Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.872
Filtrar
1.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39099254

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs), also known as tRNA ligases, are essential enzymes in translation. Owing to their functional essentiality, these enzymes are conserved in all domains of life and used as informative markers to trace the evolutionary history of cellular organisms. Unlike cellular organisms, viruses generally lack aaRSs because of their obligate parasitic nature, but several large and giant DNA viruses in the phylum Nucleocytoviricota encode aaRSs in their genomes. The discovery of viral aaRSs led to the idea that the phylogenetic analysis of aaRSs can shed light on ancient viral evolution. However, conflicting results have been reported from previous phylogenetic studies: one posited that nucleocytoviruses recently acquired their aaRSs from their host eukaryotes, while another hypothesized that the viral aaRSs have ancient origins. Here, we investigated 4,168 nucleocytovirus genomes, including metagenome-assembled genomes (MAGs) derived from large-scale metagenomic studies. In total, we identified 780 viral aaRS sequences in 273 viral genomes. We generated and examined phylogenetic trees of these aaRSs with a large set of cellular sequences to trace evolutionary relationships between viral and cellular aaRSs. The analyses suggest that the origins of some viral aaRSs predate the last common eukaryotic ancestor. Inside viral aaRS clades, we identify intricate evolutionary trajectories of viral aaRSs with horizontal transfers, losses, and displacements. Overall, these results suggest that ancestral nucleocytoviruses already developed complex genomes with an expanded set of aaRSs in the proto-eukaryotic era.


Asunto(s)
Aminoacil-ARNt Sintetasas , Evolución Molecular , Genoma Viral , Filogenia , Aminoacil-ARNt Sintetasas/genética , Virus ADN/genética
2.
Vopr Virusol ; 69(3): 203-218, 2024 Jul 05.
Artículo en Ruso | MEDLINE | ID: mdl-38996370

RESUMEN

The basis for criteria of the taxonomic classification of DNA and RNA viruses based on data of the genomic sequencing are viewed in this review. The genomic sequences of viruses, which have genome represented by double-stranded DNA (orthopoxviruses as example), positive-sense single-stranded RNA (alphaviruses and flaviviruses as example), non-segmented negative-sense single-stranded RNA (filoviruses as example), segmented negative-sense single-stranded RNA (arenaviruses and phleboviruses as example) are analyzed. The levels of genetic variability that determine the assignment of compared viruses to taxa of various orders are established for each group of viruses.


Asunto(s)
Virus ADN , Genoma Viral , Virus ARN , Virus ARN/genética , Virus ARN/clasificación , Virus ADN/genética , Virus ADN/clasificación , Filogenia , Humanos , Animales , Genómica/métodos , ARN Viral/genética , Variación Genética
3.
J Infect Dis ; 230(1): 109-119, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052700

RESUMEN

BACKGROUND: Cutavirus (CuV) is associated with mycosis fungoides; however, the CuV status in parapsoriasis en plaques (PP), a premalignant inflammatory condition of mycosis fungoides, has not been fully delineated. METHODS: Fifty-five Japanese patients with chronic inflammatory skin diseases, including 13 patients with PP, were studied. RESULTS: CuV DNA was detected significantly more frequently in biopsies of the lesional skin from patients with PP (38%; 4 of 13) than in those from patients with other inflammatory skin diseases (2%; 1 of 42; P = .009). All CuV-positive PP cases were of the large-plaque parapsoriasis (LPP) subtype. The viral loads ranged from 83 450 to 2 164 170 copies/103 cells. We recovered near-full-length CuV sequences from the CuV-positive LPP biopsies, all of which were of the Japanese/Asian genotype. The CuV genome appeared to be present within lymphoid cells infiltrating the epidermis and dermis. CuV NS1 and VP1 gene transcripts were also detected in the affected tissues. CONCLUSIONS: The detection of high levels of CuV DNA with the expression of viral mRNA suggests a potential role for CuV in the pathogenesis of LPP, making it necessary to study further the impact of CuV, especially regarding the viral genotype, on the outcomes of patients with CuV-positive LPP.


Asunto(s)
Micosis Fungoide , Parapsoriasis , Humanos , Micosis Fungoide/virología , Micosis Fungoide/patología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Parapsoriasis/virología , Parapsoriasis/patología , Adulto , ADN Viral/genética , Piel/patología , Piel/virología , Carga Viral , Japón , Anciano de 80 o más Años , Biopsia , Neoplasias Cutáneas/virología , Neoplasias Cutáneas/patología , Lesiones Precancerosas/virología , Lesiones Precancerosas/patología , Virus ADN/genética , Virus ADN/aislamiento & purificación , Virus ADN/clasificación
4.
J Med Virol ; 96(7): e29750, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38953413

RESUMEN

The Phylum Cressdnaviricota consists of a large number of circular Rep-encoding single-stranded (CRESS)-DNA viruses. Recently, metagenomic analyzes revealed their ubiquitous distribution in a diverse range of eukaryotes. Data relating to CRESS-DNA viruses in humans remains scarce. Our study investigated the presence and genetic diversity of CRESS-DNA viruses in human vaginal secretions. Vaginal swabs were collected from 28 women between 29 and 43 years old attending a fertility clinic in New York City. An exploratory metagenomic analysis was performed and detection of CRESS-DNA viruses was confirmed through analysis of near full-length sequences of the viral isolates. A phylogenetic tree was based on the REP open reading frame sequences of the CRESS-DNA virus genome. Eleven nearly complete CRESS-DNA viral genomes were identified in 16 (57.1%) women. There were no associations between the presence of these viruses and any demographic or clinical parameters. Phylogenetic analysis indicated that one of the sequences belonged to the genus Gemycircularvirus within the Genomoviridae family, while ten sequences represented previously unclassified species of CRESS-DNA viruses. Novel species of CRESS-DNA viruses are present in the vaginal tract of adult women. Although they be transient commensal agents, the potential clinical implications for their presence at this site cannot be dismissed.


Asunto(s)
Virus ADN , Genoma Viral , Metagenómica , Filogenia , Vagina , Humanos , Femenino , Adulto , Vagina/virología , Genoma Viral/genética , Virus ADN/genética , Virus ADN/clasificación , Virus ADN/aislamiento & purificación , ADN Viral/genética , Ciudad de Nueva York , Análisis de Secuencia de ADN , Variación Genética
5.
Microbiome ; 12(1): 137, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044261

RESUMEN

BACKGROUND: Haematological patients exhibit immune system abnormalities that make them susceptible to viral infections. Understanding the relationship between the virome in the blood plasma of haematological patients and their clinical characteristic is crucial for disease management. We aimed to explore the presence of viral pathogens and identify close associations between viral infections and various clinical features. RESULTS: A total of 21 DNA viruses and 6 RNA viruses from 12 virus families were identified from 1383 patients. Patients with haematological diseases exhibited significantly higher diversity, prevalence, and co-detection rates of viral pathogens. During fever episodes, pathogen detection was notably higher, with Epstein-Barr virus (EBV) and Mucorales infections being the most probable culprits for fever symptoms in non-haematological patients. The detection rate of torque teno virus (TTV) significantly increases in haematological patients after transplantation and during primary lung infections. Additionally, TTV-positive patients demonstrate significantly higher absolute neutrophil counts, while C-reactive protein and procalcitonin levels are notably lower. Furthermore, TTV, cytomegalovirus, and parvovirus B19 (B19V) were found to be more prevalent in non-neutropenic patients, while non-viral pathogenic infections, such as Gram-negative bacteria and Mucorales, were more common in neutropenic patients. Pegivirus C (HPgV-C) infection often occurred post-transplantation, regardless of neutropenia. Additionally, some viruses such as TTV, B19V, EBV, and HPgV-C showed preferences for age and seasonal infections. CONCLUSIONS: Analysis of the plasma virome revealed the susceptibility of haematological patients to plasma viral infections at specific disease stages, along with the occurrence of mixed infections with non-viral pathogens. Close associations were observed between the plasma virome and various clinical characteristics, as well as clinical detection parameters. Understanding plasma virome aids in auxiliary clinical diagnosis and treatment, enabling early prevention to reduce infection rates in patients and improve their quality of life. Video Abstract.


Asunto(s)
Virus ADN , Enfermedades Hematológicas , Virus ARN , Virosis , Humanos , Masculino , Femenino , Virus ADN/aislamiento & purificación , Virus ADN/genética , Persona de Mediana Edad , Virosis/sangre , Virosis/virología , Adulto , Enfermedades Hematológicas/complicaciones , Enfermedades Hematológicas/sangre , Virus ARN/aislamiento & purificación , Viroma , Anciano , Torque teno virus/aislamiento & purificación , Torque teno virus/genética , Estudios de Cohortes , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/aislamiento & purificación , Adulto Joven
6.
Microbiol Spectr ; 12(8): e0067524, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38990026

RESUMEN

Bats are natural hosts of multiple viruses, many of which have clear zoonotic potential. The search for emerging viruses has been aided by the implementation of metagenomic tools, which have also enabled the detection of unprecedented viral diversity. Currently, this search is mainly focused on RNA viruses, which are largely over-represented in databases. To compensate for this research bias, we analyzed fecal samples from 189 Spanish bats belonging to 22 different species using viral metagenomics. This allowed us to identify 52 complete or near-complete viral genomes belonging to the families Adenoviridae, Circoviridae, Genomoviridae, Papillomaviridae, Parvoviridae, Polyomaviridae and Smacoviridae. Of these, 30 could constitute new species, doubling the number of viruses currently described in Europe. These findings open the door to a more thorough analysis of bat DNA viruses and their zoonotic potential. IMPORTANCE: Metagenomics has become a fundamental tool to characterize the global virosphere, allowing us not only to understand the existing viral diversity and its ecological implications but also to identify new and emerging viruses. RNA viruses have a higher zoonotic potential, but this risk is also present for some DNA virus families. In our study, we analyzed the DNA fraction of fecal samples from 22 Spanish bat species, identifying 52 complete or near-complete genomes of different viral families with zoonotic potential. This doubles the number of genomes currently described in Europe. Metagenomic data often produce partial genomes that can be difficult to analyze. Our work, however, has characterized a large number of complete genomes, thus facilitating their taxonomic classification and enabling different analyses to be carried out to evaluate their zoonotic potential. For example, recombination studies are relevant since this phenomenon could play a major role in cross-species transmission.


Asunto(s)
Quirópteros , Virus ADN , Heces , Genoma Viral , Metagenómica , Filogenia , Heces/virología , Animales , Quirópteros/virología , Virus ADN/genética , Virus ADN/clasificación , Virus ADN/aislamiento & purificación , España , Secuenciación Completa del Genoma , Zoonosis/virología
7.
J Gen Virol ; 105(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38959058

RESUMEN

The family Turriviridae includes viruses with a dsDNA genome of 16-17 kbp. Virions are spherical with a diameter of approximately 75 nm and comprise a host-derived internal lipid membrane surrounded by a proteinaceous capsid shell. Members of the family Turriviridae infect extremophilic archaea of the genera Sulfolobus and Saccharolobus. Viral infection results in cell lysis for Sulfolobus turreted icosahedral virus 1 infection but other members of the family can be temperate. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Turriviridae, which is available at ictv.global/report/turriviridae.


Asunto(s)
Virus ADN , Genoma Viral , Virión , Virus ADN/clasificación , Virus ADN/genética , Virus ADN/ultraestructura , Virión/ultraestructura , Virus de Archaea/clasificación , Virus de Archaea/genética , Virus de Archaea/ultraestructura , Virus de Archaea/fisiología , Sulfolobus/virología , Sulfolobus/genética , ADN Viral/genética
8.
Viruses ; 16(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39066216

RESUMEN

As part of a sea turtle health monitoring program on the central east coast of Queensland, Australia, stranded and sick green sea turtles (Chelonia mydas) were subjected to necropsy and histopathology. A subset of these turtles had myocarditis of varying severity, which could not be attributed to parasitism by spirorchid flukes or bacterial infections. We, therefore, undertook an investigation to determine whether virus infections might be part of the pathogenesis. Deep sequencing revealed abundant DNA virus contigs in the heart tissue, of which CRESS and circoviruses appeared to be the most consistently present. Further analysis revealed the homology of some of the circoviruses to the beak and feather disease virus. While a causative link to myocarditis could not be established, the presence of these viruses may play a contributing role by affecting the immune system and overall health of animals exposed to pollutants, higher water temperatures, and decreasing nutrition.


Asunto(s)
Virus ADN , Miocarditis , Tortugas , Viroma , Animales , Tortugas/virología , Miocarditis/virología , Miocarditis/veterinaria , Virus ADN/genética , Virus ADN/aislamiento & purificación , Virus ADN/clasificación , Miocardio/patología , ADN Viral/genética , Corazón/virología , Filogenia , Secuenciación de Nucleótidos de Alto Rendimiento , Queensland
9.
Environ Microbiol ; 26(8): e16686, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39080911

RESUMEN

Marine microbes are important in biogeochemical cycling, but the nature and magnitude of their contributions are influenced by their associated viruses. In the presence of a lytic virus, cells that have evolved resistance to infection have an obvious fitness advantage over relatives that remain susceptible. However, susceptible cells remain extant in the wild, implying that the evolution of a fitness advantage in one dimension (virus resistance) must be accompanied by a fitness cost in another dimension. Identifying costs of resistance is challenging because fitness is context-dependent. We examined the context dependence of fitness costs in isolates of the picophytoplankton genus Micromonas and their co-occurring dsDNA viruses using experimental evolution. After generating 88 resistant lineages from two ancestral Micromonas strains, each challenged with one of four distinct viral strains, we found resistance led to a 46% decrease in mean growth rate under high irradiance and a 19% decrease under low. After a year in culture, the experimentally selected lines remained resistant, but fitness costs had attenuated. Our results suggest that the cost of resistance in Micromonas is dependent on environmental conditions and the duration of population adaptation, illustrating the dynamic nature of fitness costs of viral resistance among marine protists.


Asunto(s)
Aptitud Genética , Microalgas , Microalgas/virología , Microalgas/genética , Virus ADN/genética , Chlorophyta/virología , Chlorophyta/genética
10.
mBio ; 15(7): e0103524, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38832788

RESUMEN

The phylum Nucleocytoviricota consists of large and giant viruses that range in genome size from about 100 kilobases (kb) to more than 2.5 megabases. Here, using metagenome mining followed by extensive phylogenomic analysis and protein structure comparison, we delineate a distinct group of viruses with double-stranded (ds) DNA genomes in the range of 35-45 kb that appear to be related to the Nucleocytoviricota. In phylogenetic trees of the conserved double jelly-roll major capsid proteins (MCPs) and DNA packaging ATPases, these viruses do not show affinity to any particular branch of the Nucleocytoviricota and accordingly would comprise a class which we propose to name "Mriyaviricetes" (after Ukrainian "mriya," dream). Structural comparison of the MCP suggests that, among the extant virus lineages, mriyaviruses are the closest one to the ancestor of the Nucleocytoviricota. In the phylogenetic trees, mriyaviruses split into two well-separated branches, the family Yaraviridae and proposed new family "Gamadviridae." The previously characterized members of these families, yaravirus and Pleurochrysis sp. endemic viruses, infect amoeba and haptophytes, respectively. The genomes of the rest of the mriyaviruses were assembled from metagenomes from diverse environments, suggesting that mriyaviruses infect various unicellular eukaryotes. Mriyaviruses lack DNA polymerase, which is encoded by all other members of the Nucleocytoviricota, and RNA polymerase subunits encoded by all cytoplasmic viruses among the Nucleocytoviricota, suggesting that they replicate in the host cell nuclei. All mriyaviruses encode a HUH superfamily endonuclease that is likely to be essential for the initiation of virus DNA replication via the rolling circle mechanism. IMPORTANCE: The origin of giant viruses of eukaryotes that belong to the phylum Nucleocytoviricota is not thoroughly understood and remains a matter of major interest and debate. Here, we combine metagenome database searches with extensive protein sequence and structure analysis to describe a distinct group of viruses with comparatively small genomes of 35-45 kilobases that appear to comprise a distinct class within the phylum Nucleocytoviricota that we provisionally named "Mriyaviricetes." Mriyaviruses appear to be the closest identified relatives of the ancestors of the Nucleocytoviricota. Analysis of proteins encoded in mriyavirus genomes suggests that they replicate their genome via the rolling circle mechanism that is unusual among viruses with double-stranded DNA genomes and so far not described for members of Nucleocytoviricota.


Asunto(s)
Genoma Viral , Virus Gigantes , Filogenia , Virus Gigantes/genética , Virus Gigantes/clasificación , Genoma Viral/genética , Virus ADN/genética , Virus ADN/clasificación , Proteínas de la Cápside/genética , Proteínas de la Cápside/química , Metagenoma , ADN Viral/genética
11.
Viruses ; 16(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38932138

RESUMEN

Viruses exploit the host cell machinery to enable infection and propagation. This review discusses the complex landscape of DNA virus-host interactions, focusing primarily on herpesviruses and adenoviruses, which replicate in the nucleus of infected cells, and vaccinia virus, which replicates in the cytoplasm. We discuss experimental approaches used to discover and validate interactions of host proteins with viral genomes and how these interactions impact processes that occur during infection, including the host DNA damage response and viral genome replication, repair, and transcription. We highlight the current state of knowledge regarding virus-host protein interactions and also outline emerging areas and future directions for research.


Asunto(s)
ADN Viral , Genoma Viral , Interacciones Huésped-Patógeno , Replicación Viral , Humanos , ADN Viral/genética , ADN Viral/metabolismo , Virus ADN/genética , Animales , Proteínas Virales/metabolismo , Proteínas Virales/genética , Herpesviridae/genética , Herpesviridae/metabolismo , Herpesviridae/fisiología , Virus Vaccinia/genética
12.
Viruses ; 16(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38932149

RESUMEN

DNA viruses that produce persistent infections have been proposed as potential causes for the extinction of Neanderthals, and, therefore, the identification of viral genome remnants in Neanderthal sequence reads is an initial step to address this hypothesis. Here, as proof of concept, we searched for viral remnants in sequence reads of Neanderthal genome data by mapping to adenovirus, herpesvirus and papillomavirus, which are double-stranded DNA viruses that may establish lifelong latency and can produce persistent infections. The reconstructed ancient viral genomes of adenovirus, herpesvirus and papillomavirus revealed conserved segments, with nucleotide identity to extant viral genomes and variable regions in coding regions with substantial divergence to extant close relatives. Sequence reads mapped to extant viral genomes showed deamination patterns of ancient DNA, and these ancient viral genomes showed divergence consistent with the age of these samples (≈50,000 years) and viral evolutionary rates (10-5 to 10-8 substitutions/site/year). Analysis of random effects showed that the Neanderthal mapping to genomes of extant persistent viruses is above what is expected by random similarities of short reads. Also, negative control with a nonpersistent DNA virus does not yield statistically significant assemblies. This work demonstrates the feasibility of identifying viral genome remnants in archaeological samples with signal-to-noise assessment.


Asunto(s)
ADN Antiguo , Genoma Viral , Hombre de Neandertal , Animales , Hombre de Neandertal/genética , Hombre de Neandertal/virología , ADN Antiguo/análisis , Evolución Molecular , ADN Viral/genética , Análisis de Secuencia de ADN/métodos , Humanos , Filogenia , Virus ADN/genética , Virus ADN/clasificación , Virus ADN/aislamiento & purificación , Fósiles/virología
13.
Viruses ; 16(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38932171

RESUMEN

Proteins of the Bcl-2 family regulate cellular fate via multiple mechanisms including apoptosis, autophagy, senescence, metabolism, inflammation, redox homeostasis, and calcium flux. There are several regulated cell death (RCD) pathways, including apoptosis and autophagy, that use distinct molecular mechanisms to elicit the death response. However, the same proteins/genes may be deployed in multiple biochemical pathways. In apoptosis, Bcl-2 proteins control the integrity of the mitochondrial outer membrane (MOM) by regulating the formation of pores in the MOM and apoptotic cell death. A number of prosurvival genes populate the genomes of viruses including those of the pro-survival Bcl-2 family. Viral Bcl-2 proteins are sequence and structural homologs of their cellular counterparts and interact with cellular proteins in apoptotic and autophagic pathways, potentially allowing them to modulate these pathways and determine cellular fate.


Asunto(s)
Apoptosis , Autofagia , Virus ADN , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Virales , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Virus ADN/genética , Virus ADN/fisiología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Animales , Membranas Mitocondriales/metabolismo
14.
Sci Rep ; 14(1): 14105, 2024 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-38890496

RESUMEN

Apis mellifera filamentous virus (AmFV) is a double-stranded DNA virus that infects Apis mellifera bees. To our knowledge, this is the first comprehensive study aiming to detect and analyse the genetic diversity and prevalence of AmFV in Korean honeybee colonies. Phylogenetic analysis based on baculovirus repeat open reading frame-N gene (Bro-N) sequences revealed that AmFV isolates from the Republic of Korea (ROK) fell into two distinct lineages, with genetic origins in Switzerland and China, with nucleotide similarities of 98.3% and 98.2%, respectively. Our prevalence analysis demonstrated a noteworthy infection rate of AmFV in 545 honeybee colonies, reaching 33.09% in 2022 and increasing to 44.90% by 2023. Intriguingly, we also detected AmFV in Varroa destructor mites, highlighting their potential role as vectors and carriers of AmFV. The presence of AmFV was correlated with an increased infection rate of sacbrood virus, deformed wing virus, Lake Sinai virus 2, black queen cell virus, and Nosema ceranae in honeybee colonies. These findings provide valuable insight into the prevalence and potential transmission mechanisms of AmFV in honeybee colonies in the ROK. The results of this study may be instrumental in the effective management of viral infections in honeybee apiaries.


Asunto(s)
Filogenia , Varroidae , Animales , Abejas/virología , Abejas/parasitología , Varroidae/virología , República de Corea/epidemiología , Virus ADN/genética , Virus ADN/aislamiento & purificación , Prevalencia , Variación Genética
15.
Arch Virol ; 169(6): 132, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822903

RESUMEN

Orpheoviruses, cedratviruses, and pithoviruses are large DNA viruses that cluster together taxonomically within the order Pimascovirales of the phylum Nucleocytoviricota. However, they were not classified previously by the International Committee on Taxonomy of Viruses (ICTV). Here, we present a comprehensive analysis of the gene content, morphology, and phylogenomics of these viruses, providing data that underpinned the recent proposal to establish new taxa for their initial classification. The new taxonomy, which has now been ratified by the ICTV, includes the family Orpheoviridae and genus Alphaorpheovirus, the family Pithoviridae and genus Alphapithovirus, and the family Cedratviridae and genus Alphacedratvirus, aiming to formally catalogue the isolates covered in this study. Additionally, as per the newly adopted rules, we applied standardized binomial names for the virus species created to classify isolates with complete genome sequences available in public databases at the time of the proposal. The specific epithet of each virus species was chosen as a reference to the location where the exemplar virus was isolated.


Asunto(s)
Virus ADN , Genoma Viral , Filogenia , Genoma Viral/genética , Virus ADN/genética , Virus ADN/clasificación , ADN Viral/genética
16.
mSphere ; 9(7): e0021924, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38904383

RESUMEN

Acute encephalitis syndrome (AES) causes significant morbidity and mortality worldwide. In Nepal, Japanese encephalitis virus (JEV) accounts for ~5-20% of AES cases, but ~75% of AES cases are of unknown etiology. We identified a gemykibivirus in CSF collected in 2020 from an 8-year-old male patient with AES using metagenomic next-generation sequencing. Gemykibiviruses are single stranded, circular DNA viruses in the family Genomoviridae. The complete genome of 2,211 nucleotides was sequenced, which shared 98.69% nucleotide identity to its closest relative, Human associated gemykibivirus 2 isolate SAfia-449D. Two real-time PCR assays were designed, and screening of 337 cerebrospinal fluid (CSF) and 164 serum samples from AES patients in Nepal collected in 2020 and 2022 yielded 11 CSF and 1 serum sample that were positive in both PCR assays. Complete genomes of seven of the positives were sequenced. These results identify a potential candidate etiologic agent of encephalitis in Nepal. IMPORTANCE: Viral encephalitis is a devastating disease, but unfortunately, worldwide, the causative virus in many cases is unknown. Therefore, it is important to identify viruses that could be responsible for cases of human encephalitis. Here, using metagenomic sequencing of CSF, we identified a gemykibivirus in a male child from Nepal with acute encephalitis syndrome (AES). We subsequently detected gemykibivirus DNA in CSF or serum of 12 more encephalitis patients by real-time PCR. The virus genomes we identified are highly similar to gemykibiviruses previously detected in CSF of three encephalitis patients from Sri Lanka. These results raise the possibility that gemykibivirus could be an underrecognized human pathogen.


Asunto(s)
Genoma Viral , Filogenia , Humanos , Nepal/epidemiología , Masculino , Niño , Genoma Viral/genética , Metagenómica , Secuenciación de Nucleótidos de Alto Rendimiento , Preescolar , Reacción en Cadena en Tiempo Real de la Polimerasa , Encefalitis Viral/virología , Adolescente , Virus ADN/genética , Virus ADN/aislamiento & purificación , Virus ADN/clasificación , Femenino
17.
Mol Plant ; 17(6): 955-971, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38745413

RESUMEN

Circular single-stranded DNA (ssDNA) viruses have been rarely found in fungi, and the evolutionary and ecological relationships among ssDNA viruses infecting fungi and other organisms remain unclear. In this study, a novel circular ssDNA virus, tentatively named Diaporthe sojae circular DNA virus 1 (DsCDV1), was identified in the phytopathogenic fungus Diaporthe sojae isolated from pear trees. DsCDV1 has a monopartite genome (3185 nt in size) encapsidated in isometric virions (21-26 nm in diameter). The genome comprises seven putative open reading frames encoding a discrete replicase (Rep) split by an intergenic region, a putative capsid protein (CP), several proteins of unknown function (P1-P4), and a long intergenic region. Notably, the two split parts of DsCDV1 Rep share high identities with the Reps of Geminiviridae and Genomoviridae, respectively, indicating an evolutionary linkage with both families. Phylogenetic analysis based on Rep or CP sequences placed DsCDV1 in a unique cluster, supporting the establishment of a new family, tentatively named Gegemycoviridae, intermediate to both families. DsCDV1 significantly attenuates fungal growth and nearly erases fungal virulence when transfected into the host fungus. Remarkably, DsCDV1 can systematically infect tobacco and pear seedlings, providing broad-spectrum resistance to fungal diseases. Subcellular localization analysis revealed that DsCDV1 P3 is systematically localized in the plasmodesmata, while its expression in trans-complementation experiments could restore systematic infection of a movement-deficient plant virus, suggesting that P3 is a movement protein. DsCDV1 exhibits unique molecular and biological traits not observed in other ssDNA viruses, serving as a link between fungal and plant ssDNA viruses and presenting an evolutionary connection between ssDNA viruses and fungi. These findings contribute to expanding our understanding of ssDNA virus diversity and evolution, offering potential biocontrol applications for managing crucial plant diseases.


Asunto(s)
ADN de Cadena Simple , Virus Fúngicos , Filogenia , Enfermedades de las Plantas , Virus Fúngicos/genética , Virus Fúngicos/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , ADN de Cadena Simple/genética , Ascomicetos/virología , Ascomicetos/fisiología , Virus ADN/genética , Resistencia a la Enfermedad/genética , Genoma Viral , Pyrus/microbiología , Pyrus/virología , Nicotiana/virología , Nicotiana/microbiología
18.
Curr Biol ; 34(12): 2633-2643.e3, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38806056

RESUMEN

A recent marine metagenomic study has revealed the existence of a novel group of viruses designated mirusviruses, which are proposed to form an evolutionary link between two realms of double-stranded DNA viruses, Varidnaviria and Duplodnaviria. Metagenomic data suggest that mirusviruses infect microeukaryotes in the photic layer of the ocean, but their host range remains largely unknown. In this study, we investigated the presence of mirusvirus marker genes in 1,901 publicly available eukaryotic genome assemblies, mainly derived from unicellular eukaryotes, to identify potential hosts of mirusviruses. Mirusvirus marker sequences were identified in 915 assemblies spanning 227 genera across eight supergroups of eukaryotes. The habitats of the putative mirusvirus hosts included not only marine but also other diverse environments. Among the major capsid protein (MCP) signals in the genome assemblies, we identified 85 sequences that showed high sequence and structural similarities to reference mirusvirus MCPs. A phylogenetic analysis of these sequences revealed their distant evolutionary relationships with the seven previously reported mirusvirus clades. Most of the scaffolds with these MCP sequences encoded multiple mirusvirus homologs, suggesting that mirusviral infection contributes to the alteration of the host genome. We also identified three circular mirusviral genomes within the genomic data of the oil-producing thraustochytrid Schizochytrium sp. and the endolithic green alga Ostreobium quekettii. Overall, mirusviruses probably infect a wide spectrum of eukaryotes and are more diverse than previously reported.


Asunto(s)
Eucariontes , Especificidad del Huésped , Filogenia , Especificidad del Huésped/genética , Eucariontes/genética , Eucariontes/virología , Genoma Viral , Virus ADN/genética , Metagenómica
19.
Mol Ecol Resour ; 24(6): e13978, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38775206

RESUMEN

Amplicon sequencing is an effective and increasingly applied method for studying viral communities in the environment. Here, we present vAMPirus, a user-friendly, comprehensive, and versatile DNA and RNA virus amplicon sequence analysis program, designed to support investigators in exploring virus amplicon sequencing data and running informed, reproducible analyses. vAMPirus intakes raw virus amplicon libraries and, by default, performs nucleotide- and amino acid-based analyses to produce results such as sequence abundance information, taxonomic classifications, phylogenies and community diversity metrics. The vAMPirus analytical framework leverages 16 different opensource tools and provides optional approaches that can increase the ratio of biological signal-to-noise and thereby reveal patterns that would have otherwise been masked. Here, we validate the vAMPirus analytical framework and illustrate its implementation as a general virus amplicon sequencing workflow by recapitulating findings from two previously published double-stranded DNA virus datasets. As a case study, we also apply the program to explore the diversity and distribution of a coral reef-associated RNA virus. vAMPirus is streamlined within Nextflow, offering straightforward scalability, standardization and communication of virus lineage-specific analyses. The vAMPirus framework is designed to be adaptable; community-driven analytical standards will continue to be incorporated as the field advances. vAMPirus supports researchers in revealing patterns of virus diversity and population dynamics in nature, while promoting study reproducibility and comparability.


Asunto(s)
Programas Informáticos , Biología Computacional/métodos , Virus ADN/genética , Virus ADN/clasificación , Virus/genética , Virus/clasificación , Virus/aislamiento & purificación , Virus ARN/genética , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Filogenia
20.
J Vis Exp ; (207)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38801262

RESUMEN

We report a fast, easy-to-implement, highly sensitive, sequence-specific, and point-of-care (POC) DNA virus detection system, which combines recombinase polymerase amplification (RPA) and CRISPR/Cas12a system for trace detection of DNA viruses. Target DNA is amplified and recognized by RPA and CRISPR/Cas12a separately, which triggers the collateral cleavage activity of Cas12a that cleaves a fluorophore-quencher labeled DNA reporter and generalizes fluorescence. For POC detection, portable smartphone microscopy is built to take fluorescent images. Besides, deep learning models for binary classification of positive or negative samples, achieving high accuracy, are deployed within the system. Frog virus 3 (FV3, genera Ranavirus, family Iridoviridae) was tested as an example for this DNA virus POC detection system, and the limits of detection (LoD) can achieve 10 aM within 40 min. Without skilled operators and bulky instruments, the portable and miniature RPA-CRISPR/Cas12a-SPM with artificial intelligence (AI) assisted classification shows great potential for POC DNA virus detection and can help prevent the spread of such viruses.


Asunto(s)
Sistemas CRISPR-Cas , Aprendizaje Profundo , Ranavirus/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Virus ADN/genética , Recombinasas/metabolismo , ADN Viral/genética , ADN Viral/análisis , Sistemas de Atención de Punto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...