signalling, shaping the antiviral response. Viral deubiquitinating proteins, besides often having a primary function in the viral replication cycle by cleaving the viral polyprotein, are also able to cleave ubiquitin chains from such host substrates, in that way exerting a function in innate immune evasion. The presence of viral deubiquitinating enzymes has been firmly established for numerous animal-infecting viruses, such as some well-researched and clinically important nidoviruses, and their presence has now been confirmed in several plant viruses as well. Viral proteases in general have long been highlighted as promising drug targets, with a current focus on small molecule inhibitors. In this review, we will discuss the range of viral deubiquitinating proteases known to date, summarise the various avenues explored to inhibit such proteases and discuss novel strategies and models intended to inhibit and study these specific viral enzymes.


Asunto(s)
Enzimas Desubicuitinizantes , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/antagonistas & inhibidores , Enzimas Desubicuitinizantes/genética , Humanos , Proteasas Virales/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitinación , Animales , Replicación Viral , Antivirales/farmacología , Inhibidores de Proteasas/farmacología , Virus/efectos de los fármacos , Virus/enzimología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Ubiquitina/metabolismo , Inmunidad Innata
4.
J Med Virol ; 96(5): e29622, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38682614

RESUMEN

RNA capping is an essential trigger for protein translation in eukaryotic cells. Many viruses have evolved various strategies for initiating the translation of viral genes and generating progeny virions in infected cells via synthesizing cap structure or stealing the RNA cap from nascent host messenger ribonucleotide acid (mRNA). In addition to protein translation, a new understanding of the role of the RNA cap in antiviral innate immunity has advanced the field of mRNA synthesis in vitro and therapeutic applications. Recent studies on these viral RNA capping systems have revealed startlingly diverse ways and molecular machinery. A comprehensive understanding of how viruses accomplish the RNA capping in infected cells is pivotal for designing effective broad-spectrum antiviral therapies. Here we systematically review the contemporary insights into the RNA-capping mechanisms employed by viruses causing human and animal infectious diseases, while also highlighting its impact on host antiviral innate immune response. The therapeutic applications of targeting RNA capping against viral infections and the development of RNA-capping inhibitors are also summarized.


Asunto(s)
Antivirales , Inmunidad Innata , Caperuzas de ARN , ARN Viral , Virosis , Humanos , Antivirales/uso terapéutico , Antivirales/farmacología , ARN Viral/genética , Animales , Caperuzas de ARN/metabolismo , Virosis/tratamiento farmacológico , Virosis/inmunología , Replicación Viral/efectos de los fármacos , Virus/genética , Virus/efectos de los fármacos , Virus/inmunología
5.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38520159

RESUMEN

AIMS: Airborne transmission of diseases presents a serious threat to human health, so effective air disinfection technology to eliminate microorganisms in indoor air is very important. This study evaluated the effectiveness of a non-thermal plasma (NTP) air disinfector in both laboratory experiments and real environments. METHODS AND RESULTS: An experimental chamber was artificially polluted with a bioaerosol containing bacteria or viruses. Additionally, classroom environments with and without people present were used in field tests. Airborne microbial and particle concentrations were quantified. A 3.0 log10 reduction in the initial load was achieved when a virus-containing aerosol was disinfected for 60 min and a bacteria-containing aerosol was disinfected for 90 min. In the field test, when no people were present in the room, NTP disinfection decreased the airborne microbial and particle concentrations (P < 0.05). When people were present in the room, their constant activity continuously contaminated the indoor air, but all airborne indicators decreased (P < 0.05) except for planktonic bacteria (P = 0.094). CONCLUSIONS: NTP effectively inactivated microorganisms and particles in indoor air.


Asunto(s)
Microbiología del Aire , Contaminación del Aire Interior , Bacterias , Desinfección , Gases em Plasma , Desinfección/métodos , Contaminación del Aire Interior/prevención & control , Bacterias/aislamiento & purificación , Bacterias/efectos de los fármacos , Humanos , Gases em Plasma/farmacología , Aerosoles , Desinfectantes/farmacología , Virus/efectos de los fármacos , Virus/aislamiento & purificación
6.
Acta Trop ; 254: 107182, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38479469

RESUMEN

Organoids have emerged as a powerful tool for understanding the biology of the respiratory, digestive, nervous as well as urinary system, investigating infections, and developing new therapies. This article reviews recent progress in the development of organoid and advancements in virus research. The potential applications of these models in studying virul infections, pathogenesis, and antiviral drug discovery are discussed.


Asunto(s)
Organoides , Virosis , Organoides/virología , Humanos , Animales , Virosis/virología , Virosis/tratamiento farmacológico , Virus/efectos de los fármacos , Virus/patogenicidad , Virus/crecimiento & desarrollo , Virus/clasificación , Antivirales/farmacología , Antivirales/uso terapéutico , Descubrimiento de Drogas/métodos
7.
Viruses ; 14(5)2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35632670

RESUMEN

New strategies to rapidly develop broad-spectrum antiviral therapies are urgently required for emerging and re-emerging viruses. Host-targeting antivirals (HTAs) that target the universal host factors necessary for viral replication are the most promising approach, with broad-spectrum, foresighted function, and low resistance. We and others recently identified that host dihydroorotate dehydrogenase (DHODH) is one of the universal host factors essential for the replication of many acute-infectious viruses. DHODH is a rate-limiting enzyme catalyzing the fourth step in de novo pyrimidine synthesis. Therefore, it has also been developed as a therapeutic target for many diseases relying on cellular pyrimidine resources, such as cancers, autoimmune diseases, and viral or bacterial infections. Significantly, the successful use of DHODH inhibitors (DHODHi) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection further supports the application prospects. This review focuses on the advantages of HTAs and the antiviral effects of DHODHi with clinical applications. The multiple functions of DHODHi in inhibiting viral replication, stimulating ISGs expression, and suppressing cytokine storms make DHODHi a potent strategy against viral infection.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Dihidroorotato Deshidrogenasa , Virosis , Virus , Antivirales/farmacología , Antivirales/uso terapéutico , Dihidroorotato Deshidrogenasa/antagonistas & inhibidores , Humanos , Pirimidinas , SARS-CoV-2/efectos de los fármacos , Virosis/tratamiento farmacológico , Replicación Viral/efectos de los fármacos , Virus/efectos de los fármacos
8.
Nucleic Acids Res ; 50(W1): W272-W275, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35610052

RESUMEN

Viruses can cross species barriers and cause unpredictable outbreaks in man with substantial economic and public health burdens. Broad-spectrum antivirals, (BSAs, compounds inhibiting several human viruses), and BSA-containing drug combinations (BCCs) are deemed as immediate therapeutic options that fill the void between virus identification and vaccine development. Here, we present DrugVirus.info 2.0 (https://drugvirus.info), an integrative interactive portal for exploration and analysis of BSAs and BCCs, that greatly expands the database and functionality of DrugVirus.info 1.0 webserver. Through the data portal that now expands the spectrum of BSAs and provides information on BCCs, we developed two modules for (i) interactive analysis of users' own antiviral drug and combination screening data and their comparison with published datasets, and (ii) exploration of the structure-activity relationship between various BSAs. The updated portal provides an essential toolbox for antiviral drug development and repurposing applications aiming to identify existing and novel treatments of emerging and re-emerging viral threats.


Asunto(s)
Antivirales , Bases de Datos Farmacéuticas , Virus , Humanos , Antivirales/farmacología , Combinación de Medicamentos , Desarrollo de Medicamentos , Virus/efectos de los fármacos , Programas Informáticos , Internet
9.
Chem Commun (Camb) ; 58(18): 2954-2966, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35170594

RESUMEN

A new supramolecular approach to broad spectrum antivirals utilizes host guest chemistry between molecular tweezers and lysine/arginine as well as choline. Basic amino acids in amyloid-forming SEVI peptides (semen-derived enhancers of viral infection) are included inside the tweezer cavity leading to disaggregation and neutralization of the fibrils, which lose their ability to enhance HIV-1/HIV-2 infection. Lipid head groups contain the trimethylammonium cation of choline; this is likewise bound by molecular tweezers, which dock onto viral membranes and thus greatly enhance their surface tension. Disruption of the envelope in turn leads to total loss of infectiosity (ZIKA, Ebola, Influenza). This complexation event also seems to be the structural basis for an effective inihibition of cell-to-cell spread in Herpes viruses. The article describes the discovery of novel molecular recognition motifs and the development of powerful antiviral agents based on these host guest systems. It explains the general underlying mechanisms of antiviral action and points to future optimization and application as therapeutic agents.


Asunto(s)
Antivirales/química , Hidrocarburos Aromáticos con Puentes/farmacología , Organofosfatos/farmacología , Envoltura Viral/efectos de los fármacos , Virus/efectos de los fármacos , Amiloidosis/prevención & control , Antivirales/farmacología , Humanos , Virus/patogenicidad
10.
Carbohydr Res ; 513: 108517, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35152128

RESUMEN

The synthesis of five series of 4'-truncated nucleoside phosphonic acid analogues is discussed in this review: (1) 4'-truncated furanose nucleoside phosphonic acid analogues; (2) 4'-truncated pyrrolidine nucleoside phosphonic acid analogues; (3) 4'-truncated carbocyclic nucleoside phosphonic acid analogues; (4) 4'-truncated isoxazole nucleoside phosphonic acid analogues; (5) 4'-truncated miscellaneous nucleoside phosphonic acid analogues. Five different ways are used to make the phosphonate moiety: (i) Michaelis-Arbuzov reaction of RX (X = Br, I, OTf) with trialkyl phosphate; (ii) Lewis acid catalyzed Michaelis-Arbuzov reaction of glycoside with trialkyl phosphite; (iii) nucleophilic addition of a dialkyl phosphite to a carbonyl group; (iv) direct coupling reaction with amino alkyl phosphonate; (v) de novo synthesis of phosphonated-isoxazole and 1,3-dioxolane heterocycles from phosphonated starting materials. Their biological activity results are briefly discussed.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Enzimas/metabolismo , Nucleósidos/farmacología , Ácidos Fosforosos/farmacología , Virus/efectos de los fármacos , Animales , Antivirales/síntesis química , Antivirales/química , Conformación de Carbohidratos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Pruebas de Sensibilidad Microbiana , Nucleósidos/síntesis química , Nucleósidos/química , Ácidos Fosforosos/síntesis química , Ácidos Fosforosos/química
11.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163084

RESUMEN

International interest in metal-based antimicrobial coatings to control the spread of bacteria, fungi, and viruses via high contact human touch surfaces are growing at an exponential rate. This interest recently reached an all-time high with the outbreak of the deadly COVID-19 disease, which has already claimed the lives of more than 5 million people worldwide. This global pandemic has highlighted the major role that antimicrobial coatings can play in controlling the spread of deadly viruses such as SARS-CoV-2 and scientists and engineers are now working harder than ever to develop the next generation of antimicrobial materials. This article begins with a review of three discrete microorganism-killing phenomena of contact-killing surfaces, nanoprotrusions, and superhydrophobic surfaces. The antimicrobial properties of metals such as copper (Cu), silver (Ag), and zinc (Zn) are reviewed along with the effects of combining them with titanium dioxide (TiO2) to create a binary or ternary contact-killing surface coatings. The self-cleaning and bacterial resistance of purely structural superhydrophobic surfaces and the potential of physical surface nanoprotrusions to damage microbial cells are then considered. The article then gives a detailed discussion on recent advances in attempting to combine these individual phenomena to create super-antimicrobial metal-based coatings with binary or ternary killing potential against a broad range of microorganisms, including SARS-CoV-2, for high-touch surface applications such as hand rails, door plates, and water fittings on public transport and in healthcare, care home and leisure settings as well as personal protective equipment commonly used in hospitals and in the current COVID-19 pandemic.


Asunto(s)
Antiinfecciosos/farmacología , COVID-19/prevención & control , Materiales Biocompatibles Revestidos/farmacología , Metales/química , Tacto , Animales , Antiinfecciosos/síntesis química , Antiinfecciosos/química , COVID-19/transmisión , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/química , Humanos , Pandemias , Equipo de Protección Personal/microbiología , Equipo de Protección Personal/virología , SARS-CoV-2/efectos de los fármacos , Propiedades de Superficie , Virus/efectos de los fármacos
12.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163090

RESUMEN

The current worldwide pandemic caused by coronavirus disease 2019 (COVID-19) had alerted the population to the risk that small microorganisms can create for humankind's wellbeing and survival. All of us have been affected, directly or indirectly, by this situation, and scientists all over the world have been trying to find solutions to fight this virus by killing it or by stop/decrease its spread rate. Numerous kinds of microorganisms have been occasionally created panic in world history, and several solutions have been proposed to stop their spread. Among the most studied antimicrobial solutions, are metals (of different kinds and applied in different formats). In this regard, this review aims to present a recent and comprehensive demonstration of the state-of-the-art in the use of metals, as well as their mechanisms, to fight different pathogens, such as viruses, bacteria, and fungi.


Asunto(s)
Antiinfecciosos , Metales/química , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Bacterias/patogenicidad , COVID-19/prevención & control , Equipos y Suministros , Hongos/efectos de los fármacos , Hongos/patogenicidad , Humanos , Pandemias/prevención & control , Salud Poblacional , SARS-CoV-2/fisiología , Virus/efectos de los fármacos , Virus/patogenicidad
13.
Molecules ; 27(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164173

RESUMEN

Viral infections and outbreaks have become a major concern and are one of the main causes of morbidity and mortality worldwide. The development of successful antiviral therapeutics and vaccines remains a daunting challenge. The discovery of novel antiviral agents is a public health emergency, and extraordinary efforts are underway globally to identify safe and effective treatments for different viral diseases. Alkaloids are natural phytochemicals known for their biological activities, many of which have been intensively studied for their broad-spectrum of antiviral activities against different DNA and RNA viruses. The purpose of this review was to summarize the evidence supporting the efficacy of the antiviral activity of plant alkaloids at half-maximum effective concentration (EC50) or half-maximum inhibitory concentration (IC50) below 10 µM and describe the molecular sites most often targeted by natural alkaloids acting against different virus families. This review highlights that considering the devastating effects of virus pandemics on humans, plants, and animals, the development of high efficiency and low-toxicity antiviral drugs targeting these viruses need to be developed. Furthermore, it summarizes the current research status of alkaloids as the source of antiviral drug development, their structural characteristics, and antiviral targets. Overall, the influence of alkaloids at the molecular level suggests a high degree of specificity which means they could serve as potent and safe antiviral agents waiting for evaluation and exploitation.


Asunto(s)
Alcaloides/química , Alcaloides/farmacología , Antivirales/química , Antivirales/farmacología , Virosis/tratamiento farmacológico , Virus/efectos de los fármacos , Alcaloides/uso terapéutico , Animales , Antivirales/uso terapéutico , Desarrollo de Medicamentos , Descubrimiento de Drogas , Humanos , Replicación Viral/efectos de los fármacos
14.
Viruses ; 14(2)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35215894

RESUMEN

Viral diseases consistently pose a substantial economic and public health burden worldwide [...].


Asunto(s)
Antivirales/farmacología , Virosis/tratamiento farmacológico , Humanos , Virosis/virología , Fenómenos Fisiológicos de los Virus , Virus/clasificación , Virus/efectos de los fármacos , Virus/genética
15.
Viruses ; 14(2)2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35215947

RESUMEN

Diphyllin is a natural arylnaphtalide lignan extracted from tropical plants of particular importance in traditional Chinese medicine. This compound has been described as a potent inhibitor of vacuolar (H+)ATPases and hence of the endosomal acidification process that is required by numerous enveloped viruses to trigger their respective viral infection cascades after entering host cells by receptor-mediated endocytosis. Accordingly, we report here a revised, updated, and improved synthesis of diphyllin, and demonstrate its antiviral activities against a panel of enveloped viruses from Flaviviridae, Phenuiviridae, Rhabdoviridae, and Herpesviridae families. Diphyllin is not cytotoxic for Vero and BHK-21 cells up to 100 µM and exerts a sub-micromolar or low-micromolar antiviral activity against tick-borne encephalitis virus, West Nile virus, Zika virus, Rift Valley fever virus, rabies virus, and herpes-simplex virus type 1. Our study shows that diphyllin is a broad-spectrum host cell-targeting antiviral agent that blocks the replication of multiple phylogenetically unrelated enveloped RNA and DNA viruses. In support of this, we also demonstrate that diphyllin is more than just a vacuolar (H+)ATPase inhibitor but may employ other antiviral mechanisms of action to inhibit the replication cycles of those viruses that do not enter host cells by endocytosis followed by low pH-dependent membrane fusion.


Asunto(s)
Antivirales/farmacología , Lignanos/farmacología , Virus/efectos de los fármacos , Animales , Antígenos Virales/metabolismo , Antivirales/síntesis química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Glucósidos/farmacología , Lignanos/síntesis química , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Virus/clasificación , Virus/metabolismo
16.
Viruses ; 14(2)2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35216019

RESUMEN

In the current context of the COVID-19 pandemic, it appears that our scientific resources and the medical community are not sufficiently developed to combat rapid viral spread all over the world. A number of viruses causing epidemics have already disseminated across the world in the last few years, such as the dengue or chinkungunya virus, the Ebola virus, and other coronavirus families such as Middle East respiratory syndrome (MERS-CoV) and severe acute respiratory syndrome (SARS-CoV). The outbreaks of these infectious diseases have demonstrated the difficulty of treating an epidemic before the creation of vaccine. Different antiviral drugs already exist. However, several of them cause side effects or have lost their efficiency because of virus mutations. It is essential to develop new antiviral strategies, but ones that rely on more natural compounds to decrease the secondary effects. Polysaccharides, which have come to be known in recent years for their medicinal properties, including antiviral activities, are an excellent alternative. They are essential for the metabolism of plants, microorganisms, and animals, and are directly extractible. Polysaccharides have attracted more and more attention due to their therapeutic properties, low toxicity, and availability, and seem to be attractive candidates as antiviral drugs of tomorrow.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Polisacáridos/química , Polisacáridos/farmacología , Virus/efectos de los fármacos , Animales , Brotes de Enfermedades/prevención & control , Ebolavirus/efectos de los fármacos , Humanos , SARS-CoV-2/efectos de los fármacos , Virosis/tratamiento farmacológico , Replicación Viral/efectos de los fármacos , Virus/clasificación , Virus/patogenicidad
17.
Biomed Res Int ; 2022: 1558860, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35039793

RESUMEN

Increasing outbreaks of new pathogenic viruses have promoted the exploration of novel alternatives to time-consuming vaccines. Thus, it is necessary to develop a universal approach to halt the spread of new and unknown viruses as they are discovered. One such promising approach is to target lipid membranes, which are common to all viruses and bacteria. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has reaffirmed the importance of interactions between the virus envelope and the host cell plasma membrane as a critical mechanism of infection. Metadichol®, a nanolipid emulsion of long-chain alcohols, has been demonstrated as a strong candidate that inhibits the proliferation of SARS-CoV-2. Naturally derived substances, such as long-chain saturated lipid alcohols, reduce viral infectivity, including that of coronaviruses (such as SARS-CoV-2) by modifying their lipid-dependent attachment mechanism to human host cells. The receptor ACE2 mediates the entry of SARS-CoV-2 into the host cells, whereas the serine protease TMPRSS2 primes the viral S protein. In this study, Metadichol® was found to be 270 times more potent an inhibitor of TMPRSS2 (EC50 = 96 ng/mL) than camostat mesylate (EC50 = 26000 ng/mL). Additionally, it inhibits ACE with an EC50 of 71 ng/mL, but it is a very weak inhibitor of ACE2 at an EC50 of 31 µg/mL. Furthermore, the live viral assay performed in Caco-2 cells revealed that Metadichol® inhibits SARS-CoV-2 replication at an EC90 of 0.16 µg/mL. Moreover, Metadichol® had an EC90 of 0.00037 µM, making it 2081 and 3371 times more potent than remdesivir (EC50 = 0.77 µM) and chloroquine (EC50 = 1.14 µM), respectively.


Asunto(s)
Alcoholes Grasos/farmacología , Sistema de Administración de Fármacos con Nanopartículas/farmacología , SARS-CoV-2/efectos de los fármacos , Virus/efectos de los fármacos , Animales , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Ésteres/farmacología , Guanidinas/farmacología , Humanos , Metabolismo de los Lípidos/fisiología , Lípidos/química , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Serina Endopeptidasas/efectos de los fármacos , Serina Endopeptidasas/metabolismo , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
18.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35008974

RESUMEN

Despite the great strides in healthcare during the last century, some challenges still remained unanswered. The development of multi-drug resistant bacteria, the alarming growth of fungal infections, the emerging/re-emerging of viral diseases are yet a worldwide threat. Since the discovery of natural antimicrobial peptides able to broadly hit several pathogens, peptide-based therapeutics have been under the lenses of the researchers. This review aims to focus on synthetic peptides and elucidate their multifaceted mechanisms of action as antiviral, antibacterial and antifungal agents. Antimicrobial peptides generally affect highly preserved structures, e.g., the phospholipid membrane via pore formation or other constitutive targets like peptidoglycans in Gram-negative and Gram-positive bacteria, and glucan in the fungal cell wall. Additionally, some peptides are particularly active on biofilm destabilizing the microbial communities. They can also act intracellularly, e.g., on protein biosynthesis or DNA replication. Their intracellular properties are extended upon viral infection since peptides can influence several steps along the virus life cycle starting from viral receptor-cell interaction to the budding. Besides their mode of action, improvements in manufacturing to increase their half-life and performances are also taken into consideration together with advantages and impairments in the clinical usage. Thus far, the progress of new synthetic peptide-based approaches is making them a promising tool to counteract emerging infections.


Asunto(s)
Péptidos Antimicrobianos/síntesis química , Péptidos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Virus/efectos de los fármacos , Antibacterianos , Antifúngicos , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/farmacología , Antivirales , Productos Biológicos/química , Productos Biológicos/farmacología , Biomarcadores , Técnicas de Química Sintética , Humanos , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
20.
J Mol Biol ; 434(6): 167327, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-34695379

RESUMEN

The DDR consists of multiple pathways that sense, signal, and respond to anomalous DNA. To promote efficient replication, viruses have evolved to engage and even modulate the DDR. In this review, we will discuss a select set of diverse viruses and the range of mechanisms they evolved to interact with the DDR and some of the subsequent cellular consequences. There is a dichotomy in that the DDR can be both beneficial for viruses yet antiviral. We will also review the connection between the DDR and innate immunity. Previously believed to be disparate cellular functions, more recent research is emerging that links these processes. Furthermore, we will discuss some discrepancies in the literature that we propose can be remedied by utilizing more consistent DDR-focused assays. By doing so, we hope to obtain a much clearer understanding of how broadly these mechanisms and phenotypes are conserved among all viruses. This is crucial for human health since understanding how viruses manipulate the DDR presents an important and tractable target for antiviral therapies.


Asunto(s)
Daño del ADN , Reparación del ADN , Inmunidad Innata , Virus , Antivirales/farmacología , Humanos , Inmunidad Innata/genética , Replicación Viral , Virus/efectos de los fármacos , Virus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA